
Identification of the VAl-ON defect complex in AlN single crystals

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.84.081204

Published: 29/08/2011

Please cite the original version:
Identification of the V_{Al}-\(O_N\) defect complex in AlN single crystals

1Helsinki Institute of Physics and Department of Applied Physics, Aalto University, P.O. Box 14100, FI-00076 Aalto, Espoo, Finland
2Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
3Department of Micro- and Nanosciences, Aalto University, P.O. Box 15000, FI-00076 Aalto, Espoo
4Accelerator Laboratory, University of Helsinki, P.O. Box 43, FI-00014, Helsinki, Finland
5GaN-Crystals, Ltd, St. Petersburg, Engels Avenue 27, 194156, Russia
6N-Crystals Group, St. Petersburg, Engels Avenue 27, 194156, Russia

(Received 27 June 2011; published 29 August 2011)

In this Rapid Communication, we report positron annihilation results on in-grown and proton irradiation-induced vacancies and their decoration in aluminium nitride (AlN) single crystals. By combining positron lifetime and coincidence Doppler measurements with \textit{ab initio} calculations, we identify in-grown V_{Al}—\(O_N\) complexes in the concentration range 10^{18} \text{ cm}^{-3} as the dominant form of V_{Al} in the AlN single crystals, while isolated V_{Al} were introduced by irradiation. Further, we identify the UV absorption feature at around 360 nm that involves V_{Al}.

Aluminium nitride (AlN) is a promising extremely wide band-gap ($E_g = 6.2$ eV) semiconductor for use in deep ultraviolet optoelectronics.\(^1\) AlN can also be alloyed with other III nitrides in order to tailor the active wavelength from infrared to deep ultraviolet. To exploit the full potential of devices based on III nitrides, lattice-matched bulk substrates are needed in order to minimize the defects caused by lattice mismatch. This is driving the need to develop nitride growth methods capable of creating either true bulk crystals or several millimeter thick heteroepitaxial layers that can be separated from the substrate.\(^2,3\) Synthesis of large enough AlN single crystals has been difficult with problems ranging from threading dislocations to vacancy type point defects. Physical vapor deposition (PVT) has emerged as a method of choice for producing AlN single-crystal substrates.\(^4,7\) However, vacancy defects produced during the synthesis still play a major role in the general crystal quality. Vacancies in the AlN substrate can have a major impact on the device operation. For example, vacancy-impurity complexes have been reported to affect the thermal conductivity of the material,\(^8,9\) affecting the device operation. Also, it has been reported that point defects can cause UV absorption,\(^10\) which should be minimized in order to achieve effective light extraction from the substrate.

Positron annihilation spectroscopy is a powerful tool in studying cation vacancies in nitride semiconductors.\(^11,12\) A few reports on positron annihilation results in both bulk\(^13\) and thin film\(^14-16\) AlN exist, but conclusive evidence on the identity and decoration of the observed vacancies is missing. In this Rapid Communication, we report positron annihilation spectroscopy results on the identification of in-grown and irradiation-induced defects in PVT-grown bulk AlN crystals. We show that in as-grown AlN crystals, Al vacancies are present at a concentration in the range of 10^{18} \text{ cm}^{-3}. The in-grown Al vacancies are complexed with oxygen (V_{Al}–O_N), while isolated V_{Al} can be produced by irradiation.

The measured bulk AlN crystals were grown by PVT at 2600 K in tungsten crucibles (for details, see Ref. 17). 300-μm-thick wafers were cut from the ingot for the measurement. Energy-dispersive x-ray spectroscopy (EDS) measurements show that the wafers contain less than 100 ppm impurities (10^{19} \text{ cm}^{-3}) with gas discharge mass spectrometry (GDMS) showing at most 10 ppm of oxygen impurities (10^{18} \text{ cm}^{-3}). Positron lifetime measurements were performed at temperatures between 20 and 750 K with conventional lifetime instrumentation.\(^16\) The increase of average positron lifetime τ_{ave} (the center of the mass of the spectrum) above the lifetime in the lattice of the material is an indication of vacancy defects being detected. The positron Doppler broadening experiments were performed using high-purity Ge detectors with energy resolution of 1.3 keV. When the positrons are trapped at vacancies, the probability of annihilation with high-momentum core electrons is reduced, narrowing the Doppler broadening spectrum. In order to identify the chemical surrounding of the vacancy, coincidence Doppler measurements were performed.\(^18\) The optical absorption and transmission spectra of the AlN films were measured with a xenon lamp, monochromator, and photomultiplier tube at room temperature.

