Yu, Miao; Jämsä-Jounela, Sirkka-Liisa

Adaptive Iterative Learning Control for Discrete-Time Nonlinear Systems without Knowing the Control Gain Signs

Published in:
18th Nordic Process Control Workshop, Oulu, Finland, 22-23 August, 2013

Published: 01/01/2013

Document Version
Peer reviewed version

Please cite the original version:
Adaptive Iterative Learning Control for Discrete-Time Nonlinear Systems without Knowing the Control Gain Signs

Miao Yu * Sirkka-Liisa Jämsä-Jounela *

* Aalto University, School of Chemical Technology, Department of Biotechnology and Chemical Technology, 00076 Aalto, Finland (e-mail: miao.yu@aalto.fi, sirkka-liisa.jamsa-jounela@aalto.fi).

Abstract: An adaptive iterative learning control method is proposed for a class of nonlinear strict-feedback discrete-time systems with random initial conditions and iteration-varying desired trajectories. An n-step ahead predictor approach is employed to estimate the future states in the control design. Discrete Nussbaum gain method is utilized to deal with the lack of a priori knowledge of control directions. The proposed control algorithm guarantees the boundedness of all the signals in the controlled system. The tracking error converges to zero asymptotically along the iterative learning axis except for beginning states affected by random initial conditions. The effectiveness of the proposed control scheme is verified through numerical simulation.

Keywords: iterative learning control; unknown control directions; discrete Nussbaum gain; n-step ahead state predictor.

1. INTRODUCTION

During the past decades, iterative learning control (ILC) has been studied extensively and attracts a lot of research interests. It was first proposed by Arimoto et al. (1984) in the application of robot manipulators. Then numerous results have been dedicated to ILC design based on contraction mapping (see e.g. Moore (1993); Chen and Wen (1999); Ahn et al. (2007)). However, there are several critical requirements that limit the applications of ILC, especially to complex nonlinear systems. For instance, the nonparametric uncertainties in nonlinear systems are requested to satisfy the global Lipschitz condition. Meanwhile, the initial value of each trial is required to be the same, which is difficult to realize in practice. In order to relax these prerequisites of traditional ILC, several adaptive ILC methods are developed to deal with parametric uncertainties in nonlinear systems (see e.g. French and Rogers (2000); Xu and Tan (2003); Marino and Tomei (2009); Xu (2011); Yu et al. (2011)). An iterative parameter adaptation law is incorporated into the control design to achieve the pointwise tracking along iterative learning axis.

While most of the existing results focused on ILC of continuous-time systems, ILC of discrete-time systems deserves more efforts since it is more suitable for real implementation. As a discretized version of D-type continuous learning control algorithm, the D-type discrete learning control was proposed in Saab (1995) and applied to robot manipulators. The 2-D system theory was successfully adopted in the analysis of discrete-time ILC utilizing the property that the system progresses in both the time domain and the iteration domain (Kurek and Zaremba (1993); Fang and Chow (2003)). Recently, an adaptive ILC scheme was presented for a class of discrete-time systems in Chi et al. (2008), in which the requirements of identical initial condition and iteration-invariant reference trajectory were removed.

The control direction is of great significance in all ILC control designs since it presents the motion direction of the system under any control. Nonetheless, in some cases, the control direction is difficult to detect or be decided from the physical meaning, which makes the control design much more difficult. The continuous Nussbaum gain method, which was first proposed by Nussbaum (1983), is a popular method to deal with the problem of unknown control direction since it is easy to implement in the control design. It was then adopted in adaptive control design of high-order nonlinear systems (Ye and Jiang (1998); Ge and Wang (2003)) and ILC schemes with unknown control direction (Chen and Jiang (2004); Xu and Yan (2004); Dang and Owens (2006)). Analogous to the continuous Nussbaum gain, the discrete Nussbaum gain method was developed in Lee and Narendra (1986), which met several essential properties of the continuous one. It was then applied in the discrete-time adaptive control design in Ge et al. (2008); Yang et al. (2009) to overcome the difficulties caused by unknown control directions.

