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Abstract
This article derives an accurate, explicit, and numerically stable approximation to the
kernel quadrature weights in one dimension and on tensor product grids when the
kernel and integration measure are Gaussian. The approximation is based on use of
scaled Gauss–Hermite nodes and truncation of the Mercer eigendecomposition of the
Gaussian kernel. Numerical evidence indicates that both the kernel quadrature and the
approximate weights at these nodes are positive. An exponential rate of convergence
for functions in the reproducing kernel Hilbert space induced by the Gaussian kernel is
provedunder an assumption ongrowth of the sumof absolute values of the approximate
weights.

Keywords Numerical integration · Kernel quadrature · Gaussian quadrature · Mercer
eigendecomposition

Mathematics Subject Classification 45C05 · 46E22 · 47B32 · 65D30 · 65D32

1 Introduction

Let μ be the standard Gaussian measure on R and f : R → R a measurable function.
We consider the problem of numerical computation of the integral with respect to μ

of f using a kernel quadrature rule (we reserve the term cubature for rules on higher
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dimensions) based on the Gaussian kernel

k(x, y) = exp

(
− (x − y)2

2�2

)
(1.1)

with the length-scale � > 0.Given any distinct nodes x1, . . . , xN , the kernel quadrature
rule is an approximation of the form

Qk( f ) :=
N∑

n=1

wk,n f (xn) ≈ μ( f ) := 1√
2π

∫
R

f (x) e−x2/2 dx,

with its weights wk = (wk,1, . . . , wk,N )∈RN solved from the linear system of equa-
tions

Kwk = kμ, (1.2)

where [K ]i j := k(xi , x j ) and [kμ]i := ∫
R

k(xi , x)dμ(x). This is equivalent to uniquely
selecting the weights such that the N kernel translates k(x1, ·), . . . , k(xN , ·) are inte-
grated exactly by the quadrature rule. Kernel quadrature rules can be interpreted as best
quadrature rules in the reproducing kernelHilbert space (RKHS) induced by a positive-
definite kernel [20], integrated kernel (radial basis function) interpolants [5,35], and
posteriors to μ( f ) under a Gaussian process prior on the integrand [7,21,29].

Recently, Fasshauer and McCourt [12] have developed a method to circumvent
the well-known problem that interpolation with the Gaussian kernel becomes often
numerically unstable—in particular when � is large—because the condition number
of K tends to grow with an exponential rate [33]. They do this by truncating the
Mercer eigendecomposition of the Gaussian kernel after M terms and replacing the
interpolation basis {k(xn, ·)}N

n=1 with the first M eigenfunctions. In this article we
show that application of this method with M = N to kernel quadrature yields, when
the nodes are selected by a suitable and fairly natural scaling of the nodes of the
classical Gauss–Hermite quadrature rule, an accurate, explicit, and numerically stable
approximation to the Gaussian kernel quadrature weights. Moreover, the proposed
nodes appear to be a good and natural choice for the Gaussian kernel quadrature.

To be precise, Theorem 2.2 states that the quadrature rule Q̃k that exactly integrates
the first N Mercer eigenfunctions of the Gaussian kernel and uses the nodes

x̃n := 1√
2αβ

xGH
n

has the weights

w̃k,n :=
(

1

1 + 2δ2

)1/2
wGH

n eδ2 x̃2n

�(N−1)/2�∑
m=0

1

2mm!
(
2α2β2

1 + 2δ2
− 1

)m

H2m(xGH
n ),
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Gaussian kernel quadrature at scaled Gauss–Hermite nodes

w̃k = (w̃k,1, . . . , w̃k,N )∈R
N , where α (for which the value 1/

√
2 seems the most

natural), β, and δ are constants defined in Eq. (2.3), Hn are the probabilists’ Hermite
polynomials (2.2), and xGH

n and wGH
n are the nodes and weights of the N -point Gauss–

Hermite quadrature rule. We argue that these weights are a good approximation to wk

and accordingly call them approximate Gaussian kernel quadrature weights. Although
we derive no bounds for the error of this weight approximation, numerical experiments
in Sect. 5 indicate that the approximation is accurate and that it appears that w̃k → wk

as N → ∞. In Sect. 4we extend theweight approximation ford-dimensionalGaussian
tensor product kernel cubature rules of the form

Qd
k = Qk,1 ⊗ · · · ⊗ Qk,d ,

where Qk,i are one-dimensional Gaussian kernel quadrature rules. Since each weight
of Qd

k is a product of weights of the univariate rules, an approximation for the tensor
product weights is readily available.

It turns out that the approximate weight and the associated nodes x̃n have a number
of desirable properties:

– We are not aware of any work on efficient selection of “good” nodes in the setting
of this article. The Gauss–Hermite nodes [29, Section 3] and random points [31]
are often used, but one should clearly be able to do better, while computation of
the optimal nodes [28, Section 5.2] is computationally demanding. As such, given
the desirable properties, listed below, of the resulting kernel quadrature rules, the
nodes x̃n appear to be an excellent heuristic choice. These nodes also behave
naturally when � → ∞; see Sect. 2.5.

– Numerical experiments in Sect. 5.3 suggest that both wk,n (for the nodes x̃n) and
w̃k,n are positive for any N ∈ N and every n = 1, . . . , N . Besides the optimal
nodes, the weights for which are guaranteed to be positive when the Gaussian
kernel is used [28,32], there are no node configurations that give rise to positive
weights as far as we are aware of.

– Numerical experiments in Sects. 5.1 and 5.3 demonstrate that computation of the
approximate weights is numerically stable. Furthermore, construction of these
weights only incurs a quadratic computational cost in the number of points, as
opposed to the cubic cost of solving wk from Eq. (1.2). See Sect. 2.6 for more
details. Note that to obtain a numerically stable method it is not necessary to use
the nodes x̃n as the method in [12] can be applied in a straightforward manner for
any nodes. However, doing so one forgoes a closed form expression and has to use
the QR decomposition.

