Benítez, Erika; Méndez-Abreu, Jairo; Fuentes-Carrera, Isaura; Cruz-González, Irene; Martínez, Benoni; López-Martin, Luis; Jiménez-Bailón, Elena; Chavushyan, Vahram; León-Tavares, Jonathan

Characterization of a Sample of Intermediate-type Active Galactic Nuclei. II. Host Bulge Properties and Black Hole Mass Estimates

Published in:
ASTROPHYSICAL JOURNAL

DOI:
10.1088/0004-637X/763/2/136

Published: 01/01/2013

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES

ERIKA BENÍTEZ, JAIRO MÉNDEZ-ABREU, ISAURA FUENTES-CARRERA, IRENE CRUZ-GONZÁLEZ, BENONI MARTÍNEZ, LUIS LÓPEZ-MARTIN, VAHRAM CHAVUSHYAN, AND JONATHAN LÉON-TAVARES

1 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, México D.F. 04510, Mexico; erika@astro.unam.mx
2 Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain
3 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
4 Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional (ESFM-IPN), U.P. Adolfo López Mateos, México D.F. 07730, Mexico
5 Instituto Nacional de Astrofísica, Óptica y Electrónica, Apdo. Postal 51-216, 72000 Puebla, Mexico
6 Aalto University Metsähovi Radio Observatory, Metsähovi 114, 02540 Kylmäa, Finland

Received 2012 May 2; accepted 2012 December 4; published 2013 January 17

ABSTRACT

We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70±15% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% ± 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emission lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding \(M_{\text{BH}}-\sigma \) relation and found them within a range of \(5.69 \pm 0.21 < \log M_{\text{BH}} < 8.09 \pm 0.24 \). Comparing these \(M_{\text{BH}} \) values with masses derived from the FWHM of \(H\beta \) and the continuum luminosity at 5100 Å from their SDSS-DR7 spectra (\(M_{\text{BH}} \)), we find that 8 out of 10 (80±7%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that \(M_{\text{BH}} \) and \(M_{\text{BH}}^\ast \) are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43±15%) objects of the sample have their \(M_{\text{BH}}^\ast \) and \(M_{\text{BH}} \) compatible within 3\(\sigma \) errors. We also find that estimations based on the \(M_{\text{BH}}-\sigma \) relation for pseudobulges are not compatible in 50% ± 20% of the objects.

Key words: galaxies: active – galaxies: bulges – galaxies: photometry – galaxies: Seyfert

Online-only material: color figures

1. INTRODUCTION

The connection between black hole mass (\(M_{\text{BH}} \)) and several properties of the host galaxy bulges has been a remarkable finding and has been extensively used in large samples of active galactic nuclei (AGNs; see Ferrarese & Ford 2005, for a review). Among these properties, the so-called \(M_{\text{BH}}-\sigma \) relation (Ferrarese & Merritt 2000; Gebhardt et al. 2000), which relates the \(M_{\text{BH}} \) with the central stellar velocity dispersion of the galaxy (\(\sigma_\star \)), has been demonstrated to be a reliable way to estimate \(M_{\text{BH}} \). However, a recent work by Hu (2008; see also Greene et al. 2008) showed that the nature of the host galaxy bulge must be carefully considered before attempting any estimation of the \(M_{\text{BH}} \). This is mainly due to the existence of a dichotomy in the properties and formation mechanisms of bulges (Wyse et al. 1997; Kormendy & Kennicutt 2004).

On one hand, the merger of small galaxies has been suggested as the main path for bulge formation (Kaufmann et al. 1993), which is supported by the homogeneous bulge stellar populations of the Milky Way and M31 (Zoccali et al. 2003; Stephens et al. 2003). Bulges formed in such mergers are termed classical bulges (CBs) and are similar to low-luminosity ellipticals. Their light distribution is described by a de Vaucouleurs law (e.g., Andreidakis et al. 1995). They are composed primarily of old Population II stars (Mehlert et al. 2003; Thomas et al. 2005), which have spheroidal or weakly triaxial distributions (Méndez-Abreu et al. 2010). Alternatively, bulges may form via internal secular processes (see Kormendy & Kennicutt 2004, for a review) such as bar-driven gas inflows, bending instabilities, and clump instabilities. Evidence for secular bulge (pseudobulge) formation includes the near-exponential bulge light profiles (Andreidakis & Sanders 1994; Fisher & Drory 2008). Pseudobulges (PBs) are dominated by Population I stars (Thomas & Davies 2006), and they appear to have lower metallicity (Ganda et al. 2007) and lower \(\alpha/\text{Fe} \) enhancement with respect to the big bulges of early-type galaxies (Morelli et al. 2008). They also show a clear correlation between bulge and disk scale lengths (e.g., Méndez-Abreu et al. 2008a), substantial rotation (Kormendy & Kennicutt 2004), and the presence of boxy-peanut-shaped bulges (e.g., Méndez-Abreu et al. 2008b). In addition, Laurikainen et al. (2007) have demonstrated that pseudobulges are more prevalent among normal galaxies than classical bulges.