We also calculated the positron-electron momentum density from first principles for vacancy defects and the AlN lattice. The valence electron densities were calculated self-consistently using the local-density approximation (LDA) employing the projector augmented wave (PAW) method\(^19\) and a plane-wave code \textsc{vasp}.\(^20\) The Doppler spectra were calculated in the direction of the c axis of the wurtzite AlN with the relaxation caused by a positron to the vacancy taken into account. For details on the computational methods, see Ref. 21. Two of the AlN wafers were irradiated with 9.5 MeV protons to a fluence of 10^{16} \text{ cm}^{-2} with a tandem accelerator.\(^22\) The energy of the protons is high enough to penetrate the 300-μm-thick wafer and generate a homogeneous defect profile, but low enough to create only monovacancies. From SRIM\(^23\) calculations, we estimate that 4 × 10^{18} \text{ cm}^{-3} Al vacancies and 3 × 10^{18} \text{ cm}^{-3} N vacancies are generated for the irradiation fluence of 10^{16} \text{ cm}^{-2}.
Al vacancy. Parameters used in the fit (the solid line) are temperature and the second lifetime component, corresponding to the AlN lattice is close to our earlier estimate of the positron lifetime in polished wafer was 158 ps at room temperature (RT). This ps, \(\tau_V \)

The average positron lifetime measured in an epi-ready polished wafer was 158 ps at room temperature (RT). This is close to our earlier estimate of the positron lifetime in AlN lattice \(\tau_B = 157 \pm 1 \text{ ps} \). Typically AlN bulk crystals (measured both here and in earlier samples) show slightly higher \(\tau_B = 160-163 \text{ ps} \) at RT. The irradiation increased the average lifetime slightly at RT. The average positron lifetime as a function of measurement temperature for a typical as-grown sample and an irradiated sample is shown in Fig. 1. The average positron lifetime as a function of measurement temperature for a typical as-grown sample and an irradiated sample is shown in Fig. 1. The average lifetime is above the value of the AlN lattice, indicating that vacancies are present in the samples. The increase of average positron lifetime above RT is due to the thermal escape of positrons from shallow states at negative ions, increasing the annihilation signal from the vacancies. In the case of the irradiated sample the increase is more rapid, and at 600 K the average lifetime (190 ps) is higher than in the case of the as-grown sample (181 ps) due to the defects generated by the irradiation. The average lifetime in the as-grown samples is still increasing at 760 K, but the rate of increase is less than at 400-600 K. The positron annihilation spectra can be decomposed into components at temperatures 500-600 K for the as-grown sample and above 300 K for the irradiated sample. The longer lifetime component of the decomposition \(\tau_2 = 210 \pm 5 \text{ ps} \) can be attributed to the AlN vacancy. The behavior of the average lifetime as a function of measurement temperature is a clear indication that the detected vacancies are in the negative charge state, and that there are negative ions present in the sample acting as shallow traps for positrons. The decomposition of the lifetimes was not possible above 600 K due to the use of a different spectrometer for the high \(T \) experiments.

The temperature dependence of the average lifetime can be modeled using the kinetic trapping model for positrons. The average lifetime can be written as \(\tau_{\text{ave}} = (1 - \eta_V) \tau_B + \eta_V \tau_V \), where \(\tau_B \) and \(\tau_V \) are the positron lifetimes in the AlN lattice and the Al vacancy, respectively, and \(\eta_V \) is the annihilation fraction at Al vacancies given by \(\eta_V = \kappa_V / (\tau_B^{-1} + \kappa_V) \). The trapping rate \(\kappa_V \) is related to the vacancy concentration through \(\kappa_V = \mu_V [V] / N_{\text{at}} \), where \(\mu_V \) is the positron trapping coefficient, \([V]\) is the vacancy concentration, and \(N_{\text{at}} = 9.6 \times 10^{22} \text{ cm}^{-3} \) is the atomic density of AlN. Vacancy and negative ion concentrations, and also the binding energy of positrons to the negative ions, can be obtained from the behavior of the average lifetime by taking into account also the thermal escape from the Rydberg states of the negative ions.