In this paper, the discrete Nussbaum gain method is utilized in learning control design to remove the key assumption in all the existing studies on discrete-time ILC that the control direction is known and invariant. A class of high-order nonlinear discrete-time systems with strict-feedback form is considered, whose continuous-time counterpart has been studied in our previous work Yu et al. (2011). In order to solve the problem associated with unknown control directions in the step-by-step deduction, an n-step ahead state predictor approach is applied to estimate future states exploited in the control law. The proposed control scheme is free of controller singularity. The tracking error converges to zero asymptotically along the iterative learning axis under random initial conditions and iteration-varying target trajectories, while all the signals are kept bounded.

* This work is supported by Academy of Finland Project: Optimization of Large Scale Production Processes
2. PROBLEM FORMULATION AND PRELIMINARIES

2.1 Problem formulation

Consider the following strict-feedback discrete-time nonlinear systems

\[
\begin{align*}
 x_1(i,t+1) &= \theta_1^T \xi_1(\bar{x}_1(i,t), t) + b_1 x_2(i,t), \\
 x_2(i,t+1) &= \theta_2^T \xi_2(\bar{x}_2(i,t), t) + b_2 x_3(i,t), \\
 &\vdots \\
 x_n(i,t+1) &= \theta_n^T \xi_n(\bar{x}_n(i,t), t) + b_n u(i,t),
\end{align*}
\]

\[
y(i,t) = x_1(i,t),
\]

where \(\bar{x}_k(i,t) = [x_1(i,t), x_2(i,t), \ldots, x_k(i,t)]^T \) (1 \(\leq j \leq n \)) denote the states at time instant \(t \) of \(j \)th iteration, \(t \in \{0, 1, \ldots, T\} \), \(i = 0, 1, 2, \ldots \); \(u(i,t) \) is the system input; \(\theta \) are the unknown bounded parameters; \(\xi_k(\bar{x}_k(i,t), t) \) are known vector-valued nonlinear functions with respect to \(\bar{x}_k(i,t) \) and \(t \); \(b \) are the unknown input gains. \(x_1(0), \) the initial conditions of each iteration, are random and bounded.

To explicate the control design, we make the following assumptions on system (1).

Assumption 1. The nonlinear functions \(\xi_k(\bar{x}_k(i,t), t) \) are global Lipschitz, i.e., \(\|\xi_k(\eta_1) - \xi_k(\eta_2)\| \leq L_\eta \|\eta_1 - \eta_2\| \), \(1 \leq j \leq n \), where \(L_\eta \) are Lipschitz coefficients.

Assumption 2. The input gains \(b \) are nonsingular, i.e., \(b \neq 0 \), \(1 \leq j \leq n \). The signs of \(b \), which are called control directions, are assumed to be unknown.

Rewrite system (1) as

\[
y(i,t+n) = \theta_1^T \xi_1(\bar{x}_1(i,t+n-1), t+n-1) + b_1 x_2(i,t+n-1),
\]

\[
x_2(i,t+n-1) = \theta_2^T \xi_2(\bar{x}_2(i,t+n-2), t+n-2),
\]

\[
\vdots
\]

\[
x_n(i,t+n) = \theta_n^T \xi_n(\bar{x}_n(i,t), t+n) + b_n u(i,t).
\]

After straight integration, it is easy to obtain that

\[
y(i,t+n) = \sum_{k=1}^{n} \Theta_k^T \xi_k(\bar{x}_k(i,t+n-k), t+n-k) + b_n u(i,t),
\]

where \(\Theta_k = \{\theta_1, \theta_2, \ldots, \theta_k\} \). Define \(\Theta^T = [\Theta_1^T, \Theta_2^T, \ldots, \Theta_n^T] \), \(\xi(i,t+n) = [\xi_1^T(\bar{x}_1(i,t+n-1), t+n-1), \xi_2^T(\bar{x}_2(i,t+n-2), t+n-2), \ldots, \xi_n^T(\bar{x}_n(i,t), t)]^T \). Then equation (3) could be rewritten as

\[
y(i,t+n) = \Theta^T \xi(i,t+n-1) + b_n u(i,t).
\]