As previously mentioned, a common way to estimate the \(M_{\text{BH}} \) is through the \(M_{\text{BH}}-\sigma_\star \) relation: \(\log(M_{\text{BH}}/M_\odot) = \alpha + \beta \log(\sigma_\star/200) \). However, considering that pseudobulges have properties that lie between those of classical bulges and those of disks, the question arises whether \(M_{\text{BH}} \) masses should correlate differently with pseudobulge velocity dispersions. Hu (2008) investigated the \(M_{\text{BH}}-\sigma_\star \) relation for disk galaxies and found that it is different for pseudobulges over a 3\(\sigma \) significance level. Moreover, he noted that pseudobulges host smaller black holes than classical bulges do. One of his conclusions is that black holes (BHs) form earlier than their host pseudobulges and that their growth is insignificant once the pseudobulges are formed. He also suggested that AGN fueling is less efficient in secular processes. Similar results were also found by Greene et al. (2008), Graham (2008), and Graham & Li (2009). However,
other works performed by Beifiori et al. (2009) and Gültekin et al. (2009) did not find these differences. Recently, Kormendy et al. (2011) claimed that neither pseudobulge luminosity nor the velocity dispersions of their hosts galaxies correlate with M_{BH} mass since secular evolution processes lead to no coevolution of both components. Therefore, it is clear that when studying mass since secular evolution processes lead to no coevolution of both components. Therefore, it is clear that when studying mass since secular evolution processes lead to no coevolution of both components.

In this work, we present new observations of a sample of 10 intermediate-type AGNs using the Nordic Optical Telescope (NOT). We performed a careful morphological analysis of the sample, derived the surface-brightness profile for each galaxy, and obtained their main structural parameters. In particular, we derived the Sérsic index, which, along with other criteria, we used to establish the nature of each bulge, and then estimated the M_{BH} for all objects using different correlations according to the nature of the bulge. These mass estimates were also used to establish the nature of the bulge, and then estimated the Sérsic index, which, along with other criteria, we used to establish the nature of each bulge, and then estimated the M_{BH} for all objects using different correlations according to the nature of the bulge. These mass estimates were also

described by applying a two-dimensional photometric decomposition to the galaxy images. To this aim, the GASP2D algorithm was used. For the sake of clarity, and because some specific modifications have been done to the code, we will briefly describe here the main characteristics of GASP2D. The galaxy surface-brightness distribution (SBD) was assumed to be the sum of different components depending on the morphological features of each galaxy. The structural components considered in the decomposition were the following.

The Sérsic law (Sérsc 1963, 1968), also known as the $r^{1/n}$ law or generalized de Vaucouleurs law, was adopted to describe the surface brightness of the bulge component

$$I_{\text{bulge}}(r_{\text{bulge}}) = I_c 10^{-b_n b_{\text{bulge}}(r_{\text{bulge}})^{1/n}},$$

where r_{bulge} is the radius measured in the Cartesian coordinates describing the reference system of the bulge in the plane of the sky. Here, r_c, I_c, and n are the effective (or half-light) radius, the surface brightness at r_c, and a shape parameter describing the curvature of the SBD, respectively, and $b_n = 2n - 0.33$ (Caon et al. 1993).

The bulge isophotes are ellipses centered on the galaxy center (x_0, y_0), with constant position angle P_{bulge} and constant axial ratio q_{bulge}.

3. GALAXY PHOTOMETRIC DECOMPOSITIONS

The structural parameters of the sample galaxies were derived by applying a two-dimensional photometric decomposition to the galaxy images. The decomposition process was carried out using the GASP2D algorithm developed by Méndez-Abreu et al. (2008a) was used. For the sake of clarity, and because some specific modifications have been done to the code, we will briefly describe here the main characteristics of GASP2D.

The bulge isophotes are ellipses centered on the galaxy center (x_0, y_0), with constant position angle P_{bulge} and constant axial ratio q_{bulge}.

2. OBSERVATIONS AND DATA REDUCTION

The photometric observations were carried out using the ALFOSC instrument mounted on the 2.56 m NOT telescope at La Palma. We obtained deep and high-quality R-band images using the 2048 × 2048 back-illuminated CCD with a plate scale of 0.19 arcsec pixel$^{-1}$ and a 6.5 × 6.5 arcmin2 field of view. The observations were carried out during three runs (2006 October and 2007 April and May). In Table 1, we present the list of observed objects and other observational details. The exposure times were chosen to keep counts in the detector linearity regime, and to avoid saturation in the bright central parts of the galaxies to resolve the different structures present in the galaxies. Data reduction was made in the standard way using IRAF. The bias subtraction was done using a master bias obtained at the beginning of the night. Flat-field corrections were applied using sky flats. We have used our own script to automate the alignment of the images and remove cosmic rays at the same time. Night conditions were clear in general, and two nights (2007 April 21 and May 11) were strictly photometric. Figure 1 shows a mosaic with the R-band images for our sample objects.

