Hinkkanen, Marko; Leppänen, Veli-Matti; Luomi, Jorma

Flux observer enhanced with low-frequency signal injection allowing sensorless zero-frequency operation of induction motors

Published in:
IEEE Transactions on Industry Applications

DOI:
10.1109/TIA.2004.840958

Published: 31/01/2005

Document Version
Peer reviewed version

Please cite the original version:
Flux Observer Enhanced with Low-Frequency Signal Injection Allowing Sensorless Zero-Frequency Operation of Induction Motors

Marko Hinkkanen, Veli-Matti Leppänen, and Jorma Luomi, Member, IEEE

Abstract—In sensorless induction motor drives, flux estimators based only on the standard motor model work well at sufficiently high stator frequencies, but they fail at frequencies close to zero. To solve this problem, a new observer structure is proposed, combining a speed-adaptive full-order flux observer with a low-frequency signal-injection method. An error signal obtained from the signal-injection method is used as an additional feedback signal in the speed-adaptation law of the observer, resulting in a wide speed range, excellent dynamic properties, and zero-frequency operation capability. The enhanced observer is also robust against parameter errors. Experimental results are shown, including very slow speed reversals and long-term zero-frequency operation under rated load torque, as well as rated load torque steps and fast speed reversals under rated load torque.

Index Terms—Flux estimation, induction motor drives, signal injection, speed sensorless.

I. INTRODUCTION

The research of the speed sensorless vector control of induction machines is motivated by the benefits in the cost of hardware and installation work and the reliability of the system. The estimation of the rotor flux is the crucial part of the control algorithm. It can be based on the standard motor model leading to, for example, the voltage model or the full-order flux observer. As the frequency approaches zero, however, the estimators based only on the standard motor model become increasingly sensitive to parameter errors. Even though operation at zero rotor speed at no load and under full load can be achieved [1], [2], more demanding operating points exist. Regenerating operation at very low stator frequencies has seldom been demonstrated (confusingly, the plugging mode is at low speeds often called the regenerating mode in the literature). Long-term operation at zero stator frequency under full load is not possible in practice.

For solving the problems encountered at low stator frequencies, various methods have been presented where a high-frequency test signal is superimposed on the stator voltage or current of the machine and information of the flux direction or rotor position is obtained from the response. Most of the signal-injection methods assume a spatial variation of the leakage inductance that is linked to the orientation of the flux [3], [4], or rotor position [5]. The rotor-position-dependent inductance variation can even be enhanced by design [6]–[8]. However, the signal carrying useful information is often corrupted by other signals of the same kind [9], [10], and additional machine-specific decoupling schemes must be devised [5]. Some schemes employ the PWM switching waveform as an excitation [11], [12]. In [13], a resistance variation along the rotor periphery is introduced, and a periodic high-frequency voltage burst injection is used. Injecting a high-frequency voltage also causes a high-frequency zero-sequence voltage in a motor with main flux saturation. The amplitude variation of the high-frequency zero-sequence voltage can be used to track the air-gap flux [14]. A hybrid scheme combining a flux observer based on the standard motor model with a high-frequency signal-injection method is proposed in [15].

In a recently introduced controller [16], a low-frequency alternating current is superimposed on the flux-producing component of the stator current. The response of the mechanical system is used to adjust the test signal to coincide the direction of the rotor flux, provided that the total moment of inertia is not too high. The controller exhibits good steady-state performance down to zero-frequency operation, and it is insensitive to parameter errors. However, its dynamic response is only moderate.

In this paper, a speed-adaptive flux observer [17] based on the standard motor model is enhanced by the low-frequency signal-injection method [16] in order to obtain both fast response and stable zero-frequency operation despite of parameter errors. The speed-adaptation law is augmented with an error signal obtained from the signal-injection method. This additional correction also stabilizes the regenerating-mode low-speed operation. Simulations and experimental results demonstrate the system’s stability and robustness against parameter errors.