Define the reference trajectory as \(y_d(i,t) \), where \(t \in \{0, 1, \ldots, T\} \), \(i = 0, 1, 2, \ldots \). Note that \(y_d(i,t) \) can be variant with iterations, which removes the critical assumption of invariant desired trajectory in traditional ILC based on contraction mapping (Xu (1997), Wang (1998)). Then the tracking error is \(e(i,t) = y(i,t) - y_d(i,t) \). The control objective is to find a sequence of suitable system inputs \(u(i,t) \), \(t \in \{0, 1, \ldots, T-n\} \), \(i = 0, 1, 2, \ldots \), such that the output of system (1) converges to the desired trajectory asymptotically along the iteration axis except for beginning \(n \) instants of each iteration, that is \(\lim_{t \to \infty} e(i,t) = 0 \), \(t \in \{n, \ldots, T\} \).

Remark 1. In view of (1) and (4), the control input of initial instant \(u(i,0) \) is involved in the output after \(n \) steps \(y(i,n) \). The outputs of first \(n \) instants \(y(i,t), 0 \leq t \leq n-1 \), are affected by the random initial conditions, thus are not learnable.

2.2 Preliminaries about discrete Nussbaum gain

The discrete Nussbaum gain was first proposed in Lee and Narendra (1986). Let \(\chi(k) \) be a discrete sequence with \(\chi(0) = 0, \chi(k) \geq 0, k = 0, 1, 2, \ldots \), and \(|\Delta \chi(k)| = |\chi(k+1) - \chi(k)| \leq c \), where \(c \) is a constant.

The discrete nonlinear Nussbaum gain is chosen as

\[
N(\chi(k)) = \chi_1(k) s(\chi(k)),
\]

where

\[
\chi_1(k) \triangleq \sup_{\sigma \leq k} \{\chi(\sigma)\},
\]

and the sign function \(s(\chi(k)) \) which swings between +1 and −1 is defined as follows,

\[
s(\chi(0)) = +1,
\]

\[
At k = k_1, if s(\chi(k_1)) = +1, then if
\]

\[
\sum_{\sigma = 0}^{\sigma = k_1} N(\chi(\sigma)) \Delta \chi(\sigma) > \chi_1^{3/2}(k_1),
\]

set \(s(\chi(k_1 + 1)) = -1 \), otherwise set \(s(\chi(k_1 + 1)) = +1 \).

But if \(s(\chi(k_1)) = -1 \), then if

\[
\sum_{\sigma = 0}^{\sigma = k_1} N(\chi(\sigma)) \Delta \chi(\sigma) < -\chi_1^{3/2}(k_1),
\]

set \(s(\chi(k_1 + 1)) = +1 \), otherwise set \(s(\chi(k_1 + 1)) = -1 \).

Obviously it is easy for the digital implementation. Associated with discrete Nussbaum gain, two important properties corresponding to that of continuous Nussbaum gain (Nussbaum (1983)) were derived.

Lemma 1. (Lee and Narendra (1986))(The Oscillating-Unbounded Sum Property) Let

\[
S(\chi(k)) \triangleq \sum_{\sigma = 0}^{\sigma = k} N(\chi(\sigma)) \Delta \chi(\sigma).
\]

If \(\chi(k) \) increases without bound, then

\[
\sup_{\chi(\sigma) \geq \chi(k)} \frac{1}{\chi(k)} S(\chi(k)) = +\infty,
\]

\[
in \inf_{\chi(\sigma) \geq \chi(k)} \frac{1}{\chi(k)} S(\chi(k)) = -\infty.
\]

Lemma 2. (Lee and Narendra (1986))(The Bounded Sum Property) If \(\chi(k) \leq \xi_1 \), then \(|S(\chi(k))| \leq \xi_2 \) where \(\xi_1 \) and \(\xi_2 \) are some constants.