Table 1

<table>
<thead>
<tr>
<th>Galaxy #</th>
<th>SDSS ID</th>
<th>Other Name</th>
<th>NOT-ALFOSC Date-Obs.</th>
<th>Exp. Time</th>
<th>Seeing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J120655.63+501737.1</td>
<td>SBS 1204+505B</td>
<td>2007 Apr</td>
<td>2700</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>J121600.04+124114.3</td>
<td>Mrk 764</td>
<td>2007 May</td>
<td>3600</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>J121607.08+504930.0</td>
<td>Mrk 1469</td>
<td>2007 Apr</td>
<td>1700</td>
<td>0.9</td>
</tr>
<tr>
<td>4</td>
<td>J141238.14+391836.5</td>
<td>NGC 5515</td>
<td>2007 May</td>
<td>3840</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>J143031.18+524225.8</td>
<td>SBS 1428+529</td>
<td>2007 Apr</td>
<td>2400</td>
<td>0.9</td>
</tr>
<tr>
<td>6</td>
<td>J144049.35+505009.2</td>
<td>SBS 1439+510</td>
<td>2007 Apr</td>
<td>3600</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>J153810.05+537613.1</td>
<td>SBS 1537+577</td>
<td>2007 Apr</td>
<td>4800</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>J162952.88+242638.3</td>
<td>Mrk883</td>
<td>2007 Apr</td>
<td>2400</td>
<td>0.8</td>
</tr>
<tr>
<td>9</td>
<td>J12851.19-010412.4</td>
<td>IC 1385</td>
<td>2006 Oct</td>
<td>3900</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>J234428.81+134946.0</td>
<td>...</td>
<td>2006 Oct</td>
<td>3600</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Notes. Column 1: galaxy identification; Column 2: SDSS ID; Column 3: other name; Column 4: observation dates; Column 5: exposure time; Column 6: average seeing.
The SBD of the disk component was assumed to follow an exponential law (Freeman 1970)

\[I_{\text{disk}}(r) = I_0 e^{-\frac{r}{h}} \]

(2)

where \(I_0 \) and \(h \) are the central surface brightness and scale length of the disk, respectively. The disk isophotes are ellipses centered on \((x_0, y_0)\), with constant position angle \(\text{PA}_{\text{disk}} \) and constant axial ratio \(q_{\text{disk}} \).

The projected surface density of a three-dimensional Ferrers ellipsoid (Ferrers 1877, see also Aguerri et al. 2009) was used to describe the SBD of bars:

\[I_{\text{bar}}(r_{\text{bar}}) = I_{0,\text{bar}} \left[1 - \left(\frac{r_{\text{bar}}}{a_{\text{bar}}} \right)^2 \right]^{n_{\text{bar}} + 0.5} ; \ r_{\text{bar}} \leq a_{\text{bar}}, \]

(3)

where \(I_{0,\text{bar}}, a_{\text{bar}}, \) and \(n_{\text{bar}} \) represent the central surface brightness, length, and shape parameters of the bar, respectively. Due to the high degree of degeneracy that the \(n_{\text{bar}} \) parameter introduces during the fit, we decided to keep it as a fixed parameter during the fitting process. The default value used was \(n_{\text{bar}} = 2 \) (see Laurikainen et al. 2005). All of the bar models were built up in a frame of generalized ellipses (Athanassoula et al. 1990). Thus, the bar reference system is defined as

\[r_{\text{bar}} = \left[\frac{\left((x - x_0) \sin \text{PA}_{\text{bar}} + (y - y_0) \cos \text{PA}_{\text{bar}} \right)^2}{q_{\text{bar}}^2} + \frac{\left((x - x_0) \cos \text{PA}_{\text{bar}} + (y - y_0) \sin \text{PA}_{\text{bar}} \right)^2}{q_{\text{bar}}^2} \right]^{1/\epsilon}, \]

(4)

where \(q_{\text{bar}} \) and \(\text{PA}_{\text{bar}} \) are the axis ratio and position angle of the bar, respectively. The parameter \(\epsilon \) controls the shape of the isophotes. A value of \(\epsilon = 2 \) corresponds to a perfect ellipse, \(\epsilon > 2 \) to a boxy shape, and \(\epsilon < 2 \) to a disky shape.

Since the central SBD of our objects is affected by the presence of an AGN, we have modeled its contribution, \(I_{\text{NC}}(r_{\text{NC}}) \), by means of an intensity-scaled point-spread function (PSF).