– In Sects. 3 and 4we show that slow enough growthwith N of
∑N

n=1

∣∣w̃k,n
∣∣ (numer-

ical evidence indicates this sum converges to one) guarantees that the approximate
Gaussian kernel quadrature rule—as well as the corresponding tensor product
version—converges with an exponential rate for functions in the RKHS of the
Gaussian kernel. Convergence analysis is based on analysis of magnitude of the
remainder of the Mercer expansion and rather explicit bounds on Hermite poly-
nomials and their roots. Magnitude of the nodes x̃n is crucial for the analysis; if
they were further spread out the proofs would not work as such.

123



T. Karvonen, S. Särkkä

– We find the connection to the Gauss–Hermite weights and nodes that the closed
form expression for w̃k provides intriguing and hope that it can be at some point
used to furnish, for example, a rigorous proof of positivity of the approximate
weights.

2 Approximate weights

This section contains the main results of this article. The main contribution is deriva-
tion, in Theorem 2.2, of the weights w̃k , that can be used to approximate the kernel
quadrature weights. We also discuss positivity of these weights, the effect the kernel
length-scale � is expected to have on quality of the approximation, and computational
complexity.

2.1 Eigendecomposition of the Gaussian kernel

Let ν be a probability measure on the real line. If the support of ν is compact, Mer-
cer’s theorem guarantees that any positive-definite kernel k admits an absolutely and
uniformly convergent eigendecomposition

k(x, y) =
∞∑

n=0

λnϕn(x)ϕn(y) (2.1)

for positive and non-increasing eigenvalues λn and eigenfunctions ϕn that are included
in the RKHS H induced by k and orthonormal in L2(ν). Moreover,

√
λnϕn are

H -orthonormal. If the support of ν is not compact, the expansion (2.1) con-
verges absolutely and uniformly on all compact subsets of R × R under some mild
assumptions [37,38]. For the Gaussian kernel (1.1) and measure the eigenvalues and
eigenfunctions are available analytically. For a collection of explicit eigendecompo-
sitions of some other kernels, see for instance [11, Appendix A]

Let μα stand for the Gaussian probability measure,

dμα(x) := α√
π
e−α2x2 dx,

with variance 1/(2α2) (i.e., μ = μ1/
√
2 ) and

Hn(x) := (−1)n ex2/2 dn

dxn
e−x2/2 (2.2)

for the (unnormalised) probabilists’ Hermite polynomial satisfying the orthogonality
property 〈Hn,Hm〉L2(μ) = n! δnm . Denote

ε = 1√
2�

, β =
(
1 +
(
2ε

α

)2)1/4
, and δ2 = α2

2
(β2 − 1) (2.3)
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Gaussian kernel quadrature at scaled Gauss–Hermite nodes

and note that β > 1 and δ2 > 0. Then the eigenvalues and L2(μα)-orthonormal
eigenfunctions of the Gaussian kernel are [12]

λα
n :=
√

α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)n

(2.4)

and

ϕα
n (x) :=

√
β

n! e
−δ2x2 Hn

(√
2αβx

)
. (2.5)

See [11, Section 12.2.1] for verification that these indeed are Mercer eigenfunctions
and eigenvalues for the Gaussian kernel. The role of the parameter α is discussed in
Sect. 2.4. The following result, also derivable from Equation 22.13.17 in [1], will be
useful.

Lemma 2.1 The eigenfunctions (2.5) of the Gaussian kernel (1.1) satisfy

μ(ϕα
2m+1) = 0 and μ(ϕα

2m) =
(

β

1 + 2δ2

)1/2√
(2m)!
2mm!

(
2α2β2

1 + 2δ2
− 1

)m

for m ≥ 0.

Proof Since an Hermite polynomial of odd order is an odd function, μ(ϕα
2m+1) = 0.

For even indices, use the explicit expression

H2m(x) = (2m)!
2m

m∑
p=0

(−1)m−p

(2p)!(m − p)!
(√

2x
)2p

,

the Gaussian moment formula
∫
R

x2p e−δ2x2 dμ(x) = 1√
2π

∫
R

x2p e−(δ2+1/2)x2 dx = (2p)!
2p p!(1 + 2δ2)p+1/2 ,

and the binomial theorem to conclude that

μ(ϕα
2m) =

√
(2m)!β
2m

m∑
p=0

(−1)m−p

(2p)!(m − p)! (2αβ)2p
∫
R

x2p e−δ2x2 dμ(x)

= (−1)m√
(2m)!β

2m
√
1 + 2δ2

m∑
p=0

1

p!(m − p)!
(

− 2α2β2

1 + 2δ2

)p

= (−1)m√
(2m)!β

2mm!√1 + 2δ2

m∑
p=0

(
m

p

)(
− 2α2β2

1 + 2δ2

)p

=
(

β

1 + 2δ2

)1/2 √
(2m)!
2mm!

(
2α2β2

1 + 2δ2
− 1

)m

.


�
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2.2 Approximation via QR decomposition

We begin by outlining a straightforward extension to kernel quadrature of the work
of Fasshauer and McCourt in [12] and [11, Chapter 13] on numerically stable kernel
interpolation. Recall that the kernel quadrature weights wk ∈ R

N at distinct nodes
x1, . . . , xN are solved from the linear system Kwk = kμ with [K ]i j = k(xi , x j )

and [kμ]i = ∫
R

k(xi , x)dμ(x). Truncation of the eigendecomposition (2.1) after
M ≥ N terms1 yields the approximations K ≈ ΦΛΦT and kμ ≈ ΦΛϕμ, where
[Φ]i j := ϕα

j−1(xi ) is an N × M matrix, the diagonal M × M matrix [Λ]i i := λi−1
contains the eigenvalues in appropriate order, and [ϕμ]i := μ(ϕi−1) is an M-vector.
The kernel quadrature weights wk can be therefore approximated by

w̃M
k := (ΦΛΦT)−1

ΦΛϕμ. (2.6)

Equation (2.6) can be written in a more convenient form by exploiting the QR
decomposition. The QR decomposition of Φ is

Φ = Q R := Q
[

R1 R2

]

for a unitary Q ∈ R
N×N , an upper triangular R1 ∈ R

N×N , and R2 ∈ R
N×(M−N ).