The trapping model with negatively charged vacancies and negative ions fits well to the experimental data in Fig. 1. For the as-grown sample we obtained an Al vacancy concentration of \(1 \times 10^{18} \text{ cm}^{-3} \) and a negative ion concentration of \(1 \times 10^{19} \text{ cm}^{-3} \). Here we have used \(\mu_V = 3 \times 10^{15} \times (\frac{300}{T})^{1/2} \text{s}^{-1} \) for the negative defects. In the case of the irradiated samples, the fit gives concentrations of \(4 \times 10^{18} \text{ cm}^{-3} \) and \(3 \times 10^{19} \text{ cm}^{-3} \) for vacancies and negative ions, respectively, with the Al vacancy concentration being in good agreement with the SRIM estimate. The fit deviates from the experimental data slightly above 400 K. This is due to a slight recovery of the irradiation damage starting at above 400 K, and is observable as a decrease of \(\tau_{\text{ave}} \) by 3 ps at RT after the measurement at 600 K. This behavior is, however, the only effect on the data: The \(\tau_{\text{ave}} \) versus \(T \) after measuring the irradiated sample at 600 K is qualitatively similar (not shown) to that measured right after irradiation. The positron binding energy to the shallow traps (negative ions) is \(E_b = 140 \pm 5 \text{ meV} \) in both cases. The high binding energy suggests that the negative ions are in the \(2- \) charge state.

Coincidence Doppler measurements were performed in order to obtain direct evidence of the chemical surroundings of the Al vacancy. The measurements were performed at 600 K for the as-grown sample in order to minimize the effect of the negative ions, and at 400 K for the irradiated sample in order to avoid recovery of the defects. Based on the lifetime experiments, the annihilation fractions of positrons at Al vacancies are 43% for the as-grown sample at 600 K and 27% for the irradiated sample at 400 K. The annihilation fractions are used to extract the vacancy-specific Doppler spectrum \(\rho_V \) through \(\rho_{\text{meas}} = (1 - \eta_V) \rho_B + \eta_V \rho_V \), where \(\rho_{\text{meas}} \) is the measured spectrum and \(\rho_B \) that specific of the AlN lattice.

Figure 2 shows the experimental coincidence Doppler spectra as a ratio to the spectrum of the AlN lattice (obtained in the AlN crystal with the lowest \(\tau_{\text{ave}} \approx \tau_B \)). The figure also shows theoretical calculations for the isolated \(V_{\text{Al}} \), \(V_{\text{Al}}^{-}\text{O}_\text{N} \), \(V_{\text{Al}}^{-}\text{V}_\text{N} \) and \(V_{\text{Al}}^{-}\text{H} \). Clearly the experimental curve of the as-grown sample is in the best agreement with \(V_{\text{Al}}^{-}\text{O}_\text{N} \). Especially the shoulder with intensity \(\gtrsim 1 \) around 1.5 a.u.;
it is unique to O decoration of the Al vacancy. It should be noted that this is a typical effect of O in III nitrides in general: A similar shoulder of increased intensity is seen in GaN (Ref. 26) and InN (Ref. 27)—the contribution of \(2p\) electrons is important in this part of the spectrum. Also, the slightly higher intensity at higher momenta (2–4 a.u.) and lower intensity at zero momentum fits perfectly with \(V_{\text{Al}}\) and \(V_{\text{Al}-\text{ON}}\) relative to defect free AlN. The gray lines are drawn to guide the eye.

The authors wish to thank M. Mattila for help with the absorption measurement setup. This work was partially funded by the Academy of Finland and the MIDE programme of Aalto University.
*jussi-matti.maki@aalto.fi