Paatero, Jukka V.; Lund, Peter

Effect on energy storage on variations in wind power

Published in:
WIND ENERGY

DOI:
10.1002/we.151

Published: 01/01/2005

Document Version
Peer reviewed version

Please cite the original version:
Effect of energy storage on variations in wind power

Jukka V. Paatero and Peter D. Lund
Helsinki University of Technology
Advanced Energy Systems
P.O. Box 2200, FI-02015 HUT (Espoo), Finland
Email: jukka.paatero@hut.fi

This is a preprint of an article published in Wind Energy
Vol. 8:4, p. 424-441, 2005. doi:10.1002/we.151
http://www3.interscience.wiley.com/cgi-bin/jhome/6276

Abstract

Irregularities in power output are characteristic to intermittent energy sources such as wind energy affecting both the power quality and planning of the energy system. In this work the effects of energy storage to reduce wind power fluctuations are investigated. Integration of the energy storage with wind power is modeled using a filter approach in which a time constant corresponds to the energy storage capacity. The analyses show that already a relatively small energy storage capacity or 3 kWh (storage) per MW wind would reduce the short term power fluctuations of an individual wind turbine by 10%. Smoothening out the power fluctuation of the wind turbine on a yearly level would necessitate large storage, e.g. a 10% reduction requires 2-3 MWh per MW wind.

Key words: energy storage, wind power systems, power fluctuation, low pass filter, exponentially weighted moving average filter

Introduction

Sporadic fluctuation of power output is characteristic to intermittent energy sources such as wind energy. This may in turn impose special requirements to the surrounding power system and may even restrict the use of wind energy in certain conditions. Thus wind power systems challenge equally the power quality, energy planning and power flow controls in the local grid.

Wind data consists basically of two overlapping effects, namely macro-meteorological and micro-meteorological fluctuations. [1] The macro-meteorological fluctuations indicate the movements of large-scale weather patterns such as the day and night cycle and the movement of depressions and anti-cyclones. The micro-meteorological fluctuations originate from the atmospheric turbulence with typical time scales of 1-600s. Similar fluctuation patterns appear in wind power systems, although modified by the physical and electric characteristics of the wind turbine itself. [2]
The fluctuations in wind power influence both power quality and energy planning. The power quality problems that cannot be handled with power electronics mainly arise from the local voltage variation caused by the unbalance of the power generation and the local power demand. This can be problematic in weak networks, where an expansion in local wind power capacity may result in undesired voltage levels. [3, 4] In an extreme situation a whole wind power system may need to be disconnected from the grid. [5]

The aim of this work is to assess how energy storage could smoothen out fluctuations in wind power generation on a time scale from one second to hours and a few days. We focus on small or intermediate energy storage capacities which may improve the power quality of an individual wind power turbine. The concept may be expanded to large wind power systems when the corresponding system data is analyzed. The effects caused by fluctuation with less than 1s causing e.g. flickering, [6] are excluded here.

In the paper a methodology is presented to describe the smoothing out of wind turbine power variations when combined with energy storage. The system output is modeled by introducing to the output data a time constant corresponding to energy storage capacity. This method is applied to two sets of data with a time resolution of 1 second and 1 hour, respectively. The method allows to directly relate the size of the energy storage with wind power variation on a short and medium term time scale.

Previous work on wind power and storage include mainly economic issues and autonomous wind-storage systems. Integration of wind power into the power system has been reported e.g. by Binder & Lundsanger, [7] Tande [8] and Koch et al. [9] Economic benefits of combining grid connected wind power with energy storage on open electricity markets has been reported by Bathurst & Strbac [10] and Korpaas et al. [11] Using storage for compensating reactive power in a wind farm has been discussed by Muljadi et al. [12] Binder [3] reports storage among competitive alternatives to increase wind power in weak grids. Electric storage has also been applied to non-grid wind-diesel or autonomous wind-storage systems. [13, 14] The compensation of fluctuations in a wind-diesel system using fuzzy logic was reported by Leclercq et al. [15] The kind of analysis represented in this study has not been reported previously.

Defining the characteristics of wind power fluctuation

A statistical approach is first applied to characterize the different wind power conditions and their specific behavior, as the effect of energy storage will depend much on the prevailing wind speed conditions. The time scale and relative intensity of the wind speed or power fluctuation is of primary importance here.