To derive the photometric parameters of the different components, we fitted iteratively a model of the surface brightness

\[I_{\text{model}}(r) = I_{\text{bulge}}(r_{\text{bulge}}) + I_{\text{disk}}(r_{\text{disk}}) + I_{\text{bar}}(r_{\text{bar}}) + I_{\text{NC}}(r_{\text{NC}}), \]

(5)

where the pixels of the galaxy image, using a nonlinear least-squares minimization based on a robust Levenberg–Marquardt method. The actual computation has been done using the MPFIT\(^8\) algorithm implemented by C. B. Markwardt under the IDL\(^9\) environment. Each image pixel has been weighted according to the variance of its total observed photon counts due to the contribution of both the galaxy and sky, and determined assuming photon noise limitation and taking into account the detector readout noise. The seeing effects were taken into account by convolving the model image with a circular Moffat PSF, with the FWHM measured from stars in the galaxy image.

For each galaxy, a model was fitted to the SBD considering a central point-like component, a bulge, a bar, and a disk component. Figures 2–11 show the GASP2D fits for each galaxy in the sample. The parameters derived for the structural components, together with the \(\chi^2 \) values of the fits, are collected in Table 2.

The formal errors obtained from the \(\chi^2 \) minimization procedure are usually not representative of the real errors in the structural parameters (Méndez-Abreu et al. 2008a). Therefore, the errors given in Table 2 were obtained through a series of Monte Carlo simulations. A set of 500 images of galaxies with a Sérsic bulge, an exponential disk, and a central PSF was generated. An analog set including the bar component was also created. The structural parameters of the artificial galaxies were randomly chosen among the ranges obtained for our sample galaxies (see Table 2). The simulated galaxies were assumed to be at a distance of 261 Mpc, which corresponds to the mean of our galaxy sample. The adopted pixel scale, CCD gain, and readout noise were chosen to mimic the instrumental setup of the photometric observations. Finally, a background level and photon noise were added to the artificial images to yield a signal-to-noise ratio similar to that of the observed ones. The images of artificial galaxies were analyzed with GASP2D as if they were real. The errors on the fitted parameters were estimated by comparing the input and measured values, assuming they were normally distributed. The mean and standard deviation of

\(^{8}\) The updated version of this code is available on http://cow.physics.wisc.edu/~craigm/idl/idl.html.

\(^{9}\) Interactive Data Language.
Another source of uncertainty in this study is the PSF mismatch. This issue becomes crucial in this study since our modeling requires the assumption of a given PSF to perform the image convolution and to describe the AGN component. To get rid of the PSF mismatch errors, we have performed two different tests. First, we have repeated 10 times the fit for every galaxy, allowing the FWHM of the Moffat function to vary within 5%. Second, we have also used a Gaussian function with 5% variation of the FWHM. From the observed stars in the field, we found that the Gaussian function is clearly a bad representation of the PSF, however, we consider these errors as an upper limit of the variation in the structural parameters due to the PSF mismatch. The final errors shown in Table 2 represent the combination in quadrature of the Monte Carlo errors derived previously and the errors due to PSF mismatch.

The reader is referred to the individual galaxy description presented in Section 4, where details on the morphology obtained from NED10 and/or derived in this work, together with a discussion on the possible host bulge characterization (classical bulge or pseudobulge), are provided.

10 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

4. RESULTS

4.1. Classical versus Pseudobulges

The two-dimensional photometric decompositions performed on deep R-band images allowed us to determine the nature of the bulge of each galaxy. We separated classical bulges from pseudobulges using the prescriptions given by Kormendy & Kennicutt (2004). The more these characteristics apply, the safer the classification of pseudobulge becomes. Among these characteristics, we use the analysis of the SBD of each galaxy, the value of the S\textsupersic index (usually bulges with $n < 2$ are considered pseudobulges; Fisher & Drory 2008), the ellipticities of the bulge and disk, the central stellar velocity dispersion (σ^{*}), and by the presence, or absence, of central structures from the inspection of the R-band residuals derived using the best fit. Four galaxies in our sample, #3, #4, #5, and #7, seem to harbor a pseudobulge, while for galaxies #1, #2, and #6, our analysis suggests a combination of a classical bulge and a pseudobulge. For galaxies #9 and #10, the photometric decomposition did not allow us to determine their S\textsupersic index, so we decided not to classify the nature of the bulge from this decomposition. Finally, galaxy #8 seems to be a merger, and with the available data we could not derive a value for the S\textsupersic index, therefore we cannot establish its bulge nature. In summary, we found that 70$\%\pm10.1$ of the objects harbor pseudobulges or a combination of classical bulge/pseudobulge, which suggests that pseudobulges might
be frequent in intermediate-type AGNs. In Paper I, double-peaked narrow emission lines were detected in the following intermediate-type AGNs: #1, #3, #4, #5, and #8. In this work, we could establish the nature of the bulge in four of them, with the exception of object #8, and found that they harbor either a pseudobulge (#3, #4, and #5) or a mix of both bulge types (CB/PB for object #1). Our morphological classification also shows that most objects are early-type spirals, and our deep images allowed us to detect the presence of a bar in four of them. In the following section, we will explain in detail the main properties of the individual galaxies.

