De Blasio, Cataldo; Lucca, Gaetano; Özdenkci, Karhan; Mulas, Michela; Lundqvist, Kurt; Koskinen, Jukka; Santarelli, Massimo; Westerlund, Tapio; Järvinen, Mika

A study on Supercritical Water Gasification of black liquor conducted in Stainless Steel and Nickel-Chromium-Molybdenum reactors.

Published in:
Journal of Chemical Technology and Biotechnology

DOI:
10.1002/jctb.4871

Published: 09/02/2016

Please cite the original version:
A study on Supercritical Water Gasification of Black Liquor conducted in Stainless Steel and Nickel-Chromium-Molybdenum reactors.

Cataldo De Blasioa*, Gaetano Luccab, Karhan Özdenkc, Michela Mulasd, Kurt Lundqviste, Jukka Koskinene, Massimo Santarellif, Tapio Westerlunde, Mika Järvinena

a* Corresponding author, Department of Energy Technology, Aalto University, Sähkömiehentie 4, P.O.Box 1440. Espoo, Finland.

Tel. +358 50 4147 028

aAalto University, Department of Energy Technology, Sähkömiehentie 4, 02150 Espoo, Finland.

bFiat Chrysler Automobiles, FCA, C.so Tazzoli 75, 10-135, Torino, Italy.

cDepartment of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1-02150 Espoo, Finland.

dDepartment of Civil and Environmental Engineering, Aalto University, Rakentajan aukio 4-02150, Espoo, Finland.

eDepartment of Chemical Engineering, Åbo Akademi University, Biskopsgatan 8-20500, Turku, Finland.

* Corresponding author
ABSTRACT

BACKGROUND
Supercritical Water Gasification (SCWG) is presented here as an alternative treatment process for black liquor. In this research work, tests were done at different temperatures (500, 600 and 700°C) at a pressure of 25MPa. The effect of temperature and catalysis on the gasification efficiency was investigated.

RESULTS
The obtained yield and hot gas efficiencies increase with temperature while char and tar significantly decrease with it. Methanation was shown to be promoted at high temperature by Nickel catalyst and appeared faster than steam reforming in SCWG of black liquor. The addition of hydrogen on the double bond of ethylene was demonstrated to be an important step during the formation of methane. Water gas shift reactions were displaced toward the formation of CO₂ while the methane yield at higher temperature was favored by catalysis of Nickel-Chromium-Molybdenum alloy. CO₂ generation was enhanced at lower temperatures while at higher temperatures the thermal decomposition to low-weight carboxylates followed by decarboxylation was favoured producing hydrogen and methane. MS results gave information on the degradation process, char and tar formation and that heterocyclic compounds could be present in the liquid products as well as products from cyclization of acids.

CONCLUSIONS
Results on black liquor and sucrose gave important conclusions regarding the effect of constituents. Alkali metals promote methanation reactions while nickel catalyst promote decarboxylation of high-weight organics, methanation and steam reforming at low temperature.
Results demonstrated that water is a reactant and it is not only the medium in which the reactions take place.

KEYWORDS

Supercritical Fluids, Wood Industry, Energy, Biomass.

Introduction

Due to the sustainability issues of fossil fuels, biomass feedstock is considered to be a potential replacement for energy supply and chemical production. Rather than 1st generation biorefinery, organic wastes could be utilized through the integration of biorefinery with industrial processes. For instance, black liquor - side stream of pulping process - has a very good potential for this purpose: it has 50% of the organic matter present in wood along with a large number of different organic compounds including polysaccharides, carboxylic acids and extractives. The overall production of black liquor is estimated to be 240 million tons in the world annually; furthermore, Kraft pulping process accounts for almost 60% of all pulp production. In Finland, the utilization of black liquor for energy purposes accounted in 2002 for the 46% of the entire energy produced by biofuels and the 11% of the total heat and power generation.

The commercial treatment of black liquor in recovery boilers has energy efficiency issue despite being considered as feasible for large-scale wood mills. This process requires evaporation and heating in order to concentrate black liquor for combustion and to enable spraying by overcoming the viscous forces. These two steps are energy demanding operations. In addition, this treatment method has operational issues related to the transfer of highly viscous liquid, such as fouling on heat transfer surfaces and blockage in pumps. As a matter of fact, deposition of sodium carbonate and sodium sulphate salts can occur together with other forms of fouling like sodium oxalate and calcium carbonate deposition. The production capacity of pulping mills could be limited by these operational issues; therefore, in case of a need to increase the capacity,
the only way is to build an additional recovery boiler unit with the evident risks. The recovery
boilers are also limited by the heat release characteristic of the boiler; therefore, the same
limitations are present regarding the mass flows and additionally to the energy flows.
The recent investigations mainly present two alternatives for black liquor treatment:
gasification and partial wet oxidation. The gasification produces syngas which can either be
utilized for electricity generation through gas engines or biofuel production. The gasification
provides higher power efficiency compared with the commercial boiler combustion/Rankine
cycle steam power plant. On the other hand, black liquor gasification also requires evaporation
as pre-treatment, thus raising the same operational issues with the recovery boiler treatment.
Alternatively, partial wet oxidation of black liquor presents an opportunity to produce valuable
chemicals – carboxylic acids or salts of those acids - through exothermic reactions. Wet
oxidation phenomena occur in liquid phase, thus no requirement of evaporation. However, the
separation of downstream can give low acid and salt recovery due to dilute outlet.
Another alternative for black liquor treatment is represented by Supercritical Water Gasification
(SCWG). During SCWG of biomass, the organic material is gasified in water at supercritical
conditions (pressure and temperature higher than 22.1 MPa and 374 °C). At these conditions,
supercritical water (SCW) has several encouraging properties for future development of
gasification technologies. It is a non-polar substance and an effective solvent for carbohydrates,
gases and lignocellulosic compounds, thus providing single phase reaction media without
mass transfer limitation. SCW takes part directly into the reactions of biomass and contributes
greatly to the recovery of inorganic compounds, salts and valuable chemicals since they are
insoluble in SCW. Additionally, SCW operates at relatively lower temperature than
conventional gasification and is an ideal medium for processing hazardous chemical waste. As
a result, SCWG is a very suitable process for high-moisture feedstock in contrast to
conventional gasification, i.e. very promising potential for being integrated with pulp and
paper industry. Weak black liquor (downstream of pulping unit) can be treated directly in SCWG without pre-treatment of evaporation to produce syngas with high methane and hydrogen content. Furthermore, the method offers great possibilities for new ways of reactors design and operations.

