
Tunnelling anisotropic magnetoresistance at La0.67Sr0.33MnO3-graphene interfaces

Published in:
Applied Physics Letters

DOI:
10.1063/1.4942778

Published: 14/03/2016

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Tunnelling anisotropic magnetoresistance at La0.67Sr0.33MnO3-graphene interfaces

View online: http://dx.doi.org/10.1063/1.4942778
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/108/11?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Charge control of antiferromagnetism at PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3 interface

Magnetoresistance after initial demagnetization in La 0.67 Sr 0.33 Mn O 3 /Sr Ti O 3 /La 0.67 Sr 0.33 Mn O 3 magnetic tunnel junctions
Appl. Phys. Lett. 90, 142506 (2007); 10.1063/1.2718481

Tunneling magnetoresistance observed in La 0.67 Sr 0.33 Mn O 3 /organic molecule/Co junctions
Appl. Phys. Lett. 90, 072506 (2007); 10.1063/1.2435907

Effect of nanosize modulation of granular La 0.67 Sr 0.33 MnO 3 manganites on temperature-dependent low-field spin-polarized tunneling magnetoresistance
J. Appl. Phys. 98, 014306 (2005); 10.1063/1.1928307

Epitaxial La 0.67 Sr 0.33 MnO 3 magnetic tunnel junctions
J. Appl. Phys. 81, 5509 (1997); 10.1063/1.364585
Tunnelling anisotropic magnetoresistance at La$_{0.67}$Sr$_{0.33}$MnO$_3$-graphene interfaces

L. C. Phillips,1,a) A. Lombardo,2 M. Ghidini,1,3 W. Yan,1 S. Kar-Narayan,1 S. J. Hämäläinen,4 M. Barbone,2 S. Milana,2 S. van Dijken,4 A. C. Ferrari,2 and N. D. Mathur1,b)

1 Department of Materials Science, University of Cambridge, Cambridge CB3 0FS, United Kingdom
2 Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
3 Dipartimento di Fisica, University of Parma, viale G.P. Usberti 7/A, 43124 Parma, Italy
4 NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland

(Received 27 December 2015; accepted 13 February 2016; published online 17 March 2016)

Using ferromagnetic La$_{0.67}$Sr$_{0.33}$MnO$_3$ electrodes bridged by single-layer graphene, we observe magnetoresistive changes of ~32–35 MΩ at 5 K. Magneto-optical Kerr effect microscopy at the same temperature reveals that the magnetoresistance arises from in-plane reorientations of electrode magnetization, evidencing tunnelling anisotropic magnetoresistance at the La$_{0.67}$Sr$_{0.33}$MnO$_3$-graphene interfaces. Large resistance switching without spin transport through the non-magnetic channel could be attractive for graphene-based magnetic-sensing applications. © 2016 AIP Publishing LLC.

This is a preprint of a paper that has been peer reviewed and accepted for publication in Applied Physics Letters. The final authenticated version is available at http://dx.doi.org/10.1063/1.4942778

Graphene is a candidate material for spintronics because its low spin–orbit coupling has prompted predictions of long spin-diffusion length l_d. This is a prerequisite for spin logic proposals, but many non-local (four-terminal) studies of spin transport and precession report moderate values of l_d of order 1 μm, with the largest l_d ~ 24 μm for graphene encapsulated by hexagonal boron nitride. For multilayer graphene grown on the C-face of SiC, a much greater value was inferred from large field-driven changes of local (i.e., two-terminal) resistance $ΔR$ ~ 1.5 MΩ, but these changes were quasi-continuous and therefore inconsistent with the assumption of parallel/antiparallel electrode magnetizations.

Interpreting local magnetoresistance (MR) is difficult because it can arise from non-spin–transport effects, such as anisotropic magnetoresistance (AMR) and magnetic domain-wall resistance. In the electrodes, local Hall effect, magneto-Coulomb effect, and tunnelling anisotropic magnetoresistance (TAMR) arise when there is tunnelling across a resistive tunnel barrier, on one side of which lies a ferromagnetic electrode that undergoes non-180° magnetic switching. This happens because spin–orbit coupling in the ferromagnet couples the magnetization direction to the tunnelling density of states, such that TAMR adopts the symmetry of the electrode if the tunnel barrier is centrosymmetric. For example, TAMR ~ 5% was recorded at 4.2 K for an interface between an organic semiconductor and highly spin-polarised (LSMO) electrodes.

