Heikkinen, Ismo; Koutsourakis, George; Wood, Sebastian; Vähänissi, Ville; Castro, Fernando A.; Savin, Hele

Stability of the surface passivation properties of atomic layer deposited aluminum oxide in damp heat conditions

Published in:
AIP CONFERENCE PROCEEDINGS

DOI:
10.1063/1.5123852

Published: 27/08/2019

Document Version
Peer reviewed version

Please cite the original version:
Stability of the Surface Passivation Properties of Atomic Layer Deposited Aluminum Oxide in Damp Heat Conditions

Ismo T. S. Heikkinen¹, a), George Koutsourakis², Sebastian Wood², Ville Vähänissi¹, Fernando A. Castro² and Hele Savin¹

¹Aalto University, Department of Electronics and Nanoengineering, Tietotie 3, FI-02150 Espoo, Finland
²National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom

a)ismo.heikkinen@aalto.fi

Abstract. Surface passivation layers that are stable in the long term are becoming increasingly important in emerging architectures of crystalline silicon photovoltaics. In this work, we study the effect of elevated temperature and humidity on the surface passivation properties of 5 nm to 20 nm thick aluminum oxide (AlOₓ) layers grown using thermal Atomic Layer Deposition (ALD). ALD-coated p-type Float Zone (FZ) wafers were exposed to 40°C and 85°C in 85% relative humidity (RH), and the passivation properties of the AlOₓ films were monitored during the damp heat exposure at designated intervals by photoluminescence (PL) imaging. Additionally, minority charge-carrier lifetime, film charge, and interface defect density were measured before and after the exposure. The results indicated that even 5 nm AlOₓ layers were stable under the prolonged damp heat exposure, and that 20 nm thick passivation layers deposited using either water (H₂O) or ozone (O₃) as the oxidant in the ALD process had no major differences in passivation stability.

INTRODUCTION

Atomic Layer Deposited (ALD) aluminum oxide (AlOₓ) is a versatile surface passivation material for crystalline silicon (c-Si) photovoltaics [1]. The high negative fixed charge density of the AlOₓ layer accounts for field-effect passivation, while the low interfacial defect density between the c-Si surface and the oxide provides efficient chemical passivation [2]. As the negative fixed charge of ALD AlOₓ repels electrons from the surface, it is especially efficient in the passivation of p-type silicon [3], although the passivation of both p- and n-type substrates [3, 5] as well as highly doped surfaces [6] is possible. Passivation layers are crucial for the operation of new solar cell architectures, especially Passivated Emitter and Rear Cell (PERC) devices. Degradation of surface passivation during processing and in harsh in-field conditions such as high illumination, temperature and moisture, can affect cell performance on a module level. In various studies, ALD AlOₓ has been shown to exhibit good thermal stability [7, 8] at conditions relevant to the necessary processing steps for solar cell fabrication. Regarding common solar cell operating conditions, Niewelt et al. studied the stability of AlOₓ-based surface passivation schemes under 1 sun illumination at 75°C, and showed that only minor degradation of surface passivation occurred for p-type substrates after 3700 hours of exposure [9]. In addition to degradation under illumination, the moisture sensitivity of passivation layers can be an issue if the encapsulating materials of solar modules fail to prevent moisture from reaching the surface of the cell [10]. Liang et al. studied how elevated temperature and moisture affected the surface passivation properties of 20 nm thick AlOₓ layers deposited using plasma-enhanced ALD (PE-ALD) [11, 12]. They reported that after approximately 230 hours of exposure at 85°C and 85% relative humidity (RH), the minority charge-carrier lifetime in p-type Float Zone (FZ) silicon wafers had decreased by 15%.

In this work, we study the passivation stability of uncapped 5 nm, 10 nm, and 20 nm thick ALD aluminum oxide layers in damp heat conditions. The films were deposited with thermal ALD, which has the potential for batch processing, and thus wider applicability than PE-ALD at the industrial scale. As thin (≤10 nm) passivation layers are preferable over thicker films to keep the costs of industrial solar cell processing low [13], we study the influence of passivation layer thickness on the degradation rate. AlOₓ passivation films are often capped with plasma-enhanced
chemical vapor deposited (PE-CVD) silicon nitride (SiN\textsubscript{x}) [13-15], which acts as an antireflection coating (ARC) and an efficient moisture barrier [16]. However, solar cells and photodetectors making use of the black silicon (bSi) texture on the front side do not necessarily require ARCs [17-19], and thus have bare AlO\textsubscript{x} on the light-absorbing side of the device. The most common oxidant for ALD AlO\textsubscript{x} is water (H\textsubscript{2}O), but using ozone (O\textsubscript{3}) as the oxidant can provide faster ALD cycling, and yield better surface passivation with superior thermal stability [20]. Therefore, the effect of the oxidant in the damp heat degradation is also considered in this study.

EXPERIMENTAL DETAILS

Square p-type 156 mm × 156 mm FZ wafers (1-3 Ω\textsubscript{cm}, ~160 μm) were used as the substrate material. The wafers were first cleaned with standard RCA solutions and annealed in an oxygen ambient at 1050°C for 30 min to deactivate intrinsic defects in FZ wafers [21]. After the pre-treatment steps, the wafers were coated with 5, 10, or 20 nm AlO\textsubscript{x} films deposited using trimethylaluminum (TMA) and H\textsubscript{2}O as precursors. In addition, a 20 nm thick AlO\textsubscript{x} film was deposited by changing the oxidant to O\textsubscript{3}. All ALD coatings were prepared using a Beneq TFS-500 ALD tool.

Prior to the damp heat experiments, effective minority charge-carrier lifetime τ_{eff} was measured from the wafers with the Quasi Steady-State Photoconductance (QSSPC) method using a Sinton Instruments WTC-120 equipment. The effective maximum surface recombination velocity $S_{\text{eff,max}}$ was calculated from τ_{eff} at a minority carrier density of 1×10^{16} cm-3 assuming infinite bulk lifetime. The wafers were quartered, and one quarter of each sample was exposed to damp heat conditions in an environmental chamber after initial characterization. The quarters were first placed in 40°C/85% RH for 168 h, and subsequently to 85°C/85% RH for 264 h to accelerate the potential degradation process. Photoluminescence (PL) imaging was used to monitor the potential degradation on a wafer level after 4 h, 48 h, 96 h, and 168 h cumulative exposure times in both conditions, and additionally after 264 h in 85°C/85% RH. Total film charge Q_{tot} and interface defect density D_{it} were measured after annealing and after exposure to damp heat with contactless CV (COCOS) [22] using a Semilab SDI PV-2000A instrument. Figure 1 summarizes the procedure for sample preparation and experiments.

FIGURE 1. Procedure for sample preparation, damp heat exposure, and characterization using PL imaging as well as QSSPC and contactless CV measurements.
RESULTS AND DISCUSSION

After the annealing step, the minority charge-carrier lifetime at 1×10^{16} cm$^{-3}$ minority carrier density was in the range of 580 to 870 µs for all samples. Figure 2(a) shows $S_{\text{eff,max}}$ for all samples before and after exposure to damp heat. The $S_{\text{eff,max}}$ values corresponding to the initial lifetimes were approx. 13 cm/s for the 5 nm, 9 cm/s for the 10 nm, 14 cm/s for the 20 nm and 12 cm/s for the 20 nm O$_3$ sample. For all samples, the values were in a similar range compared to previous studies on ALD AlO$_x$-passivated p-type FZ silicon [5, 23], so efficient surface passivation was confirmed with all film thicknesses and both oxidants. After the 264 h exposure to 85°C/85% RH, the lifetimes were in the order of 490 to 780 µs, which corresponded to approx. 13 cm/s for 5 nm, 11 cm/s for 10 nm, 16 cm/s for 20 nm and 10 cm/s for 20 nm O$_3$. For all samples except the 20 nm layer, $S_{\text{eff,max}}$ was on a similar level before and after the damp heat exposure, so no major degradation of the surface passivation properties was observed. For the 20 nm sample, the reduction of lifetime was approximately 16%, which was in a similar range as reported in [12]. Nevertheless, none of the samples were significantly degraded after the 264 h long damp heat exposure, and $S_{\text{eff,max}}$ remained at a level that is applicable for solar cells [8].

Figure 2(b) presents the results for Q_{tot} and D_{it}. Initially, Q_{tot} was -3.3×10^{12} cm2 for 5 nm, -2.0×10^{12} cm2 for 10 nm, -1.9×10^{12} cm2 for 20 nm, and -2.9×10^{12} cm2 for the 20 nm O$_3$ sample, and the film charge remained comparable for all samples before and after the exposure. This does not agree with results previously reported in [12], where the damp heat exposure lead to a reduction of Q_{tot} due to the formation of AlO(OH). In this study only minor differences in the D_{it} values before and after the damp heat exposure were observed. Initially, D_{it} was 3.9×10^{11} eV$^{-1}$cm2 for 5 nm, 2.4×10^{11} eV$^{-1}$cm2 for 10 nm, 2.1×10^{11} eV$^{-1}$cm2 for 20 nm, and 2.0×10^{11} eV$^{-1}$cm2 for the 20 nm O$_3$ sample. The D_{it} of the 5 nm sample stayed at the initial level after the exposure, while it slightly increased for all the other samples, although none of the changes were high enough to significantly deteriorate the passivation properties. The most pronounced increase occurred for the 20 nm sample (up to 3.0×10^{11} eV$^{-1}$cm2).

PL imaging was used to study the spatial dependence of the passivation stability at a wafer level to observe whether the passivation performance would degrade uniformly or from point-like defects. PL maps taken before damp heat exposure verified uniform passivation quality, but low-signal areas were observed in all samples. These areas potentially arose from defects in the individual Si wafers or from sample handling during fabrication, which could account for the variance in $S_{\text{eff,max}}$ between different film thicknesses. Throughout the exposure to the 40°C/85% RH conditions, the intensity of the PL signal remained unchanged for all samples, and no point-like degradation propagating from pinhole defects in the passivation layers was observed. Therefore, the temperature was raised to 85°C while maintaining the relative humidity at 85% in order to accelerate the possible degradation. The same samples were exposed to 85°C/85% RH for an additional 264 hours, and PL images taken at designated intervals are presented in Fig. 3. Again, the intensity of the PL signal for all samples was stable throughout the exposure, with some small local degradation potentially observed after 264 hours. The passivation quality was demonstrated to be stable at the wafer level for the investigated timescales of this work. Nevertheless, 85°C/85% RH conditions were rather harsh for
bare wafers, as these are the conditions usually applied to encapsulated PV modules in accordance with the IEC 61215-1-1 standard.

![FIGURE 3](image-url)

FIGURE 3. PL images of all samples at designated intervals of exposure at 85°C/85% RH. At 0 h, the samples had already been at 40°C/85% RH for 168 hours.

In order to elucidate the potential degradation mechanisms behind the slight increase D_t, optical microscope images were taken from the samples. Figure 4 shows microscope images from 10 nm and 20 nm O$_3$ samples taken with a 50× magnification as-deposited, annealed, and after exposed to damp heat. The observed surface textures are typical for Si wafers after chemical polishing, and while the surface was not fully planar, the detection of defects at the surface was still possible. In all samples, there were no observable defects on the surface in the as-deposited and annealed states, but after the damp heat exposure clear point-like defects had appeared. All samples made using H$_2$O as the oxidant showed multiple defects, while in the 20 nm O$_3$ sample only singular defects were observed, as highlighted by the red arrows in the figure. As a potential explanation for these observed defects, we hypothesize that the annealing step caused the passivation film on these samples to blister [24, 25], but the scale of the blisters was so small that such features could not have been observed under an optical microscope. During the damp heat exposure, the degradation of the passivation film propagated from the blisters, which was seen as the point-like defects in the passivation film. In the AlO$_x$ films deposited with H$_2$O a significant amount of blistering could have occurred. These blisters exposed the bare Si surface to the gaseous water molecules, which accelerated the degradation process as speculated in [12] by acting as starting points for the point-like degradation. Both thinner passivation films, such as the 5 nm sample in this case, and using O$_3$ as an oxidant possibly reduced the amount of blistering [25], which would provide better resilience against the damp heat degradation. However, the experiments should be carefully repeated with a larger amount of samples to test the validity of this hypothesis.
FIGURE 4. Optical microscope images from the 10 nm and 20 nm O$_3$ samples as-deposited, annealed, and after exposed to damp heat. While blisters were not visible on the sample surface after annealing, clear point-like defects were visible after damp heat exposure, as highlighted with red arrows.

CONCLUSIONS

The surface passivation properties of 5, 10, and 20 nm AlO$_x$ layers were found stable for 264 hours in 85°C/85% RH based on QSSPC and contactless CV measurements as well as PL imaging. No major changes in $S_{eff,max}$, Q_{tot}, D_{tot}, or the PL signal were observed after damp heat exposure compared to the initial values. Optical microscope images of the sample surfaces showed point-like defects after the damp heat exposure in all samples, but more defects were observed in samples deposited with H$_2$O than with O$_3$. Based on this observation, we hypothesized that the amount of blistering influenced the degradation rate of surface passivation under damp heat, but this speculation is not in agreement with previous reports on the damp heat degradation of surface passivation [12]. Therefore, systematic studies on the role of blisters in the degradation of ALD AlO$_x$ passivation are needed to shed light on the exact degradation mechanisms.

Further interests include the degradation experiments of ultrathin (~2 nm) passivation layers in order to study their stability under high illumination and in damp heat conditions. Degradation studies of similar samples is to be implemented under PV module standard damp heat testing conditions of 85°C/85% RH for 1000 h. The passivation stability of AlO$_x$ passivation layers deposited on planar and bSi using industrially viable spatial ALD (SALD) will also be investigated.

ACKNOWLEDGMENTS

The authors acknowledge the provision of facilities by Aalto University at OtaNano – Micronova Nanofabrication Centre. This work was funded through the European Metrology Programme for Innovation and Research (EMPIR) Project 16ENG03-HyMet. The EMPIR initiative is co-funded by the European Union’s Horizon 2020 research and innovation programme and the EMPIR participating States. Ismo T. S. Heikkinen acknowledges the financial support of Walter Ahlström foundation and Aalto ELEC Doctoral School.
REFERENCES