The reaction mechanism of thermal decomposition of biomass has five main steps: depolymerization of polymeric molecules (i.e. cellulose, hemicellulose and lignin), decomposition of monomers to intermediates, gasification of these intermediates, equilibrium reactions among gas species, and some other reactions involving solid carbon and salts. The depolymerization of cellulose gives first smaller polymers – such as cellobiose, cellotriose, cellotetraose – and then glucose. In addition, glucose generates fructose through isomerization reaction. The hydrolysis of hemicellulose is also similar to cellulose with the monomers of mainly xylose and also mannose, galactose and arabinose. Investigations on the reaction kinetics show that hydrolysis rate becomes faster than the rate of further decomposition reactions under supercritical water conditions; in addition, the reaction pathway after hydrolysis involve thermal decomposition of monomers. Therefore, depolymerization products have been studied in previous research works as model compounds for biomass feedstock constituents. Sucrose is used in this study as a model compound of cellulose for preliminary tests in order to validate the apparatus and to have understanding about the reactions after hydrolysis. Similarly, isoeuganol is used as a model compound of lignin.

From the process viewpoint, the main parameters of SCWG are temperature, pressure, residence time and solute concentration. In previous studies, reactors made of nickel, chromium and molybdenum were at 700°C and a significant increase in methanation was observed due to the metal catalysts. The reaction rate have been observed in literature to be the highest in presence of ruthenium, nickel, cobalt, iron and molybdenum. Temperature was stated as the most influencing parameter by Y. Lu, 2012 and it is considered as more
influential than residence time, as also stated by Castello et al.16 and Cao et al.17. In addition, the SCWG of sugars is not highly dependent on pressure in a range between 25-35 MPa18. However, further investigation is necessary for mature knowledge on reaction mechanisms and the influence of process conditions and catalysts, in order to enable process development. These facts guided the selection of conditions for the experiments of this study.

The purpose of this study is to investigate the influence of black liquor constituents, catalyst and temperature on the SCWG phenomena through experimental data. First, the experiments were performed with sucrose, as a model compound for sugars, then with isoeugenol, as a lignin model compound, to determine the influence of temperature and constituents. Afterwards, as the main focus, SCWG of black liquor was experimented in two reactors, stainless steel and Nickel-Chromium-Molybdenum (INCONEL 625), in order to compare catalyst and temperature impacts together.

2. Materials and Methods

2.1 Reactor Setup and Experimental Procedure

Two tubular reactors with the same dimensions were tested. The reactors were made of stainless steel 316 and INCONEL 625. Table 1 shows the reactors’ dimensions and Table 2 shows their composition. The major difference in reactor compositions occurs in iron, nickel, chromium and molybdenum. Stainless steel reactor has mainly iron and very less of other elements whereas INCONEL 625 reactor has nickel as the main element, higher content in other mentioned elements except iron. The reactor made of stainless steel was used as a reference reactor to have a better estimation of the catalytic effect given by the INCONEL 625 alloy.

<table>
<thead>
<tr>
<th>Table 1. Dimensions of tubular reactors utilized for SCWG of biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
</tr>
<tr>
<td>Internal diameter</td>
</tr>
<tr>
<td>External diameter</td>
</tr>
<tr>
<td>Length</td>
</tr>
</tbody>
</table>
A description of the experimental apparatus is shown in Figure 1. In the feed system, the desired pressure is provided by water pumped through a high-pressure pump. This would allow for a greater flexibility and for continuous mode of operation. A similar solution for biomass feeding has been adopted in studies of SCWG of different kinds of feedstock15,20. The cylinders are made of stainless steel 316 L and have a maximum pressure tolerance of 40 MPa. The heating system surrounding the reactor consists of two semi-cylinder of Fibrothal, prefabricated heating modules with metallic heating elements and ceramic fiber insulation, from Kanthal. The unit power has a capacity of 2600 W. For temperature measurements, chromel-alumel K-type thermocouples with operating range of approximately -200 to 1350 °C were utilized. After the
reactor, a condenser was put in place and the system pressure was regulated by a back-pressure regulator.

Figure 1. Flow diagram of the experimental setup.

The reactor was brought to the experimental temperature by electrical heating elements which were positioned within the insulation around the reactor. The heating rate was regulated to 0.04 K s\(^{-1}\) in order to minimize the thermal stress on the reactor metal. Then, biomass feed was inserted into the reactors through the feed cylinders. The Black Liquor (BL) samples as received were diluted with water to a final BL/water ratio of 0.35 by volume. The sucrose feed concentrations are given in Table 3 while the composition of BL as received is given in Table 4. After gasification under supercritical water conditions, the product stream was cooled to room temperature and separated into gas and liquid products at atmospheric pressure. Finally, the gas and liquid samples were collected to be analysed. This operation was repeated for both feedstock materials with an inlet flow rate of 6 \(\cdot\) 10\(^{-5}\) L s\(^{-1}\) at the reactor temperatures of 500, 600, 700°C under the same pressure of 25 MPa. Sucrose solution was tested only with stainless steel reactor whereas black liquor was tested in both reactors.
2.2 Feedstock and Product Analysis

The preliminary experiments were conducted with sucrose (C\(_{12}H_{22}O_{11}\)) solution in water with the volume of 0.5 L. Table 3 shows the sucrose solutions used in SCWG experiments.