Here, we report the observation of TAMR at interfaces that form spontaneously between LSMO and single-layer graphene (SLG). Two-terminal measurements at 5 K indicate high resistance (hundreds of MΩ) and TAMR ~ 25%. Magneto-optical Kerr effect (MOKE) data show that our LSMO electrodes undergo 90° magnetic switching at the magnetotransport measurement temperature in all devices that show MR, which is thus identified as TAMR. The absolute change of resistance $ΔR$ ~ 35 MΩ is much greater than the value reported in Ref. 25 and would imply a very large l_d ~ 1 mm if interpreted as spin transport, as previously done in Ref. 14.

Our devices are fabricated following the scheme in Fig. 1(a), with an SLG channel connecting LSMO electrodes patterned from epitaxial films grown on the (001) surface of orthorhombic NdGaO$_3$ (NGO). In principle, one could try and align the single magnetic easy axis parallel to [010]$_{\text{NGO}}$ across the width of each electrode, in order to achieve coercivity contrast via magnetic shape anisotropy using electrodes of different width. In this case, parallel and antiparallel magnetic configurations could arise in adjacent electrodes while sweeping the magnetic field, such that any measured MR would be due to spin transport. However, this type of magnetic switching may not occur for two reasons. First, off-stoichiometry or partial relaxation can produce magnetically biaxial behaviour below ~200 K. Second, NGO can form twins (on [110]$_{\text{NGO}}$ and [112]$_{\text{NGO}}$ planes) that modify the local magnetic anisotropy of epitaxial films grown on top. Here, we achieve TAMR via each of these two scenarios in two devices fabricated on separate substrates, and we use MOKE to verify magnetic switching at the 5 K measurement temperature. We also find further evidence for TAMR in a third device using a magnetic field applied out-of-plane (OOP) rather than in-plane.

Epitaxial LSMO films ~40 nm thick are grown on NGO (001) by pulsed laser deposition as for Ref. 33, and characterized using atomic force microscopy (AFM) and x-ray diffraction (XRD). Electrodes (length ~30 μm, width 2–10 μm, separation 1–3 μm) and wirebond pads (400 μm × 350 μm) are then defined in LSMO by photolithography and Ar+ milling, using different processing routes for our three devices. For device 3, a 5 nm-thick protective layer of Au is evaporated before electrode definition and removed in an aqueous solution of KI/I$_2$ after electrode definition. The space between electrodes is backfilled with amorphous SiO$_2$.
to minimise electrode side contact with SLG (supplementary note 1). Device 2 is processed with the Au step alone. Device 1 is processed with neither step.

Graphene is produced onto oxidised Si wafers by micro-mechanical cleavage of natural graphite (NGS Naturgrafit) and identified by a combination of optical contrast and Raman spectroscopy. Raman spectroscopy is also used to ensure high structural quality and evaluate chemical doping. The flakes are subsequently transferred onto pre-patterned electrodes by a wet transfer process. A polymer methacrylate (PMMA) scaffold is spun on the flakes and detached from the substrate by soaking in de-ionized (DI) water. The water intercalates at the interface between the hydrophilic SiO$_2$ and the hydrophobic PMMA, releasing the PMMA film. SLG flakes remain attached to the bottom of the freestanding PMMA film, subsequently placed onto the LSMO electrodes in DI water (device 1) or a mixture of isopropanol and DI water (devices 2 and 3). After removing the water, the PMMA layer is dissolved with acetone, releasing the flakes onto the LSMO electrodes. Raman measurements are performed using a Renishaw InVia micro-spectrometer equipped with a 100× objective (numerical aperture, N.A. = 0.85), a laser excitation wavelength of 514.5 nm before transfer, and 457, 488, 514.5 nm after transfer, with an incident laser power below 500 μW to avoid local heating or damage.

For dc magnetotransport measurements, we contact LSMO wirebond pads via Al wirebonds and In pads, and use a Janis cryostat and a Keithley picoammeter with built-in voltage source. The magnetic field H applied parallel to the electrode short axes is varied quasi-statically. A current could not be passed between all electrodes, which rules out parasitic conduction pathways, but renders four-terminal measurements impossible. Therefore, we present two-terminal measurements of resistance. MOKE measurements are then performed at 5 K using an imaging system from Evico Magnetics with a continuous-flow He cryostat (Janis ST-500). The measurements are conducted in longitudinal Kerr geometry (in-plane magnetic field parallel to the plane of incident light). Given the small size of our electrodes, magnetic hysteresis curves (with an in-plane magnetic field applied parallel and perpendicular to electrode long axes) are obtained by restricting the data collection to LSMO contact areas, with In pads and wirebonds removed. Linear Faraday contributions from the cryostat cover glass and the microscope objectives are also removed after data collection.