II. INDUCTION MOTOR MODEL

The standard dynamic model corresponding to the inverse-Γ-equivalent circuit [18] of the induction motor will be used. In a general reference frame, the voltage equations are

\[\dot{s} \mathbf{v} = R_s \dot{s} \mathbf{i} + j \omega_k \mathbf{\psi}_s \]
\[0 = R_l \dot{L}_R + j \frac{d\mathbf{\psi}_s}{dt} + j (\omega_k - \omega_m) \mathbf{\psi}_R \]

where \(\mathbf{v} \) is the space vector of the stator voltage, \(\dot{s} \mathbf{i} \) the space vector of the stator current, \(R_s \) the stator resistance, and \(\omega_k \) the electrical angular speed of the reference frame. The rotor
The stator transient inductance, respectively. Let the stator resistance be \(R_s \), the rotor current \(i_R \), and the electrical angular speed of the rotor \(\omega_m \). The stator and rotor flux linkages are

\[
\psi_s = (L_s + L_M) i_s + L_M i_R \\
\psi_R = L_M (\ddot{i_s} + \ddot{i_R})
\]

(2a) \hspace{1cm} (2b)

respectively, where \(L_M \) and \(L_s \) are the magnetizing inductance and the stator transient inductance, respectively.

The electromagnetic torque is given by

\[
T_e = \frac{3}{2} p \text{Im} \left\{ \dot{\psi}_m \dot{i}_m \right\}
\]

(3)

where the number of pole pairs is \(p \) and the complex conjugate is marked by the symbol \(^*\). The equation of motion is

\[
\frac{dw_m}{dt} = \frac{p}{J} (T_e - T_L)
\]

(4)

where the total moment of inertia of the mechanical system is \(J \) and the load torque is \(T_L \). The back-emf used in this paper is defined by

\[
e = \left(\frac{1}{\tau_r} - j \omega_m \right) \dot{\psi}_R
\]

(5)

where the rotor time constant is \(\tau_r = L_M / R_R \).

The operating modes of the induction motor are defined here using the relative slip \(\omega_r / \omega_s \), where the angular speed of the rotor flux is \(\omega_s \) and the angular slip frequency \(\omega_r = \omega_s - \omega_m \). The operating modes are [19]:

1. regenerating mode \((\omega_r / \omega_s < 0)\);
2. motoring mode \((0 < \omega_r / \omega_s < 1)\);
3. plugging mode \((\omega_r / \omega_s > 1)\).

To recognize the plugging mode more easily, the condition for it can also be expressed as \(\omega_m \omega_s < 0 \). Operation in the regenerating mode at low stator frequencies is generally the most demanding working point of sensorless induction motor drives. Operation at zero stator frequency under load torque can be interpreted as a borderline case of the regenerating mode.

III. SIGNAL INJECTION AND ITS RESPONSE

In the following, the angle of the rotor flux is \(\vartheta_s \) and the angle of the estimated rotor flux \(\ddot{\vartheta}_s \). The error angle is \(\ddot{\vartheta}_s = \ddot{\vartheta}_s - \vartheta_s \) as illustrated in Fig. 1. Since \(\ddot{\vartheta}_s \) is not explicitly known, an error signal \(F_0 \) having the same sign as \(\ddot{\vartheta}_s \) will be introduced.

A. Back-EMF Response in Rotor Flux Reference Frame

As shown in Fig. 2, an ac test signal \(A \cos(\omega_c t) \) is superimposed on the \(d \)-component of the stator current in the estimated rotor flux reference frame, the \(d \)-axis of which is at angle \(\ddot{\vartheta}_s \) relative to the stationary reference frame [16].

Thus the spatial angle of the ac test signal is \(-\ddot{\vartheta}_s\) in the rotor flux reference frame, where the test signal appears as a vector \((\cos \ddot{\vartheta}_s - j \sin \ddot{\vartheta}_s)A \cos(\omega_c t)\).