Table 3. Characteristics of the sucrose solutions

<table>
<thead>
<tr>
<th></th>
<th>Mass of Sucrose (g)</th>
<th>Molarity (M)</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIX A → Test 500°C</td>
<td>11.69</td>
<td>0.068</td>
<td>2.32</td>
</tr>
<tr>
<td>MIX B → Test 600°C</td>
<td>23.00</td>
<td>0.134</td>
<td>4.52</td>
</tr>
<tr>
<td>MIX C → Test 700°C</td>
<td>13.16</td>
<td>0.077</td>
<td>2.61</td>
</tr>
</tbody>
</table>

Black liquor feedstock was obtained from a pulp mill using hardwood and softwood mixture as raw material with the weight fractions of 0.3 and 0.7, respectively. The black liquor sample as received was taken from the downstream of the pulping unit, without any treatment. Table 4 shows the analysis of the black liquor sample as received. The Brix degree was determined by refractometry analysis at a constant temperature of 20°C, while the conductivity was evaluated on the crude sample and also on a diluted sample at 24° Brix. The dry solid content was evaluated by drying of the sample in oven at 110°C and the ashes content was evaluated by drying at 750°C. The samples were treated for 16h.

Table 4. Physical analysis conducted on Kraft black liquor as received.

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkali-soluble lignin, UV 280</td>
<td>162600</td>
<td>mg/L</td>
</tr>
<tr>
<td>Calcium, Ca, ICP</td>
<td>180</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Iron, Fe, ICP</td>
<td>5.02</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Potassium, K, ICP</td>
<td>8128</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Sodium, Na, ICP</td>
<td>34171</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Sulphur, S, ICP</td>
<td>15372</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Silicon, Si, ICP</td>
<td>325</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Molar mass, lignin, Mn, SEC</td>
<td>2572</td>
<td></td>
</tr>
<tr>
<td>Molar mass, lignin, Mw, SEC</td>
<td>4532</td>
<td></td>
</tr>
<tr>
<td>Molar mass, lignin, Peak maximum, SEC</td>
<td>2086</td>
<td></td>
</tr>
<tr>
<td>Molar mass, lignin, PD, SEC</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>Arabinose, acid hydrolysis, HPAE-PAD</td>
<td>1966.6</td>
<td>mg/L</td>
</tr>
<tr>
<td>Rhamnose, acid hydrolysis, HPAE-PAD</td>
<td>0.0</td>
<td>mg/L</td>
</tr>
<tr>
<td>Galactose, acid hydrolysis, HPAE-PAD</td>
<td>2387.9</td>
<td>mg/L</td>
</tr>
<tr>
<td>Glucose, acid hydrolysis, HPAE-PAD</td>
<td>575.5</td>
<td>mg/L</td>
</tr>
<tr>
<td>Chemical</td>
<td>Acid Hydrolysis</td>
<td>HPAE-PAD</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Xylose</td>
<td>4932.0</td>
<td>mg/L</td>
</tr>
<tr>
<td>Mannose</td>
<td>222.8</td>
<td>mg/L</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>10084.8</td>
<td>mg/L</td>
</tr>
<tr>
<td>Gross Calorific Value</td>
<td>14.4</td>
<td>MJ/kg</td>
</tr>
<tr>
<td>Ash 700°C (black liquor)</td>
<td>46.8</td>
<td>wt%</td>
</tr>
<tr>
<td>pH</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>Brix</td>
<td>57</td>
<td>wt%</td>
</tr>
<tr>
<td>Conductivity</td>
<td>62.6</td>
<td>mS/cm</td>
</tr>
<tr>
<td>Dry Solid Content</td>
<td>41.7</td>
<td>wt%</td>
</tr>
<tr>
<td>Ashes</td>
<td>35.4</td>
<td>wt%</td>
</tr>
<tr>
<td>Density</td>
<td>1.19</td>
<td>kg/L</td>
</tr>
</tbody>
</table>

UV 280 refers to the spectroscopy at 280nm, ICP, Inductively Coupled Plasma mass spectrometric analysis; SEC, size exclusion chromatography; HPAE-PAD, High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection.

The composition of gas products was analysed with a gas chromatograph, Perkin Elmer Clarus 500 (with a TCD detector) by Arnel. The liquid products were analysed for organic content, nitrogen content and sugar, carboxylic acid contents and mass spectrometry. The TOC (total organic carbon) measurements, or more accurately under the conditions of this method as Non-Purgeable Organic Carbon (NPOC), is carried out by means of the TOC-V CPH analyzer produced by Shimadzu. In addition to the TOC, the organic matter content has been also verified in terms of COD (chemical oxygen demand) following the Finnish standard procedure SFS 5504. The analyses on the nitrogen content followed the SFS-EN ISO 11905-1 and the standard method 4500 B. Mass Spectrometry, MS, analyses were conducted on a Waters Micromass LCT Premier with ionization method ES+ on the SCWG products obtained from Kraft black liquor samples at temperatures of 500°C, 600°C and 700°C. Low-molecular-weight carboxylic acids, alcohols and sugars are quantified through High Pressure Liquid Chromatography, HPLC. The instrument used was a WATERS 2690 Alliance with a Refractive Index Detector WATERS 2414, Column Hi-Plex H with the size of 300 x 7.7mm; column temperature as 65 °C and a flow of 0.6 ml/min⁻¹. The eluent is 0.005 M H₂SO₄. Liquid product
samples had already the pH values of the required range for analysis (5 to 9); therefore, acid treatment was not applied to those samples. The samples were filtered through 0.2µ filters.

Results and Discussion

SCWG of Sucrose

In this study, sucrose has been tested as a model compound of sugars in the absence of the lignin and alkali metal constituents in black liquor.