Recently, a basic lemma was derived in Ge et al. (2008), which facilitates the application of discrete Nussbaum gain in the adaptive control design.

Lemma 3. (Ge et al. (2008)) Let \(V(k) \) be a positive definite function defined \(\forall k, N(\chi(k)) \) be the discrete Nussbaum gain proposed in Lee and Narendra (1986), and \(\theta \) be a nonzero constant. If the following inequality holds

\[
V(k) \leq \sum_{k' = k_1}^{k} (c_1 + \theta N(\chi(k'))) \Delta \chi(k') + c_2 \chi(k') + c_3, \forall k
\]
where \(c_1, c_2 \) and \(c_3 \) are some constants, \(k_1 \) is a positive integer, then \(V(k), \chi(k), \) and \(\Delta(k) \) are the nonlinear functions of linear systems (Goodwin and Sin (1984)). Consequently, considering Remark 1, the control objective is to achieve the exact tracking on interval \([n, T]\).

It is noticed the noncausal term \(\xi(i, t + n - 1) \) appears on the right side of (12). In order to replicate the control process, we shall estimate the states of future \(n \) steps at current step to design the appropriate input \(u(i, t) \).

Let \(\hat{\theta}_j(i, t) \) and \(\hat{b}(i, t) \) denote the estimates of \(\theta_j \) and \(b_1 \) at the \(j \)-th step. Denote \(\phi_j = [\theta_j^T, b_j]^T \), the estimation errors are \(\hat{\phi}_j = \phi_j - \phi_j \).

Define the one-step state predictor as
\[
\hat{x}_j(i, t+1) = \hat{\phi}_j^T(i, t-n+1)\psi_j(i, t), j = 1, 2, \ldots, n-1
\]
where \(\psi_j(i, t) = [\xi_j(i, t, t), x_{j+1}(i, t)]^T \).

Define the two-step state predictor as
\[
\hat{x}_j(i, t+1) = \hat{\phi}_j^T(i, t-n+2)\psi_j(i, t), j = 1, 2, \ldots, n-2
\]

Define the \(m \)-step state predictor as
\[
\hat{x}_j(i, t+m) = \hat{\phi}_j^T(i, t-n+m+1)\psi_j(i, t), j = 1, 2, \ldots, n-m
\]

The parameter estimates updating law is defined as
\[
\hat{\phi}_j(i, t+1) = \hat{\phi}_j(i, t-n+2) - \frac{\hat{x}_j(i, t+1)\psi_j(i, t)}{1 + \psi_j^T(i, t)\psi_j(i, t)}, j = 1, 2, \ldots, n-1
\]
where \(\hat{x}_j(i, t+1) = x_j(i, t+1) - \hat{x}_j(i, t+1) \).

With respect to (4), define \(\hat{\xi}_j(i, t+n-1) = [\xi_j^T(i, t+n-1), t + n - 1], \hat{\xi}_j^T(i, t+n-2), \ldots, \xi_j^T(i, t, t)]^T \), we have the following result

Lemma 5. The parameter estimates \(\hat{\phi}_j(i, t) \), \(j = 1, 2, \ldots, n-1 \), are bounded. The estimation errors satisfy
\[
\hat{\xi}_j(i, t+n-1) = o(O[y(i, t+n-1)]),
\]
\[
\hat{\xi}_j(i, t+n-1) = o(O[y(i, t+n-1)])
\]

Proof: See the proofs of Lemma 6 and 7 in Ge et al. (2008).
Substituting the parameter estimate updating law (19) into (21)

Proof: Theorem 1.