If \(\ddot{\vartheta}_s = 0 \), the test signal causes predominantly an alternating component in the flux amplitude. This oscillation and its effects are small, and they can be compensated [20]. Furthermore, the saturation of the magnetizing inductance decreases the oscillation in the flux magnitude. If \(\ddot{\vartheta}_s \neq 0 \), the test signal has a true \(q \)-component which, according to (3), creates a torque oscillation

\[
T_{ce}(t) = -\frac{3}{2} p \psi_{R0} A \cos(\omega_c t) \sin \ddot{\vartheta}_s
\]

(6)

where \(\psi_{R0} \) is the amplitude of the rotor flux at the quiescent operating point. Based on (4), the oscillating torque causes an oscillation in the rotor speed, and further an oscillation

\[
e_{qc}^k(t) = \frac{3p^2 \psi_{R0}^2}{2 J \omega_c} A \sin(\omega_c t) \sin \ddot{\vartheta}_s
\]

(7)

in the \(q \)-component of the back-emf (the superscript \(k \) indicates the rotor flux reference frame).

B. Error Signal in Estimated Rotor Flux Reference Frame

The analysis above suggests that multiplying the back-emf response \(e_{qc}^k(t) \) by \(\sin(\omega_c t) \) will give a signal having the same sign as \(\ddot{\vartheta}_s \). Since \(\ddot{\vartheta}_s \) is not known in practice, the actual component \(e_{qc}^k(t) \) is not accessible. Instead, the corresponding \(q \)-component in the estimated rotor flux reference frame (where the test signal appears real) is used. The response in the estimated rotor flux reference frame is approximately [20]

\[
e_{qc}(t) = \left[\left(\frac{3p^2 \psi_{R0}^2}{2 J} + \frac{R_R}{\tau_r} \right) \ddot{\vartheta}_s - \omega_m R_R \right] \frac{A}{\omega_c} \sin(\omega_c t)
\]

(8)
where \(\omega_m \) is the rotor speed at the quiescent operating point. In practice, the response is estimated from the stator voltage and current using a band-pass-filter (BPF),

\[
\hat{e}_{qc}(t) = \text{BPF}\left\{ -u_{sq,ref} + \dot{L}_s' \frac{d}{dt} i_{sq} + \dot{\omega}_s \dot{i}_{sd} + (\dot{R}_s + \dot{R}_R)i_{sq} \right\}
\]

where \(\dot{\omega}_s \) is the angular speed of the rotor flux estimate and parameter estimates are marked by the symbol \(\hat{\cdot} \). The \(q \)-component of the reference voltage \(u_{sq,ref} \) and the stator current components \(i_{sd} \) and \(i_{sq} \) are in the estimated rotor flux reference frame.

The estimate of the part independent of \(\dot{\vartheta}_s \) in (8) is subtracted from \(\hat{e}_{qc}(t) \) and the result is demodulated. Multiplication by \(\sin(\omega_c t) \) gives the function

\[
f_\theta(t) = \left[\hat{e}_{qc}(t) + \omega_m \dot{R}_R \frac{A}{\omega_c} \sin(\omega_c t) \right] \sin(\omega_c t)
\]

where \(\omega_m \) is the estimated rotor speed at the quiescent operating point. Low-pass filtering (LPF) of \(f_\theta \) gives an error signal voltage

\[
F_\theta = \text{LPF}\left\{ f_\theta \right\}
\]

\[
\approx \left(\frac{3\varphi R_0 \omega_c^2}{2J} + \frac{R_R}{\tau_r} \right) \dot{\vartheta}_s - \omega_m \dot{R}_R + \omega_m \dot{R}_R \frac{A}{2\omega_c}
\]

which is constant in steady state. Fig. 3 shows the block diagram of the error signal calculation, which will be explained in more detail in Section V.

Generally, a larger gain \(F_\theta / \dot{\vartheta}_s \) results in a better signal-to-noise ratio. According to (11), the gain \(F_\theta / \dot{\vartheta}_s \) can be increased by increasing the amplitude \(A \) or decreasing the frequency \(\omega_c \). However, decreasing \(\omega_c \) decreases the achievable dynamics of \(F_\theta \).