Figure 2. Left: Carbon, hydrogen and oxygen gasification efficiency, (CGE, HGE, OGE).
Right: Energy recovery expressed as Hot Gas Efficiency, HGE*.

Figure 2 shows the Hot Gas Efficiency, \(\eta(G) \), and gasification efficiencies of carbon, hydrogen and oxygen at different temperatures. For the \(\eta(G) \) estimation, the sensible heat of the gas produced is taken into account together with the heating value, while the heating value of the feed is calculated on a dry basis\(^3\). Higher Heating Values, HHVs, of ethylene, ethane, carbon monoxide, methane and hydrogen are taken from Domalski\(^3\). The gasification efficiencies (CGE, HGE, OGE) were calculated as the ratio of the total moles of each element in the gaseous products on the total moles of the same elements in the dry feed. Carbon efficiency is usually mentioned as a measure of the gasification degree of the process and it is reported to always increase with the temperature. Efficiency values increase with temperature as expected. The hot
gas efficiency increases with temperature and reaches a value of nearly 65 % at 700 °C. It is noticeable that hydrogen and methane have the major role in this trend, besides ethane becoming significant at higher temperature.

In addition, it is important to notice that the gasification efficiency of oxygen and hydrogen increases over 100%, i.e. there is more hydrogen and oxygen in the gaseous products than in the dry biomass portion of the feedstock. These efficiency values determine the participation of water to the gasification reactions and prove that more water reacts to form gases than the amount produced in the whole reaction mechanisms. Hydrolysis and steam reforming are the major reactions consuming water while methanation produces it. Especially, hydrolysis consumes much more water in lignocellulosic biomass gasification than in sucrose gasification, due to polymeric structure. In the literature, these results are confirmed processing samples with low concentration by weight, with this technology.

Figure 3. Left: Volume percentage of different components in gas products against temperature. Right: Gas product yields expressed as molar ratio.

Figure 3 illustrates the volume percentage of different compounds in the gas products and yields as the molar ratio of each compound to the moles of dry sucrose in the feed. It can be noticed that hydrogen and methane volume fractions increase with temperature while the fraction of carbon monoxide decreases in the gas product. The volume fraction and yield of ethane also
increase with temperature. This is a result consistent with the research work of Picou and co-
workers28 which had close conditions to the experiments in this study. In addition, the yield of
carbon dioxide increases slightly while its fraction decreases with temperature.

Regarding the order of gas-generating reactions, carbon and oxygen gasification appears faster
than hydrogen gasification. This statement is supported by the trends of atomic gasification
efficiencies and composition of the gas product. Figure 2 shows that CGE and OGE are much
higher than HGE at 500°C and increase slightly with temperature. In contrast, HGE sharply
increases with temperature when biomass conversion increases. Furthermore, Figure 3 shows
that CO\textsubscript{2} fraction is very high (close to 60\%) and CO has the next highest fraction at 500°C;
nevertheless, the fraction of CO\textsubscript{2} decreases with temperature whereas fractions of hydrogen-
containing species increases with temperature. Similarly, yields of hydrogen-containing species
have much sharper increase.

The formation of gas species start with the decomposition of monomers generated in hydrolysis.
Glucose and fructose are decomposed to aldehydes, erythrose and 5-HMF (5-hydroxymethyl-
2-furfural) which are then decomposed to carboxylic acids with subsequent release of water
and carbon dioxide23,36. Xylose and arabinose, hydrolysis products of hemicellulose, are
decomposed to glycolaldehyde, glyceraldehyde and furfural36. Then, the reactions continue
with the reforming of the decomposition products of the monomers. This step produces the
desired syngas; therefore, it is important to determine the process conditions enhancing this
step. Equation 1 shows steam reforming of the decomposition products and monomers as
general expression; Equation 2 shows the steam reforming of acetic acid as an example.

\begin{align*}
C_cH_{2c}O_o + (c - o)H_2O & \rightarrow cCO + (c - o + \frac{h}{2})H_2 & (1) \\
C_2H_4O_2 & \rightarrow 2CO + 2H_2 & (2)
\end{align*}

In addition, another type of reforming is the decarboxylation of carboxylic acids. Equation 3 shows the general form of decarboxylation reaction37, Equation 4 and 5 show examples of decarboxylation of formic acid and acetic acid38.

\begin{align*}
R - COOH & \rightarrow R - H + CO_2 \quad (3) \\
HCOOH & \rightarrow CO_2 + H_2 \quad \Delta H_{298.15}^o = 31.2 \text{ kJ/mol} \quad (4) \\
CH_3COOH & \rightarrow CH_4 + CO_2 \quad (5)
\end{align*}

At low temperature, faster gasification of carbon and oxygen than hydrogen indicates the dominance of decarboxylation of acids with more than two carbons and thermal decomposition reactions producing carbon dioxide. In contrast, at higher temperature, sharp increase in HGE indicates the decomposition of monomers to lighter intermediates (such as formic acid and acetic acid) followed by decarboxylation of these light compounds, generating also hydrogen or methane gases.