4.2. Notes on Individual Galaxies

4.2.1. J120655.63+501737.1 (#1)

The SBD fit of this galaxy is presented in Figure 2. It shows the presence of a 5.4 kpc bar. The host galaxy probably presents a combination of a classical bulge/pseudobulge, since the photometric decomposition provides us with a Sérsic index $n = 2.8 \pm 1.2$. This n corresponds to a classical bulge (Kormendy & Kennicutt 2004), but considering the errors it could also be a pseudobulge. We cannot rule out a pseudobulge in this galaxy since the velocity dispersion ($\sigma_\star \sim 90 \text{ km s}^{-1}$) is small and the galaxy has a large bar. Both properties suggest the presence of a more rotationally supported component, usually associated with a pseudobulge. We note that this object has the largest Sérsic index value in the sample. The morphological type of this galaxy is $T = 2.9$ (close to Sb) in the HyperLeda database. Since we found a bar component, we classify it as SBB.

4.2.2. J121600.04+124114.3 (#2)

The SBD decomposition (see Figure 3) suggests a classical bulge for this galaxy, which is supported by the absence of a bar, and the different ellipticities of the bulge and disk components. The Sérsic index $n = 1.8 \pm 0.6$ favors a pseudobulge (though its scatter is large) and the central velocity dispersion value is rather small ($\sigma_\star \sim 110 \text{ km s}^{-1}$). This almost face-on galaxy is classified as Sb(r) in the NED database. Its spiral arms are particularly clumpy in the inner parts (within the central 5$''$ = 4 kpc) and become very diffuse toward the edge of the galaxy, the northern outer arm stretches out to the east.

4.2.3. J121607.08+504930.0 (#3)

This galaxy probably hosts a pseudobulge. The obtained bulge Sérsic index is $n = 1.6 \pm 0.5$, and the similarity between the bulge and disk ellipticities ($\epsilon \sim 0.66$), along with the presence of a strong dust lane (see Figure 4), indicates the presence of a rotating component in the central region of the galaxy. This galaxy is classified as a probable SBB in the NED database. However, our SBD fit shows no indication of a bar. Thus, we have re-classified this galaxy as an Sb.

4.2.4. J141238.14+391836.5 (#4)

The SBD analysis yields a bulge Sérsic index $n = 1.4 \pm 0.8$. The bulge is flat with an ellipticity similar to that of the disk, both indicative of a pseudobulge. The presence of a pseudobulge is strengthened by the central spiral arms shown in the residual image of the SBD decomposition (see Figure 5). However, we note that the central velocity dispersion ($\sigma_\star \sim 195 \text{ km s}^{-1}$)
Figure 4. J121607.08+504930.0 (#3; Mrk 1469). Panel distribution as in Figure 2.
(A color version of this figure is available in the online journal.)

Figure 5. J141238.14+391836.5 (#4; NGC 5515). Panel distribution as in Figure 2.
(A color version of this figure is available in the online journal.)
Figure 6. J143031.18+524225.8 (#5; SBS 1428+529). Panel distribution as in Figure 2.
(A color version of this figure is available in the online journal.)

Figure 7. J144049.35+505009.2 (#6; SBS 1439+510). Panel distribution as in Figure 2.
(A color version of this figure is available in the online journal.)
Figure 8. J153810.05+573613.1 (#7; SBS 1537+577). Panel distribution as in Figure 2.
(A color version of this figure is available in the online journal.)

Figure 9. J162952.88+242638.3 (#8; Mrk 883). Panel distribution as in Figure 2.
(A color version of this figure is available in the online journal.)
Figure 10. J212851.19−010412.4 (#9; IC 1385). Panel distribution as in Figure 2.
(A color version of this figure is available in the online journal.)

Figure 11. J234428.81+134946.0 (#10). Panel distribution as in Figure 2.
(A color version of this figure is available in the online journal.)
is somewhat large for a pseudobulge. This galaxy is classified as Sab in both NED and HyperLeda databases. We found no indication of the presence of a bar in this galaxy.

4.2.5. J143031.18+524225.8 (#5)

The SBD fit indicates that this galaxy probably hosts a pseudobulge. The bulge Sérsic index $n = 1.3 \pm 0.6$, together with the similarity in bulge and disk ellipticities ($e \sim 0.36$), and the presence of a large bar ($\alpha_{\text{bar}} = 7.0$ kpc and $h = 4.7$ kpc) reinforce the idea of secular processes acting in this galaxy. The galaxy has two spiral arms that are barely seen in broadband images (see Figure 6). These arms are well outlined and clumpy in Hα images by Weistrop et al. (1995), especially the northern one. Considering the presence of the bar and the shape of the arms traced by Hα, this galaxy could be classified as an SBA-SBab galaxy.