IV. SPEED-ADAPTIVE FLUX OBSERVER

The full-order flux observer using the state vector \(\hat{x} = [\hat{\vartheta}_s \quad \hat{\psi}_s']^T \) is defined by

\[
\frac{d\hat{x}}{dt} = \hat{A} \hat{x} + \hat{B} u + \hat{L}(\hat{i}_s - \hat{i}_s')
\]

(12a)

\[
\hat{i}_s = \hat{C} \hat{x}
\]

(12b)

The system matrices are \(\hat{B} = [1 \quad 0]^T, \hat{C} = [1/\dot{L}_s' \quad -1/\dot{L}_s'] \), and

\[
\hat{A} = \begin{bmatrix}
\frac{\tau}{\tau} - j\omega_k & -\frac{1}{\tau} - j(\omega_k - \dot{\omega}_m) \\
\frac{\tau}{\tau} & \frac{\tau}{\tau} - \frac{j}{\tau}
\end{bmatrix}
\]

(12c)

where the parameter estimates are \(\hat{\vartheta} = \dot{\vartheta}_s'/(\dot{L}_M + \dot{L}_s'), \hat{\omega}_s = \dot{L}_s' / \dot{R}_s, \) and \(\hat{\omega}_m = \dot{\vartheta}_s' / \dot{R}_s \). The observer gain

\[
\hat{L} = \left[\begin{array}{c}
\frac{L}{L} \\
\frac{1 + j \text{sign}(\omega_m)}{-1 + j \text{sign}(\omega_m)}
\end{array} \right]
\]

(13a)

where

\[
\lambda = \begin{cases}
\lambda' \frac{\omega}{\omega}, & \text{if } |\omega_m| < \omega_\lambda \\
\lambda', & \text{if } |\omega_m| \geq \omega_\lambda
\end{cases}
\]

(13b)

gives satisfactory behavior from zero speed to very high speeds [17]. Parameters \(\lambda' \) and \(\omega_\lambda \) are positive constants.

A. Speed Adaptation Without Signal Injection

Conventionally, the rotor speed is estimated using the adaptation law

\[
\omega_m = -\gamma_p \varepsilon - \gamma_i \int \varepsilon \, dt
\]

(14)

where \(\gamma_p \) and \(\gamma_i \) are positive adaptation gains and

\[
\varepsilon = \text{Im} \left\{ (\hat{\vartheta}_s - \hat{\vartheta}_s') \hat{\psi}_R^* \right\}
\]

(15)

is an error term. With accurate motor parameter estimates, the adaptation law using (15) works well except at low speeds in the regenerating mode.

The regenerating mode can be stabilized, for example, by using a modified error term [2]. However, an inaccurate stator resistance estimate causes problems at low stator frequencies. This well-known problem is also encountered with other flux estimators based on the standard motor model. Especially, long-term operation under full load torque close to zero stator frequency is difficult. Fortunately, the accuracy of the stator resistance estimate is not that crucial during transients.

B. Speed Adaptation Enhanced With Signal Injection

If the error angle \(\hat{\vartheta}_s \) were known, the error term \(\varepsilon = \hat{\vartheta}_s \) would result in a robust system having good dynamics. In practice, the signal \(F_\theta \) approximately proportional to \(\hat{\vartheta}_s \) is available. However, \(F_\theta \) has a limited bandwidth due to the delays and filtering needed in the demodulation process.

The steady-state robustness of the low-frequency signal-injection method and the fast response of the speed-adaptive flux observer can be combined by using the error term

\[
\varepsilon = \text{Im} \left\{ (\hat{\vartheta}_s - \hat{\vartheta}_s') \hat{\psi}_R^* \right\} + \gamma_\vartheta F_\theta
\]

(16)

where \(\gamma_\vartheta \) is a positive gain. The error term (16) makes long-term zero-frequency operation possible without losing the dynamic performance. Furthermore, the correction provided by the signal-injection method stabilizes the regenerating mode at low speeds, even with an inaccurate stator resistance estimate. It is to be noted that the signal \(F_\theta \) is not generally driven to zero with (16).

The robustness can be increased further by driving the signal \(F_\theta \) to zero by using the error term

\[
\varepsilon = \text{HPF} \left\{ \text{Im} \left\{ (\hat{\vartheta}_s - \hat{\vartheta}_s') \hat{\psi}_R^* \right\} \right\} + \gamma_\vartheta F_\theta
\]

(17)

where a first-order high-pass filter (HPF) \((s/(s + \alpha_i))\) having the corner frequency \(\alpha_i \) is used. In [15], the high-frequency
signal-injection method was combined with a speed-adaptive flux observer in a fashion similar to (17).