Based on the work by Van Der Hoven [16], Rohatgi & Nelson [1] divide the fluctuations of horizontal wind speed into two distinct regions namely macro-meteorological and micro-meteorological. The macro-meteorological region results from the large-scale movement of
the air masses due to depressions and anti-cyclones while the micro-meteorological fluctuations originate from the atmospheric turbulence. As Figure 1 shows, the typical power density peaks in the macro region are found at 12 and 100 hours while the peak at the micro region is at about one minute only. [1]

Classification of wind data is typically done by analyzing the wind turbulence intensity and integral time and length scale from 10 minute samples. [17] The normalized power level and standard deviation together with integral time scale are used to characterize the statistical details of the power datasets. The integral time scale describes the average time over which the fluctuations in the data are correlated with each other [1] while the normalized standard deviation is applied to identify the level of smoothing in the power series.

The integral time scale of the wind speed fluctuation is calculated with the autocorrelation of the wind data. [17] In a similar way the autocorrelation is used to define the integral time scale of the wind power fluctuation as shown below. First we define the sample autocorrelation function \(r \) for a given lag \(m \) as [18, 19]

\[
r_m = \frac{\sum_{i=1}^{n-m}(p_i - \bar{p})(p_{i+m} - \bar{p})}{\sum_{i=1}^{n}(p_i - \bar{p})^2} \quad \text{for } m = 1, 2, 3, \ldots, n/4
\]

where \(\bar{p} = \frac{1}{n} \sum_{i=1}^{n} p_i \), \(n \) being the number of the sample data points. Next the power integral time scale (PITS) is defined as

\[
PITS = \int_{m=1}^{m_{r=0}} r_m dt = \sum_{m=1}^{m_{r=0}} r_m \Delta t
\]

Here \(\Delta t \) is the sampling interval for the dataset. \(m_{r=0} \) is the point where \(r_m \) for the first time equals zero or becomes negative. The normalized standard deviation (STD) of the wind turbine power is defined as

\[
STD = \frac{1}{P_{nom}} \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n}(p_i - \bar{p})^2}
\]

where \(P_{nom} \) is the nominal power of the wind turbine. Correspondingly the normalized mean power level (PFR) is
Two different sets of wind power data is used here. The first dataset contains measured wind turbine power output data with $\Delta t = 1s$. The blade passing effects and other very short term phenomena typically handled with power electronics do not appear in the data series but it includes the effects originating from the micro-meteorological fluctuations. [20]

The $\Delta t = 1s$ data PITS analysis is done with fixed and successive 10 minute (600 point) data windows giving altogether 20-44 data periods whose results will be averaged over the whole sample. This assures the comparability of different samples and puts weight on their short term patterns.

The second dataset has $\Delta t = 1$ hr and it comprises two different types of data. The first subset comprises measured wind turbine power data that has been averaged over one hour intervals. The second part contains simulated wind turbine output that has been calculated using height corrected hourly wind data together with wind turbine power curves. The samples cover a period of one year except for the two smaller turbines, where the sample period is 202 days. Only limited statistical analysis is done to the hourly data ($\Delta t = 1$ hr) as the averaging process has eliminated all short and intermediate term fluctuations.

Storage analysis

In our approach, the fluctuations in wind power output are described as undesirable short term noise in the signal output. The effect of energy storage is modeled by introducing a filtering time constant to the wind power data. This is done with a discrete low-pass filter that is typically used to remove high frequency noise from a signal. [21]

The low-pass filter suggests an increase or a decrease to the level of wind power output, which is comparable to discharging or charging of the storage with corresponding power. In the analysis it is assumed that the energy storage has no efficiency losses and that it gives immediate response to the filtering suggestions.

The suggested method allows the influence of energy storage to be studied through different time constants corresponding to energy storage capacity.

The first-order passive low-pass filter is mathematically described as [21, 22]

$$\tau \cdot Y' + Y = X \quad (5)$$

where τ is the filtering time constant corresponding to energy storage capacity, Y is the filter output function corresponding to the wind turbine output together with the storage
unit, Y' is the derivative of Y and X is the filter input function that corresponds to the wind turbine output without energy storage.