Figure 4. Possible route of degradation of fructose in supercritical water

Figure 4 illustrates the decomposition route of fructose. The ethylene formation from fructose was reported in previous studies19; however, this study demonstrates a corrected route with an additional reaction step of ethane formation. Hydrogenation of ethylene is an exothermic reaction, with the standard-state reaction enthalpy of -136.3 kJ mol-1,37 In addition, ethylene can also react with steam to produce ethanol as shown in Equation 6.

\begin{align*}
C_2H_4 + H_2O & \leftrightarrow CH_3CH_2OH \quad \Delta H_{298.15}^o = -45 \text{ kJ/mol} \quad (6)
\end{align*}
As reported in this study, the concentration of ethane is larger than that of ethylene and the
difference increases with temperature. Ethylene is reported as one of the ultimate degradation
products of sucrose and glucose19; ethane formation in SCWG is usually missing in literature.
In other words, ethylene will appear after (in order of formation) fructose or glucose,
glyceraldehyde and glycolaldehyde, pyruvaldehyde, lactic acid, acrylic acid as also shown in
Figure 4. The addition of water molecules on C-O bond generates carboxylic acids; then, further
decomposition (decarboxylation reactions) generates carbon dioxide. For instance, the
decomposition of acrylic acid generates carbon dioxide and ethylene. However, the results in
this study imply that ethylene undergoes hydrogenation to form ethane. This trend is confirmed
to be more significant at higher temperatures, considering the increasing trend of ethane and
very low amount of ethylene in the gas product.
The main equilibrium reactions among gas species are water-gas-shift (WGS) and methanation
reactions, as shown in Equation 7 and Equation 8, respectively.
\[
\begin{align*}
CO + H_2O & \leftrightarrow CO_2 + H_2 \quad \Delta H^0_{298.15K} = -41 \text{ kJ/mol} \\
CO + 3H_2 & \leftrightarrow CH_4 + H_2O \quad \Delta H^0_{298.15K} = -206 \text{ kJ/mol}
\end{align*}
\] (7)\hspace{2cm} (8)
The yield and fraction of carbon monoxide reaches near zero at 700°C as shown in Figure 3.
WGS reaction is very slow compared to the thermal decomposition of cellulose and gasification
reactions of intermediates. Picou et al.33 determined the parameters for the kinetics of the
forward reaction, Equation 7, under excess water as first-order reaction with respect to carbon
monoxide and Yakaboylu et al.34 listed the parameters of reaction kinetics of thermal
decomposition steps determined in the literature. The pre-exponential factor of WGS reaction
is much lower than hydrolysis reactions and decomposition of monomers; only the
decomposition of guaiacol (decomposition product of lignin) is slower. The decrease in
equilibrium constant of WGS reaction with temperature does not shift the reaction towards
carbon monoxide production due to excess water in the system; instead, the rate of WGS
reaction becomes influential. Considering the sharp increase in hydrogen yield and fraction, it can be concluded that water-gas-shift reaction rate becomes fast enough to give an influence at 700°C. Furthermore, methane yield and fraction are very low at 500°C and increase with temperature, which implies promoted methanation reaction at over 500°C. However, methane yield and fraction increase slightly from 600°C to 700°C: this can also result from increase gasification efficiency, especially HGE increases very sharply with temperature.

SCWG of Isoeugenol

In this study, isoeugenol has been tested as a model compound of lignin in the absence of other constituents of black liquor. Due to very low CGE at 500°C in sucrose results, isoeugenol is tested at higher temperatures, 600 and 700°C.

![Graph](chart.png)

Figure x. Carbon, hydrogen and oxygen gasification efficiency (add maybe hot gas efficiency)

Figure x shows gasification efficiencies of carbon, hydrogen and oxygen at 600 and 700 °C. Gasification efficiencies increase with temperature. CGE increases slightly whereas sharper increase is observed for hydrogen and oxygen. CGE is relatively low: only around 45 % is reached at 700°C. Nevertheless, despite very low CGE compared to sucrose results, HGE and OGE are close to that in sucrose at 600°C and increase with temperature. Furthermore, since
isoeugenol has very low O/C ratio compared to sucrose, participation of water to reactions increases OGE more dramatically.

Figure x+1. Left: Volume percentage of components in gas products. Right: Gas product molar yields with respect to isoeugenol in feed

Figure x+1 illustrates the fractions and yields of gas species. The gas is methane-rich (around 40 %) and has high fraction of carbon monoxide as well at 600 °C. The yield and fraction of carbon monoxide decrease with temperature; however, significant amount of carbon monoxide remains in the gas product at 700 °C. The yields of methane, hydrogen and carbon dioxide increase with temperature. The fractions of carbon dioxide and hydrogen increase so sharply that methane fraction remains constant. In addition, ethane has significant fraction as well, higher than sucrose results.

Thermal decomposition of lignin generates phenolic compounds (such as guaiacol, p-coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, catechol and phenol) and aromatic hydrocarbons (such as benzene, toluene, napthalene and their derivatives)24, xx. Dealkylation of these aromatic and phenolic derivatives could play an important role in the formation of methane in high amount and significant amount of ethane and ethylene (which also generates ethane through hydrogenation). In addition, due to char formation, methane can be generated by the reaction:

\[
C(s) + H_2 \leftrightarrow CH_4 \quad \Delta H^0_{298.15 \text{ K}} = -87.5 \text{ kJ/mol} \quad (9)
\]
Char and tar formation occurs in SCWG in the presence of lignin through pyrolysis of lignin and re-polymerization of phenolic or aromatic intermediates. Yong and Matsumura obtained high yield of char when investigating the kinetics of lignin decomposition under SCW. In addition, the disproportionation of CO, also known as the Boudouard-Bell reaction, could also be taken into consideration:

\[2CO \leftrightarrow CO_2 + C(s) \quad \Delta H_{298.15}^0 = -172.5 \text{ kJ/mol} \] \hspace{1cm} (10)

The disproportionation of carbon monoxide is seldom taken into account in SCWG studies; this reaction presents a higher value for the equilibrium constant in the temperatures between 400°C and 500°C. The equilibrium described above is considered to be shifted on the left side (CO formation) for temperatures above 680°C. Additional reactions producing coke and char are the coke gasification reactions:

\[CO(g) + H_2(g) \leftrightarrow C(s) + H_2O(g) \quad \Delta H_{298.15}^0 = -131.3 \text{ kJ/mol} \] \hspace{1cm} (11)

\[CO_2 + 2H_2 \leftrightarrow C(s) + 2H_2O \quad \Delta H_{298.15}^0 = -90.1 \text{ kJ/mol} \] \hspace{1cm} (12)

Considering that WGS reaction is fast enough at 700 °C, significant carbon monoxide fraction could result from steam reforming and gasification of char and coke.