The high-pass filter in (17) may slightly deteriorate the transient performance. This can be circumvented by using the low-pass-filter-based realization of the high-pass filter

$$\frac{s}{s + \alpha_i} = 1 - \frac{\alpha_i}{s + \alpha_i} \text{ low-pass path}$$

where the state of the low-pass path is reset and limited suitably. Resetting is carried out in the beginning of transients, which can be detected, for example, by monitoring the error $$\omega_{m,\text{ref}} - \hat{\omega}_m$$ (where $$\omega_{m,\text{ref}}$$ is the speed reference).

Weak fluctuations in the estimated variables may appear at standstill at no load when the error term (17) is used. These low-frequency fluctuations can be suppressed by rotating the current estimation error by factor $$\exp(-j\phi)$$ as

$$\varepsilon = \text{HPP} \left\{ \text{Im} \left\{ \left(\frac{s}{s + \alpha_i} \right) \right\} \right\} + \gamma_\phi F_\phi$$ (19)

where the angle $$\phi$$ is nonzero only in the regenerating mode at very low loads and speeds. A similar modification of the error term have been used for stabilizing the regenerating mode without signal injection [2].

V. CONTROL SYSTEM

The operation of the enhanced observer using the speed-adaptation law (19) was investigated by means of simulations and experiments. The MATLAB/Simulink environment was used for the simulations. The experimental setup is shown in Fig. 4. A 2.2-kW four-pole induction motor (IM) is fed by a frequency converter controlled by a dSpace DS1103 PPC/DSP board. The parameters of the induction motor are given in Table I. The total moment of inertia of the experimental setup is 2.2 times the inertia of the induction motor rotor. The control system used in the simulations and experiments is based on rotor flux orientation. The simplified overall block diagram of the system is shown in Fig. 2.

A. Controllers and Flux Observer

A PI-type synchronous-frame current controller is used [21]. The bandwidth of the current controller is 8 p.u., where the base value of the angular frequency is $$2\pi \cdot 50 \text{ rad/s}$$.

The speed estimate for the speed controller is filtered using a first-order low-pass filter having the bandwidth of 0.8 p.u., and the speed controller is a conventional PI-controller having the bandwidth of 0.16 p.u. The flux controller is a PI-type controller having the bandwidth of 0.016 p.u. in the base-speed region. The flux reference in the base-speed region is $$\psi_{R,\text{ref}} = 0.9 \text{ Wb}$$.

For the speed-adaptive flux observer, the parameters $$\lambda' = 10 \Omega$$ and $$\omega_\Delta = 1 \text{ p.u.}$$ are used in (13). The speed-adaptation gains in (14) are $$\gamma_\rho = 10 \text{ rad/(s-Nm)}$$ and $$\gamma_\lambda = 10000 \text{ rad/(s^2-Nm)}$$. The digital implementation in the estimated rotor flux reference frame is used [22].

The sampling is synchronized to the modulation, and both the switching frequency and the sampling frequency are 5 kHz. The dc-link voltage is measured, and the reference voltage obtained from the current controller is used for the flux observer. A simple current feedforward compensation for dead times and power device voltage drops is applied [23].

B. Signal Injection

The frequency of the test signal is 25 Hz (i.e., $$\omega_c = 0.5 \text{ p.u.}$$), which gives, according to (11), $$F_\phi/\partial_s \approx 1.06 \text{ V/rad}$$ in the experimental setup. In order to obtain a smooth transition between the low-speed signal-injection region and normal operating region, the signal-injection parameters are varied according to

$$A = f(\hat{\omega}_s)A_0, \quad \gamma_\rho = f(\hat{\omega}_s)\gamma_{\rho 0}, \quad \alpha_i = f(\hat{\omega}_s)\alpha_{i0}$$ (20)

where $$\hat{\omega}_s$$ is the angular speed of the rotor flux estimate. The function $$f$$ is shown graphically in Fig. 5. The values corresponding to zero-frequency operation are $$A_0 = 1 \text{ A}$$, $$\gamma_{\rho 0} = 2 \text{ Nm/V}$$, and $$\alpha_{i0} = 0.016 \text{ p.u.}$$, and the transition speed is $$\omega_\Delta = 0.16 \text{ p.u.}$$.

The angle $$\phi$$ in (19) is selected according to

$$\phi = \begin{cases} \phi_{\text{max}} \text{sign}(\hat{\omega}_m)f(\hat{\omega}_s)f(\hat{\omega}_r), & \text{if } \hat{\omega}_s \hat{\omega}_r < 0 \\ 0, & \text{otherwise} \end{cases}$$ (21)

where $$\hat{\omega}_r = \hat{\omega}_s - \hat{\omega}_m$$ is the angular slip frequency estimate, and the function $$f$$ shown in Fig. 5 is used. The angle $$\phi_{\text{max}} = 0.15\pi \text{ rad}$$ and $$\omega_\Delta = 0.005 \text{ p.u.}$$ are used in (21).

The low-pass path of (18) is limited to 0.2 Wb $$\cdot |\hat{i}_{sq}|f(\hat{\omega}_s)$$, where $$\hat{i}_{sq}$$ is the q component of the stator current in the

![Fig. 4. Experimental setup. Permanent magnet (PM) servo motor was used as loading machine.](image-url)

![Fig. 5. Function $$f(\omega)$$. Different values for $$\omega_\Delta$$ are used in (20) and (21).](image-url)

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>PARAMETERS OF THE 2.2-kW FOUR-POLE 400-V 50-HZ MOTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator resistance $$R_s$$</td>
<td>3.67 $$\Omega$$</td>
</tr>
<tr>
<td>Rotor resistance $$R_R$$</td>
<td>2.10 $$\Omega$$</td>
</tr>
<tr>
<td>Stator transient inductance $$L'_s$$</td>
<td>0.0209 H</td>
</tr>
<tr>
<td>Magnetizing inductance $$L_M$$</td>
<td>0.224 H</td>
</tr>
<tr>
<td>Total moment of inertia $$J$$</td>
<td>0.0155 kgm²</td>
</tr>
<tr>
<td>Rated speed</td>
<td>1430 r/min</td>
</tr>
<tr>
<td>Rated current</td>
<td>5.0 A</td>
</tr>
<tr>
<td>Rated torque</td>
<td>14.6 Nm</td>
</tr>
</tbody>
</table>
estimated rotor flux reference frame. Furthermore, the low-
pass path is reset when \(|\omega_{m,\text{ref}} - \dot{\omega}_m| > 0.03 \text{ p.u.}\)

The error signal \(F_\theta\) is calculated according to Fig. 3. Instead
of using a band-pass filter, the filtering of \(\dot{e}_\varphi\) is achieved by zero
averaging and removing the trend over one period of the
injection signal [16],

\[
\dot{e}_{\varphi(e)}(t) = \frac{1}{T_c} \int_{t-T_c}^{t} \dot{e}_{\varphi(e)}(t) dt - \frac{1}{2} \frac{d}{dt} \int_{t-T_c}^{t} \dot{e}_{\varphi(e)}(t) dt
\]

where \(T_c = 2\pi/\omega_c\). The first-order low-pass filter in Fig. 3 has
the bandwidth of 0.16 p.u. Prior to filtering, the amplitude
of \(F_\theta\) is limited to \(\pm 0.3 \text{ V}\).

VI. RESULTS

Constant-valued estimates of the motor parameters are used
in all simulations and experiments. The base values used in
the following figures are: current \(\sqrt{2} 5.0 \text{ A},\) flux 1.04 Wb, and
angular frequency \(2\pi 50 \text{ rad/s}\).

A. Simulations

Robustness against errors in parameter estimates is studied
by means of simulations. In the motor model of the simulator,
the measured magnetizing inductance depicted in Fig. 6 is
used, whereas other motor parameters are constant.