When discrete data with a time step Δt is used interconnected with a low-pass filter and the derivative of Y is expanded into discrete form, equation (5) can be written for time step k as follows

$$\tau \cdot \frac{Y_k - Y_{k-1}}{\Delta t} + Y_k = X_k$$

(6)

Solving for Y_k gives

$$Y_k = \frac{\tau}{\tau + \Delta t} \cdot Y_{k-1} + \frac{\Delta t}{\tau + \Delta t} \cdot X$$

(7)

Defining a constant $\alpha = \frac{\tau}{\tau + \Delta t}$, equation (7) can be rewritten as

$$Y_k = \alpha \cdot Y_{k-1} + (1 - \alpha) \cdot X_k$$

(8)

Now equation (8) has the form of an exponentially weighted moving average filter (EWMA). [22] The subscript k corresponds to time, i.e. $t_k = t_0 + k \cdot \Delta t$, where Δt is the time step and t_0 is the starting point of the analysis.

The improvement in the quality of the filtered power output data has been evaluated through the changes in the wind power fluctuation characteristics. The PITS value is periodically re-evaluated and averaged while the STD is recalculated for the whole sample.

With an EWMA filter, the response of the energy storage is

$$P_{st,k} = Y_k - X_k$$

(9)

where $P_{st,k}$ is the power taken from the storage unit. Inserting equation (8) into equation (9) we obtain

$$P_{st,k} = \alpha \cdot Y_{k-1} + (1 - \alpha) \cdot X_k = \alpha \cdot (Y_{k-1} - X_k)$$

(10)

Solving equation (9) for Y_{k-1} and inserting it to equation (10) yields
\[P_{st,k} = \alpha \cdot (P_{st,k-1} + X_{k-1} - X_k) = \alpha \cdot (P_{st,k-1} - \Delta X_k) \] (11)

At startup \((k = 1)\), the initial value \(P_{st,0} + X_0\) needs to be defined. The initial value is found here by using periodic boundary conditions iteratively so that the storage capacity is minimized.

The energy state of the storage, representing the energy content in it, is defined in discrete form as

\[E_k = -\sum_{m=1}^{k} P_{st,m} \cdot \Delta t \] (12)

The energy storage capacity used for damping the fluctuations is then defined as

\[Q = \max_{k=1, \ldots, n} E_k - \min_{k=1, \ldots, n} E_k \] (13)

where \(n\) is the total number of time points in the data sample.

Figure 2 shows how the time constant affects a wind power data sample in practice. The \(\tau\) values in the figure correspond to energy storages with different capacities.

Input data used in the analysis

The analysis in this work is based on measured data of wind speed and wind turbine power output at different locations around Europe as presented in Table 1. The table includes the site and sample names, location and the data sampling interval. Both synchronous and asynchronous turbines are included, also one older wind turbine model with passive stalling.

The data sampling intervals are 1s and 1hr. As data with \(\Delta t = 1s\) is difficult to obtain, only three different sites in Finland could be used. The turbine data with hourly interval is available from three sites in Finland. Three additional sites around Europe are simulated based on hourly weather data. [23] The simulated data is generated applying the power curve [24] and turbine tower height (65 meters) of the actual turbine located at the site Riutukari. The logarithmic wind profile is used to estimate the wind speed at the tower height. [17]

The \(\Delta t = 1s\) data is used to analyze the effect of storage on short term fluctuations that originate from the micro-meteorological scale weather phenomena combined with the turbine dynamics. The data samples in Table 2 mainly correspond to power levels up to
80% of nominal power. These levels are considered more interesting as the relative fluctuations are large and effects from the active stalling are absent. The statistical qualities of the sample data are shown in Table 2.

The classification of the data samples with 1s interval is presented in Figure 3. Class A includes low power data with high PITS, hence dominated by slow fluctuations with large amplitude. Class B includes low power data with low PITS, hence dominated by fast small amplitude fluctuation. Classes C and D include likewise the high power data, class C having high PITS and slow fluctuation while class D has low PITS and fast fluctuation, correspondingly.

The hourly ($\Delta t = 1\text{hr}$) power data is a 1-hour power integral value of the turbine output or a simulated power value from the weather data. All the short term effects are smoothed out leaving only the effects from macro-meteorological phenomena.