4.2.6. J144049.35+505009.2 (#6)

For this galaxy, the SBD decomposition was done including a small bar ($\alpha_{\text{bar}} = 2.8$ kpc) but large uncertainties were obtained. Our analysis shows that this galaxy harbors both a classical bulge and a pseudobulge. The Sérsic index obtained is $n = 1.6 \pm 0.8$ but compatible within the errors with values >2. The bulge ellipticity indicates that it is flat. However, the presence of a central small bar might be contaminating this result, as can be seen in the galaxy ellipticity profile (see Figure 7). Two very faint spiral arms are seen in the NOT R-band image over a faint disk and an elongation is seen to the south of the bulge. The inspection of the R-band image indicates this could be an early-type spiral. So, the morphological type is SbA.

4.2.7. J153810.05+573613.1 (#7)

The SBD decomposition shows that this galaxy hosts a pseudobulge, with a Sérsic index $n = 1.6 \pm 0.3$. The central velocity dispersion is rather low ($\sigma_e \sim 91$ km s$^{-1}$). From Figure 8, we note that there are hints favoring the presence of central substructures. Therefore, this galaxy probably hosts a pseudobulge. It is classified as Sc in NED since it displays open and flocculent spiral arms.

4.2.8. J162952.88+242638.3 (#8)

The SBD fit obtained for this galaxy must be taken with care, since this object is probably an ongoing merger (see Figure 9). Since the morphology is disturbed and the light profile is not

Table 2: Host Galaxy Properties From SBD Decomposition

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>n</th>
<th>r_e</th>
<th>(b/a)$_{\text{bulge}}$</th>
<th>(b/a)$_{\text{disk}}$</th>
<th>(b/a)$_{\text{bar}}$</th>
<th>χ^2</th>
<th>Morphological Type</th>
<th>Classical Bulge/Pseudobulge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.8</td>
<td>2.1</td>
<td>0.79 ± 0.02</td>
<td>175.9 ± 1.6</td>
<td>7.8</td>
<td>SBh**</td>
<td>CB/PB</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>4.8</td>
<td>0.95 ± 0.02</td>
<td>2.3 ± 3.3</td>
<td>4.9</td>
<td>Sh(r)I*</td>
<td>CB/PB</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.6</td>
<td>1.7</td>
<td>0.34 ± 0.03</td>
<td>78.5 ± 2.7</td>
<td>3.6</td>
<td>Sb**</td>
<td>PB</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.4</td>
<td>0.9</td>
<td>0.62 ± 0.07</td>
<td>102.8 ± 1.5</td>
<td>4.1</td>
<td>Sab*</td>
<td>PB</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.3</td>
<td>0.6</td>
<td>0.64 ± 0.01</td>
<td>168.4 ± 2.9</td>
<td>2.1</td>
<td>SBA-SBab**</td>
<td>PB</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.6</td>
<td>1.9</td>
<td>0.49 ± 0.08</td>
<td>124.7 ± 2.0</td>
<td>3.5</td>
<td>SBA**</td>
<td>CB/PB</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.6</td>
<td>1.9</td>
<td>0.84 ± 0.02</td>
<td>2.3 ± 3.6</td>
<td>5.0</td>
<td>Sc**</td>
<td>PB</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.8</td>
<td>1.2</td>
<td>0.83 ± 0.02</td>
<td>31.5 ± 3.2</td>
<td>6.4</td>
<td>peculiar</td>
<td>Uncertain</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>Sab**</td>
<td>Uncertain</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>...</td>
<td>0.6</td>
<td>0.80 ± 0.02</td>
<td>118.2 ± 3.1</td>
<td>3.1</td>
<td>SBA-SBab**</td>
<td>Uncertain</td>
<td></td>
</tr>
</tbody>
</table>

Notes. Parameters of the host galaxy derived from the surface-brightness decomposition (SBD). Column 1: galaxy # (cf. Table 1); Column 2: Sérsic index, Column 3: bulge effective radius in kpc (r_e), disk scale length in kpc (h), and bar length (α_{bar}) in kpc; Column 4: bulge, disk, and bar axis ratio (b/a)$_{\text{bulge}}$, (b/a)$_{\text{disk}}$, and (b/a)$_{\text{bar}}$, respectively; Column 5: bulge, disk, and bar position angle: (P.A)$_{\text{bulge}}$, (P.A)$_{\text{disk}}$, and (P.A)$_{\text{bar}}$, respectively. Column 6: χ^2 of the fit; Column 7: morphology given by NED (*); and derived in this work (**); galaxy 7 is peculiar, probably a merger. Column 8: host bulge is most probably classical (CB), pseudobulge (PB), or a combination CB/PB.
well fitted with an elliptically averaged $r^{1/n}$ model, we classify this galaxy as Peculiar. For this reason, the M_{BH} mass was estimated considering both possibilities: classical bulge and a pseudobulge.