XRD (supplementary note 2) confirms that our LSMO films are epitaxial and highly strained with respect to the substrate, whose orthorhombic distortion they therefore inherit. XRD reveals twinning on $\{110\}_{NGO}$ but not $\{112\}_{NGO}$ planes. AFM confirms that as-grown LSMO films are flat away from unit-cell-high vicinal steps [Fig. 1(b)].

FIG. 1. Graphene and LSMO electrodes. (a) Device schematic showing LSMO electrodes A–D, conformally coated with SLG (red) [electrode widths are A (10 μm), B (3 μm), C (6 μm), and D (2 μm)]. Electrode spacings are A-B (3 μm), B-C (2 μm), and C-D (1 μm). (b) AFM images of an electrode in device 2 at different stages of processing. (c) Composite optical microscopy image, showing SLG (purple) on SiO$_2$ (pink) before transfer (rectangular area at top), and on LSMO electrodes in device 2 after transfer (rest of image). (d) Raman spectra of graphene on SiO$_2$ before transfer and on LSMO/NGO after transfer. (e) Raman spectra of graphene on LSMO/NGO after transfer showing background correction. (f) Current (I) versus voltage (V) for electrodes C and D of device 1 at 5 K (open symbols), and from a Brinkman fit for back-to-back asymmetric tunnel barriers (black line). Inset: fitted barrier shape.
After milling to define electrodes in devices 2 and 3, removing the protective layer of Au exposes a surface with residual contamination (see AFM phase signal), but the original stepped surface is restored after wiping with cotton buds soaked in isopropanol. Following transfer, graphene is optically invisible [Fig. 1(c)], but can be still probed with AFM (supplementary note 3) and Raman spectroscopy [Figs. 1(d) and 1(e)]. Complete optical microscopy images for devices 2 and 3 are available in supplementary note 4.

We investigate the structural quality and doping of graphene before and after transfer by Raman spectroscopy. The 514.5 nm Raman spectrum of exfoliated graphene on SiO 2 before transfer [Fig. 1(d), black curve] contains a single Lorentzian 2D peak with full-width-at-half-maximum FWHM ~ 26 cm⁻¹, which confirms that the sample is SLG. The absence of a prominent D peak at ~1350 cm⁻¹ indicates negligible defects. From the G-peak position [Pos(G) ~ 1582 cm⁻¹] and FWHM [FWHM(G) ~ 13 cm⁻¹], the 2D to G peak intensity [I(2D)/I(G) ~ 3.7], and area [A(2D)/A(G) ~ 8.2] ratios, we derive a doping level <200 meV. After transfer, a background signal [Fig. 1(d), blue curve] from the transferred graphene, and normalized to the NGO Raman peak at ~470 cm⁻¹, yields a clear graphene Raman spectrum [Fig. 1(e), red curve]. Here the single Lorentzian 2D peak, with FWHM ~ 28 cm⁻¹, and absence of a prominent D peak, imply negligible defects. From Pos(G) ~ 1583 cm⁻¹, FWHM(G) ~ 14 cm⁻¹, I(2D)/I(G) ~ 5.2, A(2D)/A(G) ~ 3, we estimate a doping ~100 meV, corresponding to a carrier density n ~ 10¹² cm⁻².

At low temperatures, the resistance R between conducting electrode pairs (devices 1 and 2) is unaffected by SiO 2 backfilling (device 3), suggesting that conduction occurs primarily via the LSMO film surface, and not through milled LSMO sidewalls. At bias below ~100 mV, we find 100 MΩ < R < 1 GΩ, whereas non-linearity at higher bias [Fig. 1(f)] indicates that LSMO-graphene interfaces function as tunnel barriers, cf. spin-valves based on LSMO electrodes and carbon nanotubes. A Brinkman fit using our measured interfacial areas would require a 4 nm barrier to form spontaneously. For direct contact between an LSMO surface and much thinner SLG, this would be plausible only in the presence of a substantial surface layer of suppressed conductivity in LSMO (the so-called “dead” layer). We neglect this possibility here because the LSMO surface magnetism is only partially suppressed at low temperatures; i.e., the “dead” layer retains some magnetic order. Instead, we infer from the fit that the LSMO-SLG contact is inhomogeneous.