Results of the short term data analysis

By using the EWMA-filtering approach it was possible to analyze how τ influences the normalized power standard deviation (STD) and the power integral time scale (PITS) of the data samples. Also the corresponding storage capacity needed could be determined. With these results the reduction of STD can be directly related to the storage capacity requirements. The STD in the short term analysis corresponds to standard deviation of 3-7 hours long data sample.

The effects of the filtering of the $\Delta t = 1\text{s}$ data are shown in Figures 4-7. The reduction of the fluctuation over all the samples is presented in Figures 4a-c. For example with $\tau = 1\text{ min}$, the reduction of fluctuation in class A and C is 11-24%, in class B 23-30% and in class D over 40%, respectively.

The increase of the PITS against τ is shown in Figures 5a-c. As each of the PITS values is averaged from the values of the 10 minute data windows, they elucidate the typical time scales in those windows only. The rapid increase of PITS values indicate that fluctuations in the 10 minute range are effectively dampened. PITS values saturate at about $\tau = 5\text{ min}$ to a value of 75-90s for samples A-C and 65-70s for samples D. Going for higher τ would not be possible due to the used 10 minute data window.

The relation of τ and the energy storage capacity is shown in Figures 6a-c. The storage capacity is expressed in units of kWh storage per MW of nominal wind turbine power (kWh/MW). The capacity equivalent to $\tau = 1\text{ min}$ is 2.7-6.5 kWh/MW for classes A-C and slightly higher or 6.1-8.5 kWh/MW for class D. For $\tau = 10\text{ min}$ we have 17-34 kWh/MW for classes A and B, 48 kWh/MW for class C and 28-40 kWh/MW for class D, correspondingly.
In Figure 7 the results from Figures 5 and 6 are combined together to relate the wind power fluctuation and storage capacity. It can be seen that with a storage capacity of 3 kWh per wind power MW, the STD is reduced in all cases by at least 10%. In the wind power classes B and D, 1 kWh/MW is adequate to provide 10% reduction in the STD. Going beyond the 10% suppression, the storage capacity needed will increase rapidly with large differences between the power classes A-D.

Assuming an available energy storage capacity of 5 kWh per MW reduces the STD by 12% (class C), 14-23% (class A), 23-28% (class B) and 37-51% (class D). The large spread stresses the importance of good knowledge about local wind conditions to judge the usefulness of energy storage. When the wind conditions are dominated by turbulence with high integral time constant, the fluctuations in the wind power output are strong in the low frequency region which is the most capacity intensive to compensate. From a practical point of view, a modern flywheel energy storage module could provide up to 25 kWh energy storage capacity, [25] suggesting that in most conditions a single storage unit could reduce the short term STD of a 1 MW wind turbine by 50% (not shown in Figure 7). Alternatively, such a unit could provide 10% reduction in STD for a 10-50 MW wind power park depending on the wind power class.

Results of the long term data analysis

The hourly datasets were studied to investigate how the macro-meteorological phenomena in wind speed could be compensated through storage. As Δt and τ are now large and smooth out the micro-meteorological effects and the long datasets includes many kinds of wind behavior, the previous classification of $\Delta t = 1$ s wind power data (classes A-D) is not feasible. The datasets contain one year sample (202 days for Fögl & Vård).

The reduction of the deviation in the hourly data through the increased time constant is shown in Figure 8. The upper part shows the absolute reduction of STD, while the lower part shows the reduction of STD in percentages. With $\tau = 12$ hrs a 23-27% reduction was achieved in the yearly fluctuation for most of the samples. With τ as high as 24 hrs, a roughly 34-38% reduction is achieved. The Trapani sample differs from the others most likely due to difference in local weather fluctuation cycles. Energy storage with $\tau = 12$-24 hrs corresponds for example to pumped hydro storage, typically applied in energy planning schemes.

The comparison of energy storage capacity and τ is shown in Figure 9. With τ up to about 12 hrs the energy storage capacity values are very similar with all the samples, but the differences become pronounced with larger τ.

In Figure 10 the results from Figures 8 and 9 are combined to present the storage capacity as a function of long term wind power fluctuation. To achieve a 10% reduction in the yearly fluctuation, a 2-3 MWh storage capacity per a MW of wind power is required. Similarly a 30% reduction can be achieved with a capacity of 10-15 MWh per MW.
The above energy storage capacities indicate that a large storage system setup, such as an array of flywheel modules, [25] is needed when the local network cannot accommodate the voltage changes due to the long term power fluctuations of a wind turbine. Alternatively, there are multiple ways to reduce the voltage changes induced by embedded generation, as discussed by Masters [4]. The optimal combination of wind power, energy storage and other installations, e.g. reactive power compensation or voltage controllers, becomes cite connected economic issue which is beyond the scope of this paper.

Conclusions

Integration of energy storage into an individual wind turbine and the corresponding effects have been modeled using a filter approach in which a time constant (τ) is applied to describe the energy storage capacity. The relationship between the standard deviation of the wind turbine power output and the corresponding energy storage capacity was solved. The effects of storage were studied for European conditions with time-steps Δt = 1 sec and Δt = 1 hr to identify the effects from both micro-meteorological and macro-meteorological wind fluctuations. The datasets comprised measured power data from six Finnish wind turbines and simulated power data based on European mean weather data from four different cites.

The micro-scale analyses showed that applying already relatively small time constants and hence small energy storage capacities would reduce the short term fluctuations of wind power. A storage capacity of 3 kWh per MW of wind power shows at least a 10% reduction in the short term deviation (4-7 hrs) of the power data, while in some wind conditions only 1 kWh per MW is needed to obtain the same effect. With a 5 kWh per MW capacity, the reduction of standard deviation varies from 12% to 50% between the sites, showing the importance of understanding the local wind conditions for storage sizing and design. Introducing a storage capacity of 25 kWh per MW, still within the limits of a modern flywheel energy storage unit, the standard deviation of wind power would be reduced by 50% in most cases.

The macro-scale analyses showed that large storage capacities would be needed as expected to significantly smoothen out the yearly fluctuation of the power output from an individual wind turbine. Reducing the yearly deviation by 10% would require an energy storage capacity of 2-3 MWh per MW wind power and a 30% reduction would require 10-15 MWh capacity per MW, correspondingly. Such energy storage capacity requirements can easily become economically unfeasible. When necessary, the fluctuations could be leveled with a storage system possibly in combination with systems like reactive power compensator or voltage controller, to reduce the system sensitivity for the wind power fluctuations.

Our further work on this energy storage will include more detailed numerical energy system modeling of wind-storage schemes using the results from present study as input. In this context, the control schemes for storage and their effects will be quantified in more detail for practical cases.
Acknowledgements

This work was made possible by the research grant from the Fortum Foundation.
Appendix: Nomenclature

\(r_m \) autocorrelation function with lag m

\(p_i \) power data sample value with index i

\(\bar{p} \) average power of a data sample

\textit{PITS} power integral time scale

\textit{STD} normalized standard deviation

\textit{PFR} normalized mean power level

\(\Delta t \) sampling interval for a data sample

\(\tau \) filtering time constant corresponding to energy storage capacity and control strategy

\(Y \) filter output corresponding to wind turbine output together with response from storage unit

\(Y' \) time derivative of \(Y \)

\(X \) filter input corresponding to wind turbine output without energy storage

\(k \) step number for discrete analysis

\(n \) number of data points in a data sample

\(\Delta t \) time step applied in discrete data

\(\alpha \) constant used in the exponentially weighted moving average filter

\(t_0 \) initial time for an analysis

\(t_k \) corresponding time for step \(k \)

\(P_{st,k} \) power taken from an energy storage at step \(k \)

\(E_k \) energy state of an energy storage at step \(k \)

\(Q \) energy storage capacity used for damping fluctuations in a data sample
References

16. Van Der Hoven, I. Power Spectrum of Horizontal Wind Speed in the Frequency Range From 0.007 to 900 Cycles Per Hour. Journal of Meteorology 1957; 14: 160–164.

Figure captions

Figure 1. Spectral power density of horizontal wind speed showing the macro-meteorological and micro-meteorological fluctuations (adopted from Rohatgi & Nelson). [1]

Figure 2. Demonstration of the effects of increasing τ (= energy storage capacity) on the amplitude of the wind power fluctuation for a real wind power case.

Figure 3. Classification of $\Delta t = 1s$ wind power data used in the analysis according to mean power and power integral time scale.

Figure 4a. Short-term influence of time constant τ on the relative standard deviation of the wind turbine power output. Turbine data set with $\Delta t = 1s$ and fluctuation class A.