\[\Delta \phi(i, t) = \phi(i + 1, t) - \phi(i, t) \]

\[= -N(\chi(i, t))\Delta \tilde{\chi}(i - 1, t)\tilde{\xi}(i - 1, t + n - 1) \]

\[\times \tilde{\xi}(i - 1, t + n - 1) \]

\[\Delta z(i, t) = z(i + 1, t) - z(i, t) = \frac{G(i, t)e^2(i - 1, t + n)}{D(i, t)} \]

\[\chi(i, t) = z(i, t) + \frac{\tilde{\chi}^2(i, t)}{2} \]

\[G(i, t) = 1 + |N(\chi(i, t))| \]

\[D(i, t) = (1 + |\psi(i, t)|)(1 + [N^2(\chi(i, t)]) \]

where \(N(\chi(i, t)) \) is the discrete Nussbaumber function defined in (5) which updates along the iteration axis at time instant \(t \), \(t = 0, 1, \cdots T - n \). The parameter \(\gamma > 0 \) is tunable to improve the learning performance.

4. LEARNING CONVERGENCE ANALYSIS

Theorem 1. Consider the discrete-time nonlinear system (1) with random initial conditions and iteration-varying desired trajectories, if Assumptions 1 and 2 are satisfied, applying the proposed adaptive learning control law (17) and parameter estimate updating law (19), all the signals in the system are guaranteed to be bounded. Moreover, the tracking error converges to zero asymptotically along the iterative learning axis except for beginning \(n \) instants of each iteration, that is \(\lim_{i \to \infty} e(i, t) = 0 \), \(t = n, \cdots T \).

Proof: Define a positive definite function as

\[V(i, t) = \tilde{\alpha}^T(i, t)\tilde{\alpha}(i, t) + \tilde{\phi}^2(i, t). \] (20)

Then the difference of \(V(i, t) \) along the iteration axis is derived as

\[\Delta V(i, t) = V(i, t) - V(i, t - 1) \]

\[= (\tilde{\alpha}(i, t) - \tilde{\alpha}(i - 1, t))^T(\tilde{\alpha}(i, t) - \tilde{\alpha}(i - 1, t)) \]

\[+ 2\tilde{\alpha}(i - 1, t)^T(\tilde{\alpha}(i, t) - \tilde{\alpha}(i - 1, t)) \]

\[+ \tilde{\gamma}(i, t) - \tilde{\beta}(i - 1, t)^2 \]

\[+ 2\tilde{\beta}(i - 1, t)(\tilde{\phi}(i, t) - \tilde{\phi}(i - 1, t)). \] (21)

Substituting the parameter estimate updating law (19) into (21) yields

\[\Delta V(i, t) = \gamma^2 \frac{N^2(\chi(i, t))}{D^2(i, t)} e^2(i - 1, t + n) \]

\[\times \|\xi(i - 1, t + n - 1)\|^2 + \tilde{\gamma}^2(i - 1, t + n) \]

\[+ 2\gamma \frac{N(\chi(i, t))}{D(i, t)} e(i - 1, t + n)(\tilde{\alpha}^T(i - 1, t) \]

\[\times \xi(i - 1, t + n - 1) - \tilde{\beta}(i - 1, t)y_\phi(i - 1, t + n). \]

Considering the error dynamic (18) and parameter definition (19), it can be obtained that

\[e(i - 1, t + n) = (e(i - 1, t + n))G(i, t) - N(\chi(i, t))\phi(i, t) \]

\[\times \tilde{\alpha}^T(i - 1, t)\tilde{\xi}(i - 1, t + n - 1))/\gamma \]

\[= b\tilde{\alpha}^T(i - 1, t)\tilde{\xi}(i - 1, t + n - 1) \]

\[- \tilde{\beta}(i - 1, t)y_\phi(i - 1, t + n) \]

\[+ \tilde{\alpha}^T(i - 1, t)\tilde{\xi}(i - 1, t + n - 1)/\gamma). \] (22)