4.2.9. J212851.19−010412.4 (#9)

The effective radius of the bulge obtained for this galaxy always converges to a minimum value equal to the PSF. Thus, Figure 10 shows the best fit achieved considering a bright central component and a bulgeless galaxy. Since the Sérsic index cannot be determined, it is uncertain whether it harbors a classical bulge or a pseudobulge. We found no morphological classification for this galaxy in NED, nor in the HyperLeda database. Inspection of the NOT R-band image shows that it is a spiral galaxy seen almost face-on. From this image, it is not clear if the bulge is large and boxy, or if it harbors a bar. The spiral arms are a bit flocculent. The eastern arm of the galaxy is brighter than its central parts, then it becomes very diffuse and seems to bifurcate. For the western side of the galaxy, two very similar arms seem to emerge from the disk. Considering their degree of tightness, we classify this galaxy as an Sab.

4.2.10. J234428.81+134946.0 (#10)

For this galaxy, the SBD decomposition includes a 9.9 kpc bar and a disk with $h = 5.1$ kpc, but the bulge cannot be resolved since its effective radius always converges to a minimum value equal to the PSF. For this reason, the value for the Sérsic index cannot be determined, or whether it has a classical bulge or a pseudobulge. This galaxy has a de Vaucouleurs’ type of 4.1 ± 5.0 in the HyperLeda database. This corresponds to a morphological type of Sbc, though the error does not allow a precise classification. According to our NOT image and the SBD decomposition (see Figure 11), this is a barred galaxy. Arms are very faint, tight, and flocculent. A very faint arm is seen in the northern part extending to the northwest. We classify this galaxy as an SBab.

4.3. M_{BH} Estimates

Using the σ_* calculated in Paper I, we obtained the black hole mass using either the $M_{\text{BH}}−\sigma_*$ relation given by Ferrarese & Ford (2005) for classical bulges ($\alpha = 8.06 \pm 0.67$, $\beta = 4.86 \pm 0.43$) or the one given by Hu (2008) ($\alpha = 1.75 \pm 0.18$, $\beta = 4.5 \pm 1.3$) for pseudobulges. In the cases where the bulges are probably a combination of both classical and pseudobulge (CB/PB), we estimated the M_{BH} using both correlations. The results of these M_{BH} estimations are given in Table 3, see Columns 4 and 5. Also in this table, the black hole mass estimates (M_{BH}) obtained in Paper I are presented in Column 6. The M_{BH} has a range of $5.69 \pm 0.21 < \log M_{\text{BH}}^\text{CB} < 8.09 \pm 0.24$. Figure 12 shows the comparison between the M_{BH} masses obtained depending on the nature of the bulge with the M_{BH} estimated in Paper I. In this figure, we have marked in the upper and lower panels a region defined by dotted lines that corresponds to 3 and $1/3$ times the $M_{\text{BH}} = M_{\text{BH}}^\text{CB}$ relation. In the upper panel, we show our results for 7 out of 10 galaxies that we have found to harbor a PB or a mix of both, i.e., CB/PB. We also show the estimations obtained for the other three galaxies that still have an unknown bulge type, assuming that they could harbor a PB. From this panel, we see that object #8 lies well within the dotted lines, object #10 lies marginally, but object #9 clearly lies out. Now, considering only the objects with bulge type found in this work, we find that objects #4, #5, and #6 fall inside the dotted region. The remaining four objects #1, #2, #3, and #7 are out of the dotted region. Furthermore, in the lower panel, we show the estimates obtained for objects that were found to harbor a mix of CB/PB, i.e., #1, #2, and #6. In this case, M_{BH}^CB was estimated using Ferrarese & Ford (2005). It is interesting to note that two of them lie marginally inside the dotted region and one lies completely outside of it (#6). Regarding the three unknown bulge-type objects, we see that object #10 lies inside the dotted region, object #9 could be considered a marginal case, and object #8 lies outside of the region.

5. DISCUSSION AND CONCLUSIONS

In this paper, we derived the R-band host bulge structural parameters of a sample of 10 intermediate-type AGNs. Through a detailed two-dimensional photometric decomposition analysis, we find that most of the host galaxies are early-type spirals and four of them have a bar. This analysis, together with a careful morphological analysis and the velocity dispersion obtained in
Paper 1, allowed us to determine the nature of the bulge in 7 out of 10 intermediate-type AGNs. In these seven objects, we find that all of them harbor a pseudobulge or a combination of both bulge types (CB/PB). To our knowledge, this is the first time that such a detailed study on the nature of the bulge type has been done to a sample of intermediate-type AGNs. Although the sample is not extensive, our work strongly suggests that pseudobulges are actually frequent in this class of objects.

In Paper I, we suggested that intermediate-type AGNs should be analyzed separately from type 1 or 2 AGNs due to the high fraction of narrow double-peaked sources found in our sample (50% ± 14.4%). In this work, we have also found that narrow double-peaked emission lines are more frequently found in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge (four out of seven galaxies with bulge classification are double-peaked, 57%+14%−18.1% harbors a PB or CB/PB).