Devices 1 and 2 show a distinctive MR signal at 5 K [Figs. 2(a) and 2(b)]. For device 1, we observe two peaks in MR, as seen for spin transport, with ΔR ~ 35 MΩ and MR ~ 3%. MR = ΔR/Rₘᵦ, where Rₘᵦ = 885.4 MΩ is the lowest resistance at μ₀H = −78 mT. For device 2, we observe two peaks that overlap at H = 0, with ΔR ~ 32 MΩ and MR ~ 7%, where Rₘᵦ = 461.7 MΩ at μ₀H = −43 mT. On increasing temperature to 20 K, we see a rapid fall of MR to ~1% (supplementary note 6).

The electrical switching in device 1 occurs at fields (μ₀H) ~ 50 mT and 100 mT) that exceed the (μ₀H) ~ 10 mT switching field measured biaxially in a nearby wirebond pad.
In order to establish that the observed peaks in \(R(H) \) arise from TAMR, we first rule out several other possible causes based on MR magnitude alone. Intrinsinc MR in the LSMO electrodes and SLG cannot be responsible, as our values of \(\Delta R \) are 10^5 times larger than the resistance of either material (since an LSMO electrode with resistivity \(10^{-4} \) \(\Omega \) cm, length \(L = 30 \) \(\mu m \), width \(W = 3 \) \(\mu m \), and thickness 40 nm has resistance 250 \(\Omega \); and an SLG channel region with sheet resistance \(1 \, \kappa \Omega \square^{-1} \), \(L = 3 \) \(\mu m \), and \(W = 30 \) \(\mu m \) has resistance 100 \(\Omega \)). Domain walls in the LSMO electrodes cannot be responsible, as even a dense array in our narrowest electrode would only change \(R \) by tens of \(\kappa \Omega \) at most for a flake carrying current \(I \) of order 1 nA would develop a Hall voltage \(|V_{\text{H}}| = IB_{\text{H}}R_{\text{H}} \sim 600 \text{nV} \). Magneto-Coulomb effects cannot be responsible, as they occur only in the Coulomb blockade regime, at temperatures and biases 3–4 orders of magnitude too small (an SLG/LSMO interface with relative permittivity \(\varepsilon_r = 1 \), area \(A = 900 \, \mu m^2 \), and thickness \(d = 1 \) nm has capacitance \(C = \varepsilon_r \varepsilon_0 A/d \sim 0.8 \) pF, such that Coulomb blockade would require \(V < e/2C \sim 100 \text{nV} \) and \(T < (e^2/2C)/k_B \sim 1 \) mK).

We also rule out spin transport in view of the MR magnitude, using the formalism developed in Refs. 49 and 50. To do so, we calculate \(\Delta R \) for parallel and antiparallel electrode configurations in a two-terminal device with a single spin-dependent resistance \(R_{\pm} = 2R_b(1 - (\gamma)) \) at each LSMO-SLG interface, where \(+ \) (\(- \)) signifies majority (minority) spin electrons with respect to LSMO magnetization, and \(\gamma \) is the interfacial spin polarisation. In our highly resistive devices, \(R_b \) greatly exceeds both the ferromagnet spin resistance \(R_F = \rho_F \ell_F^2 / (1 - \beta^2)A_F \) and the channel spin resistance \(R_{\text{ch}} = R_{\text{sq}} \ell_{\text{ch}}^2 / w \), where \(\rho_F \), \(\ell_F \), and \(\beta \) are resistivity, spin diffusion length and current spin polarisation in the ferromagnet, \(R_{\text{sq}} \) is the SLG sheet resistance, and the channel has width \(w \) and length \(L \). In this regime, \(\Delta R \) has a strict upper bound, \[\Delta R \leq 4\gamma^2 R_{\text{ch}} \ell_{\text{ch}}^2 / L. \] This gives a lower bound for \(\ell_{\text{ch}} \) as follows. Taking \(\gamma = 0.8 \), \(R_{\text{sq}} = 1 \) \(\Omega \) square^{-1}, and \(w = 30 \) \(\mu m \), we find that the observed values of \(\Delta R \) would require \(\ell_{\text{ch}} = 0.64 \) mm in device 1 (\(L = 1 \) \(\mu m \)) and \(\ell_{\text{ch}} = 1.06 \) mm in device 2 (\(L = 3 \) \(\mu m \)). These millimetre-scale spin diffusion lengths are 1–2 orders of magnitude longer than predictions for intrinsic SLG \(^{3,4} \) and 1–3 orders of magnitude above existing experimental values.\(^{7,13,51} \) Moreover, \(\ell_{\text{ch}} \) would be even larger if we took into account the unequal electrode areas, and the possibility of imperfect switching.\(^{30} \) Therefore, unrealistically large improvements in \(\ell_{\text{ch}} \) would be required to explain the magnitude of our MR peaks in terms of spin transport.