Then it can be derived that

\[\Delta V(i, t) \leq \gamma^2 \frac{N^2(\chi(i, t))}{D^2(i, t)} e^2(i - 1, t + n)\|\xi(i - 1, t + n - 1)\|^2 \]

\[+ \gamma^2(i - 1, t + n) \]

\[- 2\gamma \frac{N(\chi(i, t))}{D(i, t)} e(i - 1, t + n)\tilde{\alpha}^T(i - 1, t) \]

\[\times \tilde{\xi}(i - 1, t + n - 1) \]

\[+ \frac{2}{b} \frac{N(\chi(i, t))}{D(i, t)} e(i - 1, t + n)\phi(i, t) \]

\[\times \tilde{\alpha}^T(i - 1, t)\tilde{\xi}(i - 1, t + n - 1) \]

\[\leq \gamma^2 \frac{G(i, t)e^2(i - 1, t + n)}{D(i, t)} \]

\[\times \tilde{\alpha}^T(i - 1, t)\tilde{\xi}(i - 1, t + n - 1) \]

\[\leq \frac{2}{b} \frac{N(\chi(i, t))}{D(i, t)} \Delta \phi(i, t) \]

\[+ \frac{1}{|\beta|} \frac{N(\chi(i, t))}{D(i, t)}(\Delta \phi(i, t))^2 \]

\[+ 2\gamma \frac{N(\chi(i, t))}{D(i, t)} \phi(i, t) \Delta \phi(i, t) \]

\[+ (\Delta \phi(i, t))^2. \] (23)

Since

\[\Delta \chi(i, t) = \Delta \phi(i, t) + \phi(i, t) \Delta \phi(i, t) + \frac{(\Delta \phi(i, t))^2}{2}, \]

\[\Delta \phi(i, t) \leq \Delta \phi(i, t) \]

\[\leq \frac{2}{b} \frac{N(\chi(i, t))}{D(i, t)}(\Delta \phi(i, t))^2 \]

\[\Delta \phi(i, t) \leq \Delta \phi(i, t) \]

\[\leq \frac{2}{b} \frac{N(\chi(i, t))}{D(i, t)}(\Delta \phi(i, t))^2 \]

\[\Delta \phi(i, t) \leq \Delta \phi(i, t) \]

\[\leq \frac{2}{b} \frac{N(\chi(i, t))}{D(i, t)}(\Delta \phi(i, t))^2 \]

we have

\[\Delta V(i, t) \leq (\gamma^2 + \frac{1}{|\beta|}) \Delta \phi(i, t) + 2\gamma \Delta \phi(i, t) - \frac{2}{b} \frac{N(\chi(i, t))}{D(i, t)}(\Delta \phi(i, t))^2. \] (25)

Taking the sum of (25) at time instant \(t \) along the iterative learning axis, we have
\begin{align*}
V(i, t) & \leq -\frac{2}{h} \sum_{k=0}^{i-1} N(\chi(k, t)) \Delta x(k, t) \\
& \quad + (\gamma^2 + \frac{1}{|b|}) |z(i, t) + 2y(\phi(i, t) + V(-1, t)) \\
& \leq -\frac{2}{h} \sum_{k=0}^{i-1} N(\chi(k, t)) \Delta x(k, t) \\
& \quad + (\gamma^2 + \frac{1}{|b|}) \chi(i, t) + 2y(\gamma^2 + \frac{1}{|b|}) + V(-1, t). (26)
\end{align*}

Since \(V(-1, t) \) is a constant parameter, applying Lemma 3, we can conclude directly that \(V(i, t) \) and \(\chi(i, t) \) are bounded. Thus, \(N(\chi(i, t)) \), \(G(i, t) \), \(\tilde{a}(i, t) \), \(\tilde{\beta}(i, t) \) are all bounded, and

\[
\lim_{i \to \infty} \Delta e(i, t) = \lim_{i \to \infty} \frac{G(i, t)e^2(i - 1, t + n)}{D(i, t)} = 0
\] (27)

In order to apply Lemma 4, we should guarantee the linear boundedness condition between \(D(i, t) \) and \(e^2(i - 1, t + n) \). From error dynamic (18), it is easy to see that

\[
x(i, t) = O[y(i, t + j - 1)] = O[e(i, t + j - 1)], \\
u(i, t) = O[y(i, t + n)] = O[e(i, t + n)]. (28)
\]