On the basis of the bulge nature, we calculated $M_{\text{BH}}^{\sigma_*$} using the empirical relation given by Hu (2008) for pseudobulges, and also the relation given by Ferrarese & Ford (2005) for classical bulges when the bulge type resulted in a mix of both. We have also used the M_{BH} estimations given in Paper I that were obtained with the scaling relations given by Vestergaard & Peterson (2006). The black hole mass range obtained with the three methods is $5.69 \pm 0.21 < \log M_{\text{BH}} < 8.09 \pm 0.24$. The three tested methods yield no systematically different results for the range of masses: the range for classical bulges is $6.26 \pm 0.04 < \log M_{\text{BH}}^{\sigma_*} < 8.09 \pm 0.24$; for pseudobulges $5.69 \pm 0.21 < \log M_{\text{BH}}^{\sigma_*} < 7.38 \pm 0.32$; and with the scaling relations yields $6.54 \pm 0.16 < \log M_{\text{BH}} < 7.81 \pm 0.14$. It should be noted that since we have showed that pseudobulges are frequent in intermediate-type AGNs and have taken into account that the $M_{\text{BH}}-\sigma_*$ relation for CBs gives systematically higher masses than the one for pseudobulges, in principle one should use the pseudobulge $M_{\text{BH}}-\sigma_*$ relation in order to not overestimate the black hole mass.

However, comparing our $M_{\text{BH}}^{\sigma_*}$ estimates with the M_{BH} obtained using the scaling relations, we find that only four out of the ten (40%+16%−13%) galaxies (#5, #6, #8, and #10) are compatible within 1σ errors and one more (#4) is compatible within 3σ...
(that is, $50\%\pm20\%$ in total). Peterson (2012) advised that black hole mass estimations using the scaling relations can be reliable within a factor of ~3. When this criterion is applied, the masses obtained with M_{BH}^* relations and M_BH are compatible for eight (all except #3 and #7) of the galaxies in the sample ($80\%\pm20\%$). If this criterion is valid for our sample, our results show that the scaling relations derived from type 1 AGNs (e.g., Woo et al. 2010; Bennert et al. 2011) are the same for intermediate-type AGNs.

From our seven classified bulges, we could specify that four of them ($57\%^{+15}_{-18}\%$) certainly harbor pseudobulges (#3, #4, #5, and #7). For these, only half ($50\%\pm20\%$) of them (#4 and #5) present masses compatible within σ for both methods (Figure 12, upper panel). The same result is obtained when the factor-3 criterion in the mass determination is applied. The remaining three galaxies (#1, #2, and #6) are compatible with both bulge types being classical and pseudobulge. Assuming that these three objects do harbor a pseudobulge, only one out three (#6) presents compatible masses, considering both the 3σ and the factor-3 criterion. On the other hand, considering them as classical bulges, we find that none have compatible masses within 3σ errors, but two of them (#1 and #2) do actually have compatible masses if the factor-3 criterion is applied (Figure 12, lower panel).

In summary, when the type of the bulge is taken into account, only three (depending on both things: the criterion applied to the uncertainties and the type of bulge for the CB/PB galaxies) out of the seven ($43\%^{+18}_{-15}\%$) galaxies of the sample have compatible M_{BH}^* and M_BH. Nothing can be concluded for galaxies #8, #9, and #10 since the nature of their bulge is unknown. We also find that the black hole mass estimates based on the $M_{\text{BH}}-\sigma$ relation for pseudobulges is not compatible in $50\%\pm20\%$ of the objects. Therefore, these objects would support the result found by Kormendy et al. (2011) since their velocity dispersion does not correlate with the black hole mass. However, our results are based on a small number of objects, and therefore we stress the importance of performing a similar detailed analysis in which the type of bulge can be determined using larger samples.

We thank the anonymous referee for useful comments and suggestions. We also thank Dr. D. Clark who carefully read the final version of the manuscript. E.B. acknowledges financial support from UNAM-DGAPA-PAPIIT through grant IN116211. J.M.A. is partially funded by the Spanish MICINN under the Consolider-Ingenio 2010 Program grant CSD2006-00070 and also by the grants AYA2007-67965-C03-01 and AYA2010-21887-C04-04. I.F.C. thanks the financial support from CONACYT grant 013520 and IPN-SIP grant 20121700. The data presented here were obtained with ALFOSC, which is provided by the Instituto de Astrofísica de Andalucía (IAA) under a joint agreement with the University of Copenhagen and NOTSA. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr).

REFERENCES

Ferrarese, L., & Ford, H. 2005, SSRv, 116, 523
Ferreras, N. M. 1877, QIPAM, 14, 1
Kormendy, J., Bender, R., & Cornel, M. E. 2011, Natur, 469, 374
Kormendy, J., & Kennicutt, R. C., Jr. 2004, ARA&A, 42, 603
Peterson, B. M. 2012, JPhCS, 372, 012008
Séscic, J. L. 1968, Atlas de galaxias australes (Cordoba, Argentina: Observatorio Astronomico)