SCWG Black Liquor

SCWG of black liquor is tested to investigate the impact of temperature and catalyst on process efficiency and yield. Figure 5 shows the HGE* and gasification efficiencies in syngas.
Figure 5. Gasification efficiency and HGE* - Left: SCWG of black liquor in the stainless steel reactor, Right: SCWG of black liquor in the INCONEL 625 reactor.

Values of the HGE* for black liquor have been calculated considering a dry basis. In both reactors, elemental gasification efficiencies and HGE* increase with temperature. Methane and hydrogen have major impact on energy recoveries as well as ethane having significant effect. HGE reach much higher values in INCONEL 625 reactor than stainless steel at 600°C and 700°C. Consequently, HGE* is higher in INCONEL 625 reactor except at 500°C even though CGE values are quite close.
Figure 6. Volume percentage of gas products and gas yield – Left: SCWG of black liquor in the stainless steel 316 reactor, Right: SCWG of black liquor in the INCONEL 625 reactor.

Figure 6 reports the volume percentage of gas products and the gas yields for SCWG of BL in stainless steel 316 and Inconel 625 reactors. As it can be seen from Figure 6, the yields of all gases increase with temperature in case of stainless steel reactor, except for carbon monoxide and ethylene which have very low amounts in both reactors and at all temperature conditions. Similarly, yields increase with temperature in the case of INCONEL 625 reactor; however, hydrogen yield decreases after 600°C. In addition, in both cases, carbon dioxide yield increases very slightly after 600 °C. Similar to the sucrose results, ethane yield is higher than ethylene yield and the difference increases with temperature. The molar fraction of hydrogen, methane and ethane increase whereas fraction of carbon dioxide decreases with temperature in case of
stainless steel reactor, similarly to the sucrose results. This result is consistent with the previous studies conducted on important biomass components such as lignin and cellulose39. Sulphur compounds were not detected in gas phase for our conditions.

The lignocellulosic biomass has less oxygen content than sucrose due to lignin content. Therefore, promoted gasification reactions with temperature cause sharper increase in hydrogen generation than carbon dioxide generation, which can also be seen from gas yields and fractions in Figure 6. Thus, black liquor gasification in stainless steel reactor results in higher energy recovery than sucrose in the same reactor even though CGE values are close. This can be observed through the gas composition as well. SCWG of black liquor produces hydrogen-rich syngas and methane has also high proportion; in contrast; carbon dioxide has the largest fraction in the syngas from SCWG of sucrose.

Regarding catalytic influence, the HGE* values are significantly higher in case of INCONEL 625 reactor than stainless steel case at 600 °C and 700 °C. At 700 °C, HGE* exceeds 80 %, which is very promising potential compared with the current status of this method. On the other hand, stainless steel reactor results in higher HGE* than INCONEL 625 reactor at 500 °C. This is a different trend from the one reported by Chakinala et al.40 and further investigations would be required to understand when actually Nickel catalysts are starting their effect on the gasification conversion and if the particular feedstock used had also an effect on this results.

Furthermore, hydrogen yield decreases at 700°C in case of black liquor gasification in INCONEL 625 reactor as an exceptional trend. Meanwhile, methane yield is slightly higher and carbon dioxide yield is slightly lower than the stainless steel reactor case at 700°C. However, alkali metal salts catalyse WGS reaction producing carbon dioxide and hydrogen, and nickel catalysts facilitate steam reforming of methane at higher temperatures35. These trends implies promoted dealkylation reactions relative to decarboxylation.
Regarding the order of gas-generating reactions, OGE has higher value than HGE at 500°C but HGE increases much sharper with temperature. This trend implies that decarboxylation of high-molecular-weight carboxylates, steam reforming and methanation reactions have more impact at 500°C: relatively more CO\textsubscript{2} production and consumption of significant part of generated H\textsubscript{2} in methanation. Considering that CO amount is very low, methanation seems to be faster than steam reforming. Nevertheless, increasing temperature promotes decarboxylation of low-molecular-weight carboxylates and results in more methane and hydrogen formation.

It should also be noted that black liquor has alkali content as well, such as Na; therefore, decarboxylation reactions occur as shown in Equation 14 and 15 which results in sodium carbonate. However, salt deposition can cause blocking problem in the reactor due to low solubility. For this reason, char and salt formation should be addressed when designing SCWG process. Nevertheless, these salts represent valuable products and they should be recovered; for this reason, efficient recovery of these salts can be an opportunity with SCWG.

Furthermore, liquid analysis provides additional information since CGE varies from about 30% to 70% for experiments conducted with both reactors, i.e. below 100 % in all cases. This can imply either incomplete decomposition of organics or carbonate content in the liquid effluent. Table 5 shows the total organic carbon and chemical oxygen demand of the liquid effluents. The results on liquid analysis indicate that the conversion of organic content is incomplete and the conversion increases with temperature. The decline in organic content becomes sharper at higher temperature. In addition, the INCONEL 625 reactor provides higher conversion at 600 and 700 °C whereas the conversion in stainless steel reactor is higher at 500 °C. Liquid analysis also confirms that tar and char formation decreases with temperature. At higher temperatures, as also shown in Figure 9, the relative amount of tar compounds is evidently decreased and the lignin degradation is on the other hand increased. Figure 7 gives a visual description of the original black liquor feed as received (Kraft black liquor – KBL). The liquid products at the
tested temperatures and an example of tar formation at 500°C for tests conducted in the stainless steel reactor.

Figure 7. Left: KBL as received. Center: Liquid product at 500°C, 600°C and 700°C (from left) at 25MPa. Right: Evidence of tar formation at 500°C and 25MPa for experiments conducted in the stainless steel reactor.

Table 5. TOC and COD analysis for liquid products at different temperatures. INCONEL 625 and stainless steel 316.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DATE</th>
<th>NPOC</th>
<th>CODCr</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL 25 MPa 500°C</td>
<td>1.3.2014</td>
<td>1936</td>
<td>7040</td>
</tr>
<tr>
<td>BL 25 MPa 600°C</td>
<td>2.3.2014</td>
<td>1310</td>
<td>5335</td>
</tr>
<tr>
<td>BL 25 MPa 700°C</td>
<td>4.3.2014</td>
<td>296</td>
<td>1279</td>
</tr>
<tr>
<td>BL 25 MPa 500°C Cat.</td>
<td>5.3.2014</td>
<td>2142</td>
<td>7590</td>
</tr>
<tr>
<td>BL 25 MPa 600°C Cat.</td>
<td>6.3.2014</td>
<td>1078</td>
<td>3989</td>
</tr>
<tr>
<td>BL 25 MPa 700°C Cat.</td>
<td>7.3.2014</td>
<td>160</td>
<td>762</td>
</tr>
</tbody>
</table>

From MS analyses, it is possible to obtain relative information on the composition of the main elements present in the liquid products even if it has to be acknowledged that the technique gives only estimated formulas for relatively abundant compounds. Figure 8 and Figure 9 demonstrate mass spectra for liquid products of SCWG of black liquor at 500°C and at 700°C in the stainless steel reactor.
Lignin is the most abundant compound of black liquor and its constituents can be recognized from the MS analysis. As a matter of fact, the most abundant compounds detected are coincident with the principal monomers of lignin; therefore, it is possible to recognize here the guaiacyl unit which is among the most abundant units forming lignin, besides coniferyl alcohol. The most abundant compound detected is addressed here to the β-aryl ether which also represents one of the main types of monolignols utilized during radical-radical coupling to form lignin. The compound is still the most abundant at 700°C, Figure 9, while the relative abundance of coniferyl alcohol and guaiacyl unit is much decreased at these conditions. The
relative large presence of β-aryl ether and guaiacyl unit is due to the type of wood used for the BL tested. As a matter of fact guaiacyl unit is the most abundant in soft wood lignin44.

MS results indicate that heterocyclic compounds like tricyclic aldehydes could be present in the liquid products as well as products from cyclization of acids. Lignin represents a source of renewable aromatic chemicals and tar (commonly known as mono-, di- or tri-naphthalene) formed during gasification processes29; however, reactions pathways in black liquor are very much complicated by the presence of alkali and alkaline metals. Aromatics are difficult to be degraded and they are stable at high pressures and temperatures. From the MS spectra it is possible to recognize stable molecular ions in the range of 220 – 300 m/z at 500°C; this is the range at which tar compounds are present45. In Figure 8 are illustrated some possible tar compounds detected. Starting from the most abundant, it is possible to recognize pyrene, chrycene and dibenzo-chrycene which was indicated by Flego and co-workers46 as a possible pyrolysis compound in the proximity of our peak at 301m/z.

In the range between 230-280 m/z benzanthetaecenes and benzopyrenes may be present in this range47. In this case, one possible molecular formula proposed here for the stable 236 m/z compound would be C\textsubscript{7}O\textsubscript{5}H\textsubscript{2}Na\textsubscript{3} (m/z 236.067) corresponding, to 3,4,5-trihydroxybenzoic acid or gallic acid in which one phenolic group is free without chemically bound sodium: -CO\textsubscript{2}Na plus two -ONa and one -OH groups. In hardwood-based black liquor (especially eucalyptus) the presence of gallic acid is possible, since this compound, a moiety in extractives, is one of the prominent compounds in hydrolysable tannins (e.g., gallotannins).

HPLC results showed that there is none of glucose, fructose, galactose and xylose in the condensate products for all cases (for all temperatures, catalytic and non-catalytic cases). Considering that hydrolysis is faster than sugar decomposition in SCW, it can be assumed that cellulose and hemicellulose are hydrolyzed completely and the remaining organic content consists of intermediates.
Kraft black liquor has a significant amount of carboxylic and hydroxyl acid salts. Sodium salts of carboxylic acids represent an important part of the reactions involved during SCWG of black liquor. These salts were reported as important intermediates during the formation of H₂ and CH₄. Sodium formate influences the conversion to hydrogen while sodium acetate leads to methane production. The reaction of sodium formate with water at supercritical condition can be written as:

\[2\text{HCOONa} + \text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{Na}_2\text{CO}_3 + \text{CO}_2 \]

(14)

The reaction above is demonstrated to give increasing fractions of H₂ and CO₂ with increasing temperatures up to around 400°C; however, there is no significant change of hydrogen and carbon dioxide percentages at higher temperatures. The reaction of sodium acetate in SCW can be written as follows:

\[2\text{CH}_3\text{COONa} + \text{H}_2\text{O} \rightarrow 2\text{CH}_4 + \text{Na}_2\text{CO}_3 + \text{CO}_2 \]

(15)

More in details, the reaction of sodium acetate with water follows a molecular mechanism with two reactions steps:

\[\text{CH}_3\text{COONa} + \text{H}_2\text{O} \rightarrow \text{CH}_4 + \text{NaHCO}_3 \]

(16)

\[2\text{NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2 \]

(17)

The first is considered to be the limiting step of reaction while the second step, Equation 17, is considered to be the fastest. Nevertheless, Matsumura and collaborators state that water becomes an oxidant if the temperature is increased in supercritical conditions; therefore, Onwudili et al. concluded that there could be an increased production of hydrogen at high temperatures due to the reaction:

\[\text{CH}_3\text{COONa} + 3\text{H}_2\text{O} \rightarrow 4\text{H}_2 + \text{NaHCO}_3 + \text{CO}_2 \]

(18)

However, this would have been justified also by the fact that reactions in SCW at increased temperatures would take place under a radical mechanism.
Figure 10 shows the content of some light carboxylic acids and alcohols of condensate effluent. The concentrations of most of the compounds decrease with increasing temperature; however, formic acid under non-catalytic case and ethanol reach the highest concentration at 600°C whereas butanol and formic acid under the catalytic case have the lowest concentration at 600°C.

![Figure 10. Main compounds detected in liquid products by HPLC. From left: products at 500, 600 and 700°C (stainless steel) and products from SCWG in Inconel 625 (right)](image)

Regarding the environmental aspect of the liquid effluent, the organic content and nitrogen content were analysed. Table 5 demonstrated TOC and COD analysis for our conditions while the total nitrogen content is shown in Table 6.

Table 6. Total Nitrogen analysis for the given samples.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DATE</th>
<th>TN (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL 25 MPa 500°C</td>
<td>1.3.2014</td>
<td>22.8</td>
</tr>
<tr>
<td>BL 25 MPa 600°C</td>
<td>2.3.2014</td>
<td>31.3</td>
</tr>
<tr>
<td>BL 25 MPa 700°C</td>
<td>4.3.2014</td>
<td>31.5</td>
</tr>
<tr>
<td>BL 25 MPa 500°C Cat.</td>
<td>5.3.2014</td>
<td>21.3</td>
</tr>
<tr>
<td>BL 25 MPa 600°C Cat.</td>
<td>6.3.2014</td>
<td>26.4</td>
</tr>
</tbody>
</table>
Traditionally, the quality of treated wastewater, in terms of organic content, is defined by the measurements of parameters such as Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC). Being the TOC a measure often used for the monitoring of industrial wastewater quality, this study considers TOC as an analytical parameter for the determination of the organic pollution of the black liquor wastewater from the SCWG apparatus. The organic content and nitrogen analysis indicates that the black liquor wastewater generated by the SCWG apparatus is more polluted than typical domestic wastewater, especially in terms of organic content. Thus, as expected, the SCWG operation should follow the Integrated Pollution Prevention and Control (IPPC) directive (Council Directive (EC) 2008/1/EC of 15 January 2008), which provides instruction for regulating the emissions of pollutants likely to be emitted in significant quantities to air, water or land from industrial facilities.

Conclusions

SCWG has a promising potential as a thermo-chemical conversion route for high moisture black liquor: single phase medium and effective solvent for organics (i.e. no mass transfer limitations) as well as no energy-consuming pre-treatment required (such as drying). In addition, the conventional treatment is unfeasible for small-scale non-wood mills, for which SCWG can be the solution. Therefore, this study presents experimental results on SCWG of sucrose, isoeugenol and black liquor to investigate the impacts of temperature, catalyst and constituents on syngas and reaction mechanism by means of analyses conducted on gaseous and liquid products.

The results illustrate the promoting impact of temperature on the biomass conversion, gas yields and hot gas efficiency. Regarding the composition of syngas, the molar fraction of combustible
gases (except CO) increases with temperature whereas the fraction of carbon dioxide decreases, thus producing more desirable gas for energy production. Hot gas efficiency also increases with temperature due to increasing yields.

The comparison between black liquor and sucrose results provide important conclusions regarding the effect of constituents. Due to higher H/C and lower O/C ratios in lignocellulosic biomass, sharper increase in hydrogen occurs in SCWG of black liquor and hot gas efficiency is higher compared to sucrose gasification. Furthermore, black liquor gasification produces hydrogen-rich syngas whereas syngas from sucrose gasification is carbon dioxide-rich.

This study provided informative remarks about the reaction mechanism and the impact of process parameters. The hydrogenation of ethylene to form ethane resulted in an additional step to the degradation route. Ethylene also reacts with steam and produces ethanol. From the experimental data, it can be concluded that ethylene hydrogenation is much faster than ethylene formation and the reaction kinetics is improved at higher temperature. The decarboxylation of low-weight carboxylates is promoted by temperature and the gasification of intermediates represents the rate determining step. Slow rate of WGS reactions can be observed at low temperature while the reactions are influenced only at 700 °C. There is faster methanation than steam reforming in the presence of alkali metals while nickel catalyst is promoting decarboxylation of high-weight organics, methanation and steam reforming at low temperature, rather than decarboxylation of low-weight carboxylates. Furthermore the promotion of nickel catalyst on the methanation and ethylene hydrogenation is more influentially than hydrogen formation at high temperature. From the gasification efficiency results, water is demonstrated to be a reactant as well as a solvent media.

The process conditions of SCWG should be determined based on the usage of syngas: maximizing energy recovery if the purpose is to produce energy through gas engine or maximizing some specific species (e.g. hydrogen, methane or carbon dioxide) if the purpose is
further catalytic synthesis to produce biofuels and other hydrocarbons. The future aspect with respect to scientific knowledge includes obtaining more experimental data and developing accurate models to describe the process thermodynamics and reaction kinetics. From the process development viewpoint, considering slower degradation of lignocellulosic content and incomplete conversion of organics, black liquor could be pre-treated through lignin removal and/or partial wet oxidation. These alternatives could be compared in terms of economical and operational aspects.

ACKNOWLEDGEMENTS

Academy of Finland (project BioSCWG, grant 268222), Aalto University, Åbo Akademi and Politecnico di Torino University along with the Graduate School in Chemical Engineering, GSCE, are gratefully acknowledged for funding this work. Authors acknowledge the Process Design and Systems Engineering Laboratory, at Åbo Akademi, where the experimental work has been done. In addition, the authors are thankful to Tiia Juhala and Auli Murrola from the Organic Chemistry and Bioprocess Engineering research groups of Aalto University for the liquid effluent analysis (MS and HPLC). We acknowledge Professor Raimo Alen from the University of Jyväskylä for the precious advices and comments.

REFERENCES