Figure 4b. Short-term influence of time constant τ on the relative standard deviation of the wind turbine power output. Turbine data sets with $\Delta t = 1s$ and fluctuation classes B-C.

Figure 4c. Short-term influence of time constant τ on the relative standard deviation of the wind turbine power output. Turbine data set with $\Delta t = 1s$ and fluctuation class D.

Figure 5a. Short-term influence of time constant τ on power integral time scale of the wind turbine power output. Turbine data set with $\Delta t = 1s$ and fluctuation class A.

Figure 5b. Short-term influence of time constant τ on the power integral time scale of the wind turbine power output. Turbine data sets with $\Delta t = 1s$ and fluctuation classes B-C.

Figure 5c. Short-term influence of time constant τ on the power integral time scale of the wind turbine power output. Turbine data set with $\Delta t = 1s$ and fluctuation class D.

Figure 6a. Short-term influence of time constant τ on the relative capacity need of the wind turbine storage unit. Turbine data set with $\Delta t = 1s$ and fluctuation class A.

Figure 6b. Short-term influence of time constant τ on the relative capacity need of the wind turbine storage unit. Turbine data sets with $\Delta t = 1s$ and fluctuation classes B-C.
Figure 6c. Short-term influence of time constant τ on the relative capacity need of the wind turbine storage unit. Turbine data set with $\Delta t = 1s$ and fluctuation class D.

Figure 7. Relation of short-term energy storage capacity and relative standard deviation of the wind turbine power output. Turbine data set with $\Delta t = 1s$ and power fluctuation classes A-D.

Figure 8. Influence of long-term time constant τ on the macro-scale standard deviation of the wind turbine power output. Turbine data set with $\Delta t = 1hr$.

Figure 9. Influence of time constant τ on the relative energy storage capacity per MW wind turbine capacity. Turbine data sets with $\Delta t = 1hr$.

Figure 10. Relation of long-term energy storage capacity and relative standard deviation of the wind turbine power output. Turbine data set with $\Delta t = 1hr$.
List of Tables

Table 1. Wind turbine sites and types of datasets used as input in the analysis.

Table 2. Statistical characteristics of the datasets with $\Delta t = 1s$. Symbols A-D refer to the wind power fluctuation classes defined in Figure 3.

Table 3. Statistical characteristics of the datasets with $\Delta t = 1hr$.
Figure 1.
Figure 2.
Figure 3.
Figure 4a.
Figure 4b.
Figure 4c.
Figure 5a.
Figure 5b.
Figure 5c.
Figure 6a.
Figure 6b.
Figure 6c.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
<table>
<thead>
<tr>
<th>Site</th>
<th>Country</th>
<th>Wind turbine</th>
<th>Location</th>
<th>Sample Name</th>
<th>Sample interval, Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pori</td>
<td>Finland</td>
<td>1000 AA</td>
<td>61°22'N 21°18'E</td>
<td>Pori</td>
<td>1s</td>
</tr>
<tr>
<td>Oulu</td>
<td>Finland</td>
<td>1000 SA</td>
<td>65°02'N 25°01'E</td>
<td>Oulu</td>
<td>1s</td>
</tr>
<tr>
<td>Pyhätunturi</td>
<td>Finland</td>
<td>220 AP</td>
<td>68°15'N 23°22'E</td>
<td>Pyhä</td>
<td>1s</td>
</tr>
<tr>
<td>Föglö</td>
<td>Finland</td>
<td>600 SA</td>
<td>60°00'N 20°19'E</td>
<td>Fögl</td>
<td>1h</td>
</tr>
<tr>
<td>Vårdö</td>
<td>Finland</td>
<td>500 SA</td>
<td>60°14'N 20°24'E</td>
<td>Vård</td>
<td>1h</td>
</tr>
<tr>
<td>Riutukari</td>
<td>Finland</td>
<td>1300 AA</td>
<td>65°00'N 25°12'E</td>
<td>Riut</td>
<td>1h</td>
</tr>
<tr>
<td>Trapani</td>
<td>Italy</td>
<td>1300 AAS</td>
<td>37°55'N 12°30'E</td>
<td>Trap</td>
<td>1h</td>
</tr>
<tr>
<td>Lerwick</td>
<td>Great Britain</td>
<td>1300 AAS</td>
<td>60°08'N 01°11'W</td>
<td>Lerw</td>
<td>1h</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>Denmark</td>
<td>1300 AAS</td>
<td>55°48'N 12°30'E</td>
<td>Cope</td>
<td>1h</td>
</tr>
<tr>
<td>Paris</td>
<td>France</td>
<td>1300 AAS</td>
<td>48°42'N 06°12'E</td>
<td>Pari</td>
<td>1h</td>
</tr>
</tbody>
</table>

* AA = Asynchronous turbine, Active stalling
SA = Synchronous turbine, Active stalling
AP = Asynchronous turbine, Passive stalling
AAS = Asynchronous turbine, Active stalling, Simulated
Table 2.

<table>
<thead>
<tr>
<th>Units</th>
<th>Oulu A1</th>
<th>Oulu A2</th>
<th>Pori A</th>
<th>Pyhä A</th>
<th>Oulu B</th>
<th>Pori B</th>
<th>Pori C</th>
<th>Oulu D</th>
<th>Pori D1</th>
<th>Pori D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Power</td>
<td>kW</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Mean Power</td>
<td>kW</td>
<td>155</td>
<td>300</td>
<td>209</td>
<td>92</td>
<td>444</td>
<td>483</td>
<td>949</td>
<td>595</td>
<td>854</td>
</tr>
<tr>
<td>Power SD*</td>
<td>kW</td>
<td>42.9</td>
<td>97.7</td>
<td>43.1</td>
<td>20.3</td>
<td>79.4</td>
<td>101</td>
<td>107</td>
<td>124</td>
<td>177</td>
</tr>
<tr>
<td>Normalized Mean Power</td>
<td>-</td>
<td>0.155</td>
<td>0.300</td>
<td>0.209</td>
<td>0.417</td>
<td>0.444</td>
<td>0.483</td>
<td>0.949</td>
<td>0.595</td>
<td>0.854</td>
</tr>
<tr>
<td>Normalized Power SD*</td>
<td>-</td>
<td>0.043</td>
<td>0.098</td>
<td>0.043</td>
<td>0.092</td>
<td>0.079</td>
<td>0.101</td>
<td>0.107</td>
<td>0.124</td>
<td>0.177</td>
</tr>
<tr>
<td>Mean PITS*</td>
<td>s</td>
<td>33.8</td>
<td>35.2</td>
<td>28.1</td>
<td>32.6</td>
<td>20.1</td>
<td>19.5</td>
<td>25.0</td>
<td>18.6</td>
<td>14.2</td>
</tr>
<tr>
<td>PITS SD*</td>
<td>s</td>
<td>20.2</td>
<td>14.3</td>
<td>16.4</td>
<td>18.1</td>
<td>13.3</td>
<td>15.1</td>
<td>16.4</td>
<td>11.9</td>
<td>7.65</td>
</tr>
</tbody>
</table>

* SD = Standard deviation
PITS = Power Integral Time Scale
Table 3.

<table>
<thead>
<tr>
<th>Units</th>
<th>Pari</th>
<th>Cope</th>
<th>Trap</th>
<th>Lerv</th>
<th>Fögl</th>
<th>Vård</th>
<th>Riut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Power</td>
<td>kW</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
<td>600</td>
<td>500</td>
</tr>
<tr>
<td>Mean Power</td>
<td>kW</td>
<td>232</td>
<td>370</td>
<td>343</td>
<td>469</td>
<td>165</td>
<td>94.1</td>
</tr>
<tr>
<td>Power SD*</td>
<td>kW</td>
<td>314</td>
<td>417</td>
<td>435</td>
<td>465</td>
<td>168</td>
<td>107</td>
</tr>
<tr>
<td>Normalized Mean Power</td>
<td>-</td>
<td>0.179</td>
<td>0.285</td>
<td>0.264</td>
<td>0.361</td>
<td>0.274</td>
<td>0.188</td>
</tr>
<tr>
<td>Normalized Power SD*</td>
<td>-</td>
<td>1.35</td>
<td>1.13</td>
<td>1.27</td>
<td>0.99</td>
<td>1.02</td>
<td>1.13</td>
</tr>
</tbody>
</table>

* SD = Standard deviation