An example of simulation results showing slow speed reversals is shown in Fig. 7, where an inaccurate stator resistance estimate \(R_s = 1.2 R_s\) is used. A rated load torque step was
applied at \(t = 5 \text{ s}\). The speed reference was changed linearly from 0.06 p.u. to -0.06 p.u. when \(t = 10\ldots80 \text{ s}\), and then
back to 0.06 p.u. when \(t = 80\ldots150 \text{ s}\). The drive operates
first in the motoring mode, then in the plugging mode \((t \approx 45\ldots63 \text{ s})\), in the regenerating mode \((t \approx 63\ldots97 \text{ s})\), again
in the plugging mode \((t \approx 97\ldots115 \text{ s})\), and finally again in
the motoring mode. It can be seen that the system is stable in
all three operating modes of the induction motor.

Simulations corresponding to Fig. 7 using inaccurate \(\hat{L}_s\),
\(\hat{R}_R\), and \(L_M\) were also carried out (one erroneous estimate at
a time, errors larger than 50 \% not tested). The range for stable
operation for the parameter estimates is given in Table II. As
assumed, the only critical parameter is the stator resistance
estimate \(\hat{R}_s\). The maximum error in \(\hat{R}_s\) is determined by the
load torque step at \(t = 5 \text{ s}\) while a larger error is allowed in the
other parts of the sequence.

The same system using estimators based only on the stan-
dard motor model, e.g., [2], [24], can cope with the sequence
of Fig. 7 if the error in \(\hat{R}_s\) is less than approximately one
percent. Furthermore, many estimators, e.g., [25], [26], are
unstable in the regenerating mode when \(t \approx 63\ldots97 \text{ s}\) even
if all parameter estimates are accurate.

B. Experiments

Experimental results of slow speed reversals are shown in
Fig. 8, where the test sequence is equal to that in Fig. 7. The
system is stable in all three operating modes of the induction
motor. This kind of very slow speed reversal is not possible
without the signal-injection based correction. On the other
hand, the low-frequency signal-injection method without the
speed-adaptive flux observer would not tolerate the rated load
torque step at \(t = 5 \text{ s}\).

Experimental results showing zero-speed operation and a
rated load torque step are shown in Fig. 9. The flux compo-
nents in the stator reference frame are marked by the subscripts
\(\alpha\) and \(\beta\). The speed reference was set to zero. A rated load
torque step was applied at \(t = 2 \text{ s}\), and the load torque was
removed at \(t = 10 \text{ s}\). It can be seen that both the flux and
the speed are correctly observed. After removing the load, the
flux is still properly estimated and the load torque could be
applied again. For this kind of sequence, the correction by the
signal injection would not be necessary.

Fig. 10 depicts experimental results of operation at zero
stator frequency. The speed reference was set to 0.033 p.u.,
and a negative rated load torque step was applied at \(t = 5 \text{ s}\).
After applying the negative load, the drive operates at zero
stator frequency as can be seen from the components of the
estimated flux. The load torque was removed at \(t = 55 \text{ s}\). It can
be seen that stable zero-frequency operation under load torque
is achieved. The speed-adaptive flux observer [17] without
the signal injection would collapse soon after the load torque
step (at \(t \approx 6 \text{ s}\)), whereas the low-frequency signal-injection
method alone could not handle the load torque steps.

Zero-speed operation during a slow load torque reversal is depicted in Fig. 11. The speed reference was set to zero, and the load torque was decreased linearly from the positive rated value to the negative rated value in 60 seconds. Due to the signal injection, no problems were encountered. For observers without signal injection, this kind of load torque reversals are usually more difficult than load torque steps at zero speed. The reason is the stator frequency remaining in the vicinity of zero for a long time.

A stepwise reversal of the load torque is shown in Fig. 12. The speed reference was set to 0.02 p.u. A positive rated load torque step was applied at $t = 2$ s, and the load torque was reversed at $t = 8$ s. The system is stable both in the motoring mode ($t = 0 \ldots 8$ s) and in the plugging mode ($t = 8 \ldots 15$ s), and during the step change in the load torque. The observer without the signal injection would be stable in this sequence, but \hat{R}_s should be more accurate than with the signal-injection correction.