Thus it is derived from the Lipschitz condition in Assumption 1 that

\[
\dot{\xi}(i - 1, t + n - 1) = O[e(i - 1, t + n - 1)]. (29)
\]

From Lemma 5, we have

\[
\dot{\xi}(i - 1, t + n - 1) = o[O[y(i - 1, t + n - 1)] = o[O[e(i - 1, t + n - 1)]]. (30)
\]

It is easy to see that from the parameter definition (19)

\[
e(i, t) \sim e(i, t). (31)
\]

Thus it can be obtained that

\[
D(i, t) = O[e^2(i - 1, t + n)]. (32)
\]

Applying Lemma 4, considering the boundedness of \(G(i, t) \), we can conclude that \(\lim_{i \to \infty} e(i, t) = 0, t = n, \cdots, T \). Considering Remark 1, the pointwise tracking is achieved on interval \([n, T]\), except for beginning \(n \) instants affected by random initial conditions. Moreover, all the signals in the system are kept bounded.

\section{5. ILLUSTRATIVE EXAMPLE}

Consider the following high-order strict-feedback discrete-time nonlinear systems

\[
x_1(i, t + 1) = a_1x_1(i, t)\cos^2(x_1(i, t)) + a_2x_2(i, t)\sin(x_1(i, t)) \\
\quad + b_1x_2(i, t), \\
x_2(i, t + 1) = a_3x_1(i, t)\sin(x_2(i, t)) \\
\quad + a_4 \frac{x_2^3(i, t)}{3 + x_1^2(i, t)} + b_2u(i, t), \\
y(i, t) = x_1(i, t),
\]

where \(a_1 = 0.2, a_2 = 0.1, a_3 = 0.1, a_4 = -0.5, b_1 = 1.5, b_2 = \pm 0.1 \). The initial value is chosen from \((-1, 0) \cup (0, 1)\) when iteration varies.

The desired trajectory is given as \(y_d = m(i)[1.5 \sin(\frac{\pi}{20}t) + 1.5 \cos(\frac{\pi}{20}t)], H = 0.04 \), where \(m(i) \) is also varying in the interval \((-1, 0) \cup (0, 1)\) with iteration \(i \). The iteration interval is \(t \in [0, 1, \cdots, 100] \). The tunable parameter \(\gamma \) is chosen to be 4.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Root mean square tracking error under random initial values and varying desired trajectories when \(b_2 = -0.1 \)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Root mean square tracking error under random initial values and varying desired trajectories when \(b_2 = 0.1 \)}
\end{figure}

To demonstrate the effectiveness of the proposed control scheme, we carry out the simulation with \(b_2 \) of the same absolute value but opposite signs. Simulation results with random initial values and varying desired trajectories are shown in Fig 1-6. Fig 1 and 2 show the RMS tracking error versus iteration number. It has shown the validity of the control algorithm. The variation of discrete Nussbaum gain along the iteration axis at time instant \(t = 1 \) is shown in Fig 3 and 4 as an example. We can see that it is first at the wrong direction, then switches to the right direction after several iterations of learning, which coincides with the sign of \(b_2 \). In Fig 5 and 6, discrete Nussbaum gain \(N(\chi(t)) \) at the 1000th iteration is depicted. It is easy to see that \(N(\chi(t)) \) are all the same sign with \(b_2 \) for \(t \in [0, \cdots, 99] \).

\section{6. CONCLUSIONS}

In this paper, the problem of adaptive iterative learning control for a class of strict-feedback discrete-time nonlinear systems with random initial conditions and iteration-varying reference trajectories is tackled. The discrete Nussbaum gain method is exploited to deal with the lack of the prior knowledge of control directions. Under the proposed control scheme and parameter estimates updating law, the tracking error converges to zero pointwisely with all the signals bounded. Simulation results
have demonstrated the effectiveness of the presented control method.

REFERENCES