Combining the above process of elimination with our MOKE data, we infer that the observed peaks in \(R(H) \) arise from TAMR. In our orthorhombic films of LSMO, 90° rotations of magnetization permit TAMR, whereas 180° rotations would permit no TAMR. For device 1, 90° rotations can arise due to the biaxial magnetic anisotropy,\(^{31} \) consistent with Fig. 2(c). For device 2 on an NGO twin, electrode magnetization lies lengthwise at remanence and rotates 90° for \(|\mu H| > 20 \) mT \[Fig. 2(d) \]. The form of the observed MR in each device [Figs. 2(a) and 2(b)] is therefore consistent with TAMR, and so we rule out spin transport. We note that TAMR could even be generated by LSMO electrodes with uniaxial anisotropy, if they switch via a dense array of domain walls\(^{30} \) in which the magnetization is locally oblique.

The TAMR magnitude in our devices is similar to the low-temperature values obtained with LSMO electrodes.\(^{25,26} \) However, TAMR in device 1 is reduced with respect to device 2, probably because structural relaxation reduces the degree of LSMO distortion (supplementary note 2).\(^{34} \) More generally, the interpretation of bias-dependent TAMR is challenging,\(^{24,52} \) as it is influenced by all of the electronic bulk/interfacial states in the electrodes.\(^ {52} \) This complexity is rich enough to explain why devices 1 and 2 differ in terms of which electrode magnetization direction corresponds to the low-resistance state [Fig. 2].

MR measurements with an OOP magnetic field yield \(R(H) \) data that are more symmetric and anhysteretic [device 3, Fig. 3] than the corresponding data obtained with an in-plane field [Figs. 2(a) and 2(b)]. There is a decrease in \(R \) on increasing applied field magnitude to \(|\mu H| \approx 100 \) mT, followed by an increase prior to reaching our maximum measurement field. We suggest that this MR also arises due to

![FIG. 3. MR at 10 K with out-of-plane applied field. Resistance \(R(H) \) and magnetoresistance \(MR(H) = \Delta R/H R_{\text{min}} \) measured between electrodes A-B (device 3, bias 20 mV), with magnetic field \(H \) applied out of the LSMO film plane. Resistance data are averaged over 10 sweeps of magnetic field. Raw data appear in supplementary note 5.](image-url)
TMR associated with electrode magnetization canting to develop an OOP component. This can result in $R(H)$ extrema, and our minima correspond to canting angles of around $\pm 30^\circ$. We note that Fig. 3 superficially resembles the Hanle curve expected from spin transport, but given that we rule out spin transport as explained above, fitting to a Hanle expression (as in the supplementary material of Ref. 53) would yield meaningless parameters.

In summary, we studied LSMO/SLG interfaces in lateral devices and observed MR ranging from $\sim 3\%$ to 7% and ΔR from ~ 32 to 35 MQ. These changes appear too large to be explained by spin transport in SLG. Instead, we attribute them to TAMR at the interface between SLG and orthorhombic LSMO, consistent with the 90° magnetic domain switching evidenced by MOKE. MR data obtained with an out-of-plane magnetic field are also attributed to TAMR arising from a canted electrode magnetization, as it is coincidental that the spin relaxation time is consistent with spin transport. Our work highlights the need to verify electrode switching in spintronic devices and presents a large MR in SLG that may be exploited for magnetic field sensing.

We thank V. Garcia, M. Bibes, P. Seneor, and A. Fert for useful discussions. This work was funded by Grant No. F/09 154/E from the Leverhulme Trust, ERC Grant Hetero2D, EU Graphene Flagship (No. 604391), a UK Schlumberger Cambridge International Scholarship, a UK Hetero2D, EU Graphene Flagship (No. 604391), a F/09 154/E from the Leverhulme Trust, ERC Grant 18J. Wolfman, A. M. Haghiri-Gosnet, B. Raveau, C. Vieu, E. Cambril, A. Cornette, and H. Launois, J. Appl. Phys. 89, 6955 (2001).