Fig. 13 shows a stepwise speed reference change under rated load torque. The speed reference was initially set to 0.02 p.u., and the load torque step was applied at $t = 2$ s. The speed reference was stepped to -0.04 p.u. at $t = 6$ s while the load torque was still applied. The system is stable in the motoring mode ($t = 0 \ldots 6$ s), during the step change in the speed reference, and in the regenerating mode ($t = 6 \ldots 20$ s). The observer without the signal injection could not operate continuously in the regenerating mode due to low stator frequency (approximately 0.008 p.u.). For observers based only on the standard motor model, this sequence is generally more difficult than the sequences in Figs. 9 and 12 (even though the absolute value of the rotor speed is higher). The low-frequency noise appearing in the regenerating mode may originate from the incomplete dead-time compensation; it was not seen in the corresponding simulations. The effect of the dead-time compensation is more significant in the regenerating mode than in the motoring mode since the amplitude of the stator voltage is smaller.

Fast transitions between the signal-injection region and the normal operating region are shown in Fig. 14. The speed reference was initially zero, and it was changed to -0.6 p.u. at $t = 1$ s and to 0.6 p.u. at $t = 2$ s. The rated load torque step was applied at $t = 3$ s. The speed reference was set to zero at $t = 4$ s while the rated load torque was still applied. It can be seen that no problems are encountered during the transitions. The observer without the signal injection would cope with this sequence, assuming a small error in \hat{R}_s. The response of the low-frequency signal-injection method alone would be slower,
and it would not tolerate the rated load torque step.

VII. CONCLUSIONS

A new observer structure was proposed, combining a speed-adaptive full-order flux observer with a low-frequency signal-injection method. A low-frequency ac test signal is superimposed on the stator current. The response in the stator voltage depends on the orientation of the signal relative to that of the rotor flux. The dependency is due to the reaction of the mechanical system, and it can be used to enhance the low-speed operation of the speed-adaptive flux observer. An error signal obtained from the signal-injection method is used as an additional correction in the speed-adaptation law.

Experimental results have shown that the combination yields an observer exhibiting both fast response and steady-state robustness against parameter errors down to zero stator frequency. Stable operation in all three operating modes (motorizing, regenerating, and plugging) of the induction motor have been demonstrated.

A suitable topic for future research is to investigate whether an on-line stator resistance estimator can be incorporated into the proposed observer without impairing stability. It might also be possible to use the low-frequency signal-injection method to estimate the stator resistance.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support given by ABB Oy and the Finnish Cultural Foundation.

REFERENCES

Marko Hinkkanen was born in Rautjärvi, Finland, in 1975. He received the M.Sc. degree in electrical engineering in 2000 from Helsinki University of Technology, Espoo, Finland, where he is currently working toward the D.Sc. degree.

Since 2000, he has been with the Power Electronics Laboratory, Helsinki University of Technology, as a research scientist. His main research interest is the control of electrical drives.

Veli-Matti Leppänen was born in Helsinki, Finland, in 1960. He received the M.Sc. (Eng.) and D.Sc. (Tech.) degrees from Helsinki University of Technology, Espoo, Finland, in 1985 and 2003, respectively. In 1985, he joined Strömberg Oy, which later became part of the ABB Group. He worked in ac drive product and technology development until 1999, when he joined the Power Electronics Laboratory in the Department of Electrical and Communications Engineering, Helsinki University of Technology. Currently, he is with ABB Oy in Helsinki. His research interests are in power electronics and sensorless control of induction motor drives.

Jorma Luomi (M’92) was born in Helsinki, Finland, in 1954. He received his M.Sc. (Eng.) and D.Sc. (Tech.) degrees from Helsinki University of Technology in 1977 and 1984, respectively.

In 1980 he joined Helsinki University of Technology, and from 1991 to 1998 he was a Professor at Chalmers University of Technology. As of 1998 he holds the position of Professor at the Department of Electrical and Communications Engineering at Helsinki University of Technology. His research interests are in the areas of electric drives, electric machines and numerical analysis of electromagnetic fields.