Consequently,

w̃M
k = (Q RΛRTQT)−1

Q RΛϕμ = Q
(
RΛRT)−1

RΛϕμ.

The decomposition

Λ =
[
Λ1 0
0 Λ2

]

of Λ ∈ R
M×M into diagonal Λ1 ∈ R

N×N and Λ2 ∈ R
(M−N )×(M−N ) allows for

writing

RΛRT = R1Λ1
(
RT
1 + Λ−1

1 R−1
1 R2Λ2RT

2

)
.

Therefore,

w̃M
k = Q

(
RT
1 + Λ−1

1 R−1
1 R2Λ2RT

2

)−1
[

IN Λ−1
1 R−1

1 R2Λ2

]
ϕμ, (2.7)

where IN is the N × N identity matrix. If ε2/(α2 + δ2 + ε2) is small (i.e., � is
large), numerical ill-conditioning in Eq. (2.7) for the Gaussian kernel is associated
with the diagonal matrices Λ−1

1 and Λ2. Consequently, numerical stability can be
significantly improved by performing the multiplications by these matrices in the

1 Low-rank approximations (i.e., M < N ) are also possible [12, Section 6.1].
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Gaussian kernel quadrature at scaled Gauss–Hermite nodes

terms Λ−1
1 R−1

1 R2Λ2RT
2 and Λ−1

1 R−1
1 R2Λ2 analytically; see [12, Sections 4.1 and

4.2] for more details.
Unfortunately, using the QR decomposition does not provide an attractive closed

form solution for the approximate weights w̃M
k for general M . Setting M = N turns

Φ into a square matrix, enabling its direct inversion and formation of an explicit con-
nection to the classical Gauss–Hermite quadrature. The rest of the article is concerned
with this special case.

2.3 Gauss–Hermite quadrature

Given a measure ν onR, the N -point Gaussian quadrature rule is the unique N -point
quadrature rule that is exact for all polynomials of degree at most 2N − 1. We are
interested in Gauss–Hermite quadrature rules that are Gaussian rules for the Gaussian
measure μ:

N∑
n=1

wGH
n p(xGH

n ) = μ(p)

for every polynomial p : R → R with deg p ≤ 2N − 1. The nodes xGH
1 , . . . xGH

N
are the roots of the N th Hermite polynomial HN and the weights wGH

1 , . . . , wGH
N are

positive and sum to one. The nodes and the weights are related to the eigenvalues
and eigenvectors of the tridiagonal Jacobi matrix formed out of three-term recurrence
relation coefficients of normalised Hermite polynomials [13, Theorem 3.1].

We make use of the following theorem, a one-dimensional special case of a more
general result due to Mysovskikh [27]. See also [8, Section 7]. This result also follows
from the Christoffel–Darboux formula (2.12).

Theorem 2.1 Let ν be a measure on R. Suppose that x1, . . . , xN and w1, . . . , wN are
the nodes and weights of the unique Gaussian quadrature rule. Let p0, . . . , pN−1 be
the L2(ν)-orthonormal polynomials. Then the matrix [P]i j := ∑N−1

n=0 pn(xi )pn(x j )

is diagonal and has the diagonal elements [P]i i = 1/wi .

2.4 Approximate weights at scaled Gauss–Hermite nodes

Let us now consider the approximate weights (2.6) with M = N . Assuming that Φ is
invertible, we then have

wk ≈ w̃k := w̃N
k = (ΦΛΦT)−1

ΦΛϕμ = Φ−Tϕμ.

Note that the exponentially decayingMercer eigenvalues, a major source of numerical
instability, do not appear in the equation for w̃k . The weights w̃k are those of the
unique quadrature rule that is exact for the N first eigenfunctions ϕα

0 , . . . , ϕα
N−1. For

the Gaussian kernel, we are in a position to do much more. Recalling the form of
the eigenfunctions in Eq. (2.5), we can write Φ = √

βE−1V for the diagonal matrix
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[E]i i := eδ2x2i and the Vandermonde matrix

[V ]i j := 1√
( j − 1)!H j−1

(√
2αβxi

)
(2.8)

of scaled and normalised Hermite polynomials. From this it is evident that Φ is
invertible—which is just a manifestation of the fact that the eigenfunctions of a totally
positive kernel constitute a Chebyshev system [17,30]. Consequently,

w̃k = 1√
β

EV −Tϕμ.

Select the nodes

x̃n := 1√
2αβ

xGH
n .

Then the matrix V defined in Eq. (2.8) is precisely the Vandermonde matrix of the
normalised Hermite polynomials and V V T is the matrix P of Theorem 2.1. Let WGH

be the diagonal matrix containing the Gauss–Hermite weights. It follows that V −T =
WGHV and

w̃k = 1√
β

EV −Tϕμ = 1√
β

EWGHV ϕμ. (2.9)

Combining this equation with Lemma 2.1, we obtain the main result of this article.

Theorem 2.2 Let xGH
1 , . . . , xGH

N and wGH
1 , . . . , wGH

N stand for the nodes and weights of
the N-point Gauss–Hermite quadrature rule. Define the nodes

x̃n = 1√
2αβ

xGH
n . (2.10)

Then the weights w̃k ∈ R
N of the N-point quadrature rule

Q̃k( f ) :=
N∑

n=1

w̃k,n f (x̃n),

defined by the exactness conditions Q̃k(ϕ
α
n ) = μα(ϕα

n ) for n = 0, . . . , N − 1, are

w̃k,n =
(

1

1 + 2δ2

)1/2
wGH

n eδ2 x̃2n

�(N−1)/2�∑
m=0

1

2mm!
(
2α2β2

1 + 2δ2
− 1

)m

H2m(xGH
n ),

(2.11)

where α, β, and δ are defined in Eq. (2.3) and H2m are the probabilists’ Hermite
polynomials (2.2).
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Since theweights w̃k are obtained by truncating of theMercer expansion of k, it is to
be expected that w̃k ≈ wk . Thismotivates our calling of theseweights the approximate
Gaussian kernel quadrature weights. We do not provide theoretical results on quality
of this approximation, but the numerical experiments in Sect. 5.2 indicate that the
approximation is accurate and that its accuracy increases with N . See [12] for related
experiments.

An alternative non-analytical formula for the approximate weights can be derived
using the Christoffel–Darboux formula [13, Section 1.3.3]

M∑
m=0

Hm(x)Hm(y)

m! = HM (y)HM+1(x) − HM (x)HM+1(y)

M !(x − y)
. (2.12)

From Eq. (2.9) we then obtain (keep in mind that xGH
1 , . . . , xGH

N are the roots of HN )

w̃k,n = 1√
β

wGH
n eδ2 x̃2n

N−1∑
m=0

1√
m!Hm(xGH

n )μ(ϕα
m)

= wGH
n eδ2 x̃2n

∫
R

e−δ2x2
N−1∑
m=0

Hm(xGH
n )Hm(

√
2αβx)

m! dμ(x)

= wGH
n eδ2 x̃2n HN−1(xGH

n )√
2π(N − 1)!

∫
R

HN (
√
2αβx)√

2αβx − xGH
n

e−(δ2+1/2)x2 dx

= wGH
n eδ2 x̃2n HN−1(xGH

n )

2
√

παβ(N − 1)!
∫
R

HN (x)

x − xGH
n

exp

(
− δ2 + 1/2

2α2β2 x2
)
dx .

This formula is analogous to the formula

wGH
n = 1√

2π NHN−1(xGH
n )

∫
R

HN (x)

x − xGH
n

e−x2/2 dx

for the Gauss–Hermite weights. Plugging this in, we get

w̃k,n = eδ2 x̃2n

2
√
2παβN !

∫
R

HN (x)

x − xGH
n

e−x2/2 dx
∫
R

HN (x)

x − xGH
n

exp

(
− δ2 + 1/2

2α2β2 x2
)
dx .

It appears that both wk,n and w̃k,n of Theorem 2.2 are positive for many choices
of α; see Sect. 5.3 for experiments involving α = 1/

√
2. Unfortunately, we have

not been able to prove this. In fact, numerical evidence indicates something slightly
stronger. Namely that the even polynomial

Rγ,N (x) :=
�(N−1)/2�∑

m=0

γ m

2mm!H2m(x)
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of degree 2�(N − 1)/2� is positive for every N ≥ 1 and (at least) every 0 < γ ≤ 1.
This would imply positivity of w̃k,n since the Gauss–Hermite weightswGH

n are positive.
For example, with α = 1/

√
2,

2α2β2

1 + 2δ2
− 1 = 2

√
1 + 8ε2

1 + √
1 + 8ε2

− 1 =
√
1 + 8ε2 − 1

1 + √
1 + 8ε2

∈ (0, 1).

As discussed in [12] in the context of kernel interpolation, the parameter α acts
as a global scale parameter. While in interpolation it is not entirely clear how this
parameter should be selected, in quadrature it seems natural to set α = 1/

√
2 so that

the eigenfunctions are orthonormal in L2(μ). This is the value that we use, though
also other values are potentially of interest since α can be used to control the spread
of the nodes independently of the length-scale �. In Sect. 3, we also see that this value
leads to more natural convergence analysis.

2.5 Effect of the length-scale

Roughly speaking, magnitude of the eigenvalues

λα
n =
√

α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)n

determines how many eigenfunctions are necessary for an accurate weight approxi-
mation. We therefore expect that the approximation (2.11) is less accurate when the
length-scale � is small (i.e., ε = 1/(

√
2�) is large). This is confirmed by the numerical

experiments in Sect. 5.
Consider then the case � → ∞. This scenario is called the flat limit in scattered

data approximation literature where it has been proved2 that the kernel interpolant
associated to an isotropic kernel with increasing length-scale converges to (i) the
unique polynomial interpolant of degree N − 1 to the data if the kernel is infinitely
smooth [22,24,34] or (ii) to a polyharmonic spline interpolant if the kernel is of finite
smoothness [23]. In our case, � → ∞ results in

ε → 0, β → 1, δ2 → 0, λα
n → 0, and ϕα

n (x) → Hn
(√

2αx
)
.

If the nodes are selected as in Eq. (2.10), x̃n → xGH
n /(

√
2α). That is, if α = 1/

√
2

ϕα
n (x) → Hn(x), x̃n → xGH

n , and w̃k,n → wGH
n .

2 It is interesting to note that the first published observation of analogous phenomenon is, as far as we are
aware of, due to O’Hagan [29, Section 3.3] in kernel quadrature literature, predating the work of Driscoll
and Fornberg [9]. See also [26] for early quadrature-related work on the topic.
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That the approximate weights convergence to the Gauss–Hermite ones can be seen,
for example, from Eq. (2.11) by noting that only the first term in the sum is retained at
the limit. Based on the aforementioned results regarding convergence of kernel inter-
polants to polynomial ones at the flat limit, it is to be expected that also wk,n → wGH

n
as � → ∞ (we do not attempt to prove this). Because the Gauss–Hermite quadrature
rule is the “best” for polynomials and kernel interpolants convergence to polynomials
at the flat limit, the above observation provides another justification for the choice
α = 1/

√
2 that we proposed the preceding section.

When it comes to node placement, the length-scale is having an intuitive effect if
the nodes are selected according to Eq. (2.10). For small �, the nodes are placed closer
to the origin where most of the measure is concentrated as integrands are expected to
converge quickly to zero as |x | → ∞, whereas for larger � the nodes are more—but
not unlimitedly—spread out in order to capture behaviour of functions that potentially
contribute to the integral also further away from the origin.

2.6 On computational complexity

Because the Gauss–Hermite nodes and weights are related to the eigenvalues and
eigenvectors of the tridiagonal Jacobi matrix [13, Theorem 3.1] they—and the points
x̃n—can be solved in quadratic time (in practice, these nodes and weights can be often
tabulated beforehand). FromEq. (2.11) it is seen that computation of each approximate
weight is linear in N : there are approximately (N − 1)/2 terms in the sum and the
Hermite polynomials can be evaluated on the fly using the three-term recurrence
formula Hn+1(x) = xHn(x) − nHn−1(x). That is, computational cost of obtaining
x̃n and w̃k,n for n = 1, . . . , N is quadratic in N . Since the kernel matrix K of the
Gaussian kernel is dense, solving the exact kernel quadrature weights from the linear
system (1.2) for the points x̃n incurs a more demanding cubic computational cost.
Because computational cost of a tensor product rule does not depend on the nodes and
weights after these have been computed, the above discussion also applies to the rules
presented in Sect. 4.

3 Convergence analysis

In this section we analyse convergence in the reproducing kernel Hilbert spaceH ⊂
C∞(R) induced by theGaussian kernel of quadrature rules that are exact for theMercer
eigenfunctions. First, we prove a generic result (Theorem 3.1) to this effect and then
apply this to the quadrature rule with the nodes x̃n and weights w̃k,n . If

∑N
n=1

∣∣w̃k,n
∣∣

does not grow too fast with N , we obtain exponential convergence rates.
Recall some basic facts about reproducing kernel Hilbert spaces spaces [4]: (i)〈

f , k(x, ·)〉H = f (x) for any f ∈ H and x ∈ R and (ii) f =∑∞
n=0 λα

n

〈
f , ϕα

n

〉
ϕα

n for

any f ∈ H . The worst-case error e(Q) of a quadrature rule Q( f ) =∑N
n=1 wn f (xn)

is

e(Q) := sup
‖ f ‖H ≤1

∣∣μ( f ) − Q( f )
∣∣ .
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Crucially, the worst-case error satisfies

∣∣μ( f ) − Q( f )
∣∣ ≤ ‖ f ‖H e(Q)

for any f ∈ H . This justifies calling a sequence {QN }∞N=1 of N -point quadrature
rules convergent if e(QN ) → 0 as N → ∞. For given nodes x1, . . . , xN , the weights
wk = (wk,1, . . . , wk,N ) of the kernel quadrature rule Qk are unique minimisers of the
worst-case error:

wk = arg min
w∈RN

sup
‖ f ‖H ≤1

∣∣∣∣∣∣
∫
R

f dμ −
N∑

n=1

wn f (xn)

∣∣∣∣∣∣ .

It follows that a rate of convergence to zero for e(Q) also applies to e(Qk).
A number of convergence results for kernel quadrature rules on compact spaces

appear in [5,7,14]. When it comes to the RKHS of the Gaussian kernel, charac-
terised in [25,36], Kuo and Woźniakowski [19] have analysed convergence of the
Gauss–Hermite quadrature rule. Unfortunately, it turns out that the Gauss–Hermite
rule converges in this space if and only if ε2 < 1/2. Consequently, we believe that the
analysis below is the first to establish convergence, under the assumption (supported
by our numerical experiments) that the sum of

∣∣w̃k,n
∣∣ does not grow too fast, of an

explicitly constructed sequence of quadrature rules in theRKHSof theGaussian kernel
with any value of the length-scale parameter. We begin with two simple lemmas.

Lemma 3.1 The eigenfunctions ϕα
n admit the bound

sup
n≥0

∣∣ϕα
n (x)
∣∣ ≤ K

√
β eα2x2/2

for a constant K ≤ 1.087 and every x ∈ R.

Proof For each n ≥ 0, the Hermite polynomials obey the bound

1

n! Hn(x)2 ≤ K 2 ex2/2 (3.1)

for a constant K ≤ 1.087 [10, p. 208]. See [6] for other such bounds.3 Thus

ϕα
n (x)2 = β

n! e
−2δ2x2 Hn

(√
2αβx

)2 ≤ K 2β exp
(
(α2β2 − 2δ2)x2

) = K 2β eα2x2 .


�

3 In particular, the factor n−1/6 could be added on the right-hand side. This would make little difference
in convergence analysis of Theorem 3.1.
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Lemma 3.2 Let α = 1/
√
2. Then

√
ε2

1/2 + δ2 + ε2
eρ/(2β2) ∈ (0, 1)

for every � > 0 if and only if ρ ≤ 2.

Proof The function

γ (ε2) := ε2

1/2 + δ2 + ε2
eρ/β2

satisfies γ (0) = 0 and γ (ε2) → 1 as ε2 → ∞. The derivative

dγ (ε2)

dε2
= 4 eρ/β2

(1 + 4(2 − ρ)ε2)

(4ε2 + β2 + 1)β3

is positive when ρ ≤ 2. For ρ > 2, the derivative has a single root at ε20 = 1/(4(ρ−2))
so that γ (ε20) > 1. That is, γ (ε2) ∈ (0, 1), and consequently γ (ε2)1/2 ∈ (0, 1), if and
only if ρ ≤ 2. 
�

Theorem 3.1 Let α = 1/
√
2. Suppose that the nodes x1, . . . , xN and weights

w1, . . . , wN of an N-point quadrature rule QN satisfy

1.
∑N

n=1 |wn| ≤ WN for some WN ≥ 0;
2. QN (ϕα

n ) = μ(ϕα
n ) for each n = 0, . . . , MN − 1 for some MN ≥ 1;

3. sup1≤n≤N |xn| ≤ 2
√

MN /β.

Then there exist constants C1, C2 > 0, independent of N and QN , and 0 < η < 1
such that

e(QN ) ≤ (1 + C1WN )C2η
MN .

Explicit forms of these constants appear in Eq. (3.4).

Proof For notational convenience, denote

λα
n = λn =

√
1/2

1/2 + δ2 + ε2

(
ε2

1/2 + δ2 + ε2

)n

= τλn

andϕn = ϕα
n . Because every f ∈ H admits the expansion f =∑∞

n=0 λn
〈
f , ϕn

〉
H ϕn

and QN (ϕn) = μ(ϕn) for n < MN , it follows from the Cauchy–Schwarz inequality
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and ‖ϕn‖H = 1/
√

λn that

∣∣μ( f ) − QN ( f )
∣∣ =
∣∣∣∣∣∣

∞∑
n=MN

λn
〈
f , ϕn

〉
H [μ(ϕn) − QN (ϕn)]

∣∣∣∣∣∣
≤ ‖ f ‖H

∞∑
n=MN

λ
1/2
n
∣∣μ(ϕn) − QN (ϕn)

∣∣ .
(3.2)

From Lemma 3.1 we have
∣∣ϕn(x)

∣∣ ≤ K
√

β ex2/4 for a constant K ≤ 1.087. Conse-
quently, the assumption sup1≤m≤N |xm | ≤ 2

√
MN /β yields

sup
1≤m≤N

sup
n≥0

∣∣ϕn(xm)
∣∣ ≤ K

√
β eMN /β2

.

Combining this with Hölder’s inequality and L2(μ)-orthonormality of ϕn , that imply
μ(ϕn) ≤ μ(ϕ2

n)1/2 = 1, we obtain the bound

∣∣μ(ϕn) − QN (ϕn)
∣∣ ≤ 1 +

N∑
m=1

|wm | ∣∣ϕn(xm)
∣∣ ≤ 1 + K

√
βWN eMN /β2

. (3.3)

Inserting this into Eq. (3.2) produces

∣∣μ( f ) − QN ( f )
∣∣ ≤ ‖ f ‖H

(
1 + WN K

√
β eMN /β2 ) ∞∑

n=MN

λ
1/2
n

= ‖ f ‖H
(
1 + K

√
βWN eMN /β2 )√

τ

∞∑
n=MN

λn/2

= ‖ f ‖H
(
1 + K

√
βWN eMN /β2 ) √

τ

1 − √
λ

λMN /2

≤ ‖ f ‖H
(
1 + K

√
βWN

) √
τ

1 − √
λ

(√
λ e1/β

2 )MN .

(3.4)

Noticing that
√

λ e1/β
2

< 1 by Lemma 3.2 concludes the proof. 
�
Remark 3.1 From Lemma 3.2 we observe that the proof does not yield η < 1 (for
every �) if the assumption sup1≤n≤N |xn| ≤ 2

√
MN /β on placement of the nodes is

relaxed by replacing the constant 2 on the right-hand side with C > 2.

Consider now the N -point approximate Gaussian kernel quadrature rule
Q̃k,N =∑N

n=1 w̃k,n f (x̃n) whose nodes and weights are defined in Theorem 2.2 and
set α = 1/

√
2. The nodes xGH

n of the N -point Gauss–Hermite rule admit the bound [2]

sup
1≤n≤N

∣∣xGH
n

∣∣ ≤ 2
√

N − 1
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for every N ≥ 1. That is,

x̃n = 1

β
xGH

n ≤ 2
√

N

β
.

Since the rule Q̃k,N is exact for the first N eigenfunctions, MN = N . Hence the
assumption on placement of the nodes in Theorem 3.1 holds. As our numerical exper-
iments indicate that the weights w̃k,n are positive and

∑N
n=1

∣∣w̃k,n
∣∣→ 1 as N → ∞,

it seems that the exponential convergence rate of Theorem 3.1 is valid for Q̃k,N (as
well as for the corresponding kernel quadrature rule Qk,N ) with MN = N . Naturally,
this result is valid whenever the growth of the absolute weight sum is, for example,
polynomial in N .

Theorem 3.2 Let α = 1/
√
2 and suppose that supN≥1

∑N
n=1

∣∣w̃k,n
∣∣ < ∞. Then the

quadrature rules Q̃k,N ( f ) = ∑N
n=1 w̃k,n f (x̃n) and Qk,N ( f ) = ∑N

n=1 wk,n f (x̃n)

satisfy

e(Qk,N ) ≤ e(Q̃k,N ) = O(ηN )

for 0 < η < 1.

Another interesting case are the generalised Gaussian quadrature rules4 for the
eigenfunctions. As the eigenfunctions constitute a complete Chebyshev system [17,
30], there exists a quadrature rule Q∗

N with positive weights w∗
1, . . . , w

∗
N such that

Q∗
N (ϕn) = μ(ϕn) for every n = 0, . . . , 2N − 1 [3]. Appropriate control of the nodes

of these quadrature rules would establish an exponential convergence result with the
“double rate” MN = 2N .

4 Tensor product rules

Let Q1, . . . , Qd be quadrature rules on R with nodes Xi = {xi,1, . . . , xi,Ni } and
weights wi

1, . . . , w
i
Ni

for each i = 1, . . . , d . The tensor product rule on the Cartesian

grid X := X1 × · · · × Xd ⊂ R
d is the cubature rule

Qd( f ) := (Q1 ⊗ · · · ⊗ Qd)( f ) =
∑

I≤N

wI f (xI ), (4.1)

whereI ∈ N
d is amulti-index,N := (N1, . . . , Nd) ∈ N

d , and the nodes andweights
are

xI := (x1,I (1), . . . xd,I (d)) ∈ X and wI :=
d∏

i=1

wi
I (i).

4 Note that the cited results are for kernels and functions on compact intervals. However, generalisations
for the whole real line are possible [15, Chapter VI].
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We equip R
d with the d-variate standard Gaussian measure

dμd(x) := (2π)−d/2 e−‖x‖2/2 dx =
d∏

i=1

dμ(xi ). (4.2)

The following proposition is a special case of a standard result on exactness of tensor
product rules [28, Section 2.4].

Proposition 4.1 Consider the tensor product rule (4.1) and suppose that, for each
i = 1, . . . , d, Qi (ϕ

i
n) = μ(ϕi

n) for some functions ϕi
1, . . . , ϕ

i
Ni

: R → R. Then

Qd( f ) = μd( f ) for every f ∈ span
{∏d

i=1 ϕi
I (i) : I ≤ N

}
.

When a multivariate kernel is separable, this result can be used in constructing ker-
nel cubature rules out of kernel quadrature rules.We consider d-dimensional separable
Gaussian kernels

kd(x, y) := exp

(
− 1

2

d∑
i=1

(xi − yi )
2

�2i

)
=

d∏
i=1

exp

(
− (xi − yi )

2

2�2i

)
=:

d∏
i=1

ki (xi , yi ),

(4.3)

where �i are dimension-wise length-scales. For each i = 1, . . . , d, the kernel quadra-
ture rule Qk,i with nodes Xi = {xi,1, . . . , xi,Ni } and weights wi

k,1, . . . , w
i
k,Ni

is, by
definition, exact for the Ni kernel translates at the nodes:

Qk,i
(
k(xi,n, ·)) = μ

(
k(xi,n, ·))

for each n = 1, . . . , Ni . Proposition 4.1 implies that the d-dimensional kernel cubature
rule Qd

k at the nodes X = X1 × · · · × Xd is a tensor product of the univariate rules:

Qd
k ( f ) = (Qk,1 ⊗ · · · ⊗ Qk,d)( f )=:

∑
I≤N

wk,I f (xI ), (4.4)

with the weights being products of univariate Gaussian kernel quadrature weights,
wk,I =∏d

i=1 wk,I (i). This is the case because each kernel translate kd(x, ·), x ∈ X ,
can be written as

kd(x, ·) =
d∏

i=1

ki (xi , ·)

by separability of kd .
We can extend Theorem 2.2 to higher dimensions if the node set is a Cartesian

product of a number of scaled Gauss–Hermite node sets. For this purpose, for each
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i = 1, . . . , d we use the L(μαi )
2-orthonormal eigendecomposition of the Gaussian

kernel ki . The eigenfunctions, eigenvalues, and other related constants from Sect. 2.1
for the eigendecomposition of the i th kernel are assigned an analogous subscript.
Furthermore, use the notation

λI :=
d∏

i=1

λ
αi
I (i) and ϕI (x) =

d∏
i=1

ϕ
αi
I (i)(xi ).

Theorem 4.1 For i = 1, . . . , d, let xGH

i,1, . . . , xGH

i,Ni
and wGH

i,1, . . . w
GH

i,Ni
stand for the

nodes and weights of the Ni -point Gauss–Hermite quadrature rule and define the
nodes

x̃i,n := 1√
2αiβi

xGH

i,n . (4.5)

Then the weights of the tensor product quadrature rule

Q̃d
k ( f ) :=

∑
I≤N

w̃k,I f (x̃I ),

that is defined by the exactness conditions Q̃d
k (ϕI ) = μd(ϕI ) for every I ≤ N ,

are w̃k,I =∏d
i=1 w̃i

k,I (i) for

w̃i
k,n =

(
1

1 + 2δ2i

)1/2
wGH

i,n e
δ2 x̃2i,n

�(N−1)/2�∑
m=0

1

2mm!
(
2α2

i β2
i

1 + 2δ2i
− 1

)m

H2m(xGH

i,n),

where α, β, and δ are defined in Eq. (2.3) and H2m are the probabilists’ Hermite
polynomials (2.2).

As in one dimension, the weights w̃k,I are supposed to approximate wk,I . More-
over, convergence rates can be obtained: tensor product analogues of Theorems 3.1
and 3.2 follow from noting that every function f : Rd → R in the RKHS H d of kd

admits the multivariate Mercer expansion

f (x) =
∑
I≥0

λI
〈
f , ϕI

〉
H d ϕI (x).

See [18] for similar convergence analysis of tensor product Gauss–Hermite rules
inH d .

Theorem 4.2 Let α1 = · · · = αd = 1/
√
2. Suppose that the nodes xi,1, . . . , xi,Ni and

weights wi
1, . . . , w

i
Ni

of the Ni -point quadrature rules Q1,N1, . . . , Qd,Nd satisfy

1. sup1≤i≤d
∑Ni

n=1

∣∣∣wi
n

∣∣∣ ≤ WN for some WN ≥ 1;
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2. Qi,Ni (ϕ
α
n ) = μ(ϕα

n ) for each n = 0, . . . , MNi − 1 and i = 1, . . . , d for some
MNi ≥ 1;

3. sup1≤n≤Ni

∣∣xi,n
∣∣ ≤ 2

√
MNi /β for each i = 1, . . . , d.

Define the tensor product rule

Qd
N = Q1,N1 ⊗ · · · ⊗ Qd,Nd .

Then there exist constants C > 0, independent of N and Qd
N , and 0 < η < 1 such

that

e(Qd
N ) ≤ CW d

N ηM ,

where M = min(MN1, . . . , MNd ). Explicit forms of C and η appear in Eq. (4.10).

Proof The proof is largely analogous to that of Theorem 3.1. Since f ∈ H d can be
written as

f =
∑
I≥0

λI
〈
f , ϕI

〉
H d ϕI ,

by defining the index set

AM :=
{
I ∈ N

d : I (i) ≥ MNi for at least one i ∈ {1, . . . , d}
}

⊂ N
d

we obtain

∣∣∣μd( f ) − Qd
N ( f )

∣∣∣ =
∣∣∣∣∣∣
∑

I ∈AM

λI
〈
f , ϕI

〉
H d

[
μd(ϕI ) − Qd

N (ϕI )
]
∣∣∣∣∣∣ .

Consequently, the Cauchy–Schwarz inequality yields

∣∣∣μd( f ) − Qd
N ( f )

∣∣∣ ≤ ‖ f ‖H d

∑
I ∈AM

λ
1/2
I

∣∣∣μd(ϕI ) − Qd
N (ϕI )

∣∣∣

= ‖ f ‖H d τ
d/2

∑
I ∈AM

λ|I |/2 ∣∣∣μd(ϕI ) − Qd
N (ϕI )

∣∣∣ , (4.6)

where we again use the notation

τ =
√

1/2

1/2 + δ2 + ε2
and λ = ε2

1/2 + δ2 + ε2
.
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Sinceμ(ϕn) ≤ 1 for any n ≥ 0, integration error for the eigenfunction ϕI satisfies

∣∣∣μd(ϕI ) − Qd
N (ϕI )

∣∣∣

=
∣∣∣∣∣∣

d∏
i=1

μ(ϕI (i)) −
d∏

i=1

Qi,Ni (ϕI (i))

∣∣∣∣∣∣
=
∣∣∣∣∣
[
μ(ϕI (d)) − Qd,Nd (ϕI (d))

] d−1∏
i=1

μ(ϕI (i))

+ Qd,Nd (ϕI (d))

( d−1∏
i=1

μ(ϕI (i)) −
d−1∏
i=1

Qi,Ni (ϕI (i))

)∣∣∣∣∣
≤ ∣∣μ(ϕI (d)) − Qd,Nd (ϕI (d))

∣∣

+ ∣∣Qd,Nd (ϕI (d))
∣∣
∣∣∣∣∣∣
d−1∏
i=1

μ(ϕI (i)) −
d−1∏
i=1

Qi,Ni (ϕI (i))

∣∣∣∣∣∣ .

(4.7)

Define the index setsB j
M (I ) = { j ≤ i ≤ d : I (i) ≥ MNi

}
and their cardinalities

b j
M (I ) = #B j

M (I ) ≤ d− j+1 for j ≥ 1.Because
∣∣μ(ϕI (i)) − Qi,Ni (ϕI (i))

∣∣ = 0
and
∣∣Qi,Ni (ϕI (i))

∣∣ = ∣∣μ(ϕI (i))
∣∣ ≤ 1 if I (i) < MNi , expansion of the recursive

inequality (4.7) gives

∣∣∣μd(ϕI ) − Qd
N (ϕI )

∣∣∣
≤

d∑
i=1

∣∣μ(ϕI (i)) − Qi,Ni (ϕI (i))
∣∣ d∏

j=i+1

∣∣∣Q j,N j (ϕI ( j))

∣∣∣

=
∑

i∈B1
M (I )

∣∣μ(ϕI (i)) − Qi,Ni (ϕI (i))
∣∣ d∏

j=i+1

∣∣∣Q j,N j (ϕI ( j))

∣∣∣

≤
∑

i∈B1
M (I )

∣∣μ(ϕI (i)) − Qi,Ni (ϕI (i))
∣∣ ∏

j∈Bi+1
M (I )

∣∣∣Q j,N j (ϕI ( j))

∣∣∣ .

(4.8)

Equation (3.3) provides thebounds
∣∣μ(ϕI (i))−Qi,Ni (ϕI (i))

∣∣≤1+K
√

βWN eMNi /β
2

and
∣∣Qi,Ni (ϕI (i))

∣∣ ≤ K
√

βWN eMNi /β
2
for the constant K = 1.087 that, when

plugged in Eq. (4.8), yield

∣∣∣μd (ϕI ) − Qd
N (ϕI )

∣∣∣
≤

∑
i∈B1

M (I )

(
1 + K

√
βWN eMNi /β

2 ) ∏
j∈Bi+1

M (I )

K
√

βWN e
MN j /β

2
(4.9)
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=
∑

i∈B1
M (I )

(
1 + K

√
βWN eMNi /β

2 )(
K
√

βWN
)bi+1

M (I ) exp

(
1

β2

∑
j∈Bi+1

M (I )

MN j

)

≤ 2
∑

i∈B1
M (I )

(
K
√

βWN
)bi

M (I ) exp

(
1

β2

∑
j∈Bi

M (I )

MN j

)
,

where the last inequality is based on the facts that i ∈ Bi
M (I ) if i ∈ B1

M (I ) and

1 + K
√

βWN eMNi /β
2 ≤ 2K

√
βWN eMNi /β

2
, a consequence of K , β, WN ≥ 1.

Equations (4.6) and (4.9), together with Lemma 3.2, now yield

|μd ( f ) − Qd
N ( f )|

≤ 2‖ f ‖H d τd/2
∑

I ∈AM

λ|I |/2 ∑
i∈B1

M (I )

(
K
√

βWN
)bi

M (I ) exp

(
1

β2

∑
j∈Bi

M (I )

MN j

)

≤ 2‖ f ‖H d τd/2(K√βWN
)d ∑

I ∈AM

λ|I |/2 ∑
i∈B1

M (I )

exp

(
1

β2

∑
j∈Bi

M (I )

MN j

)

≤ 2d‖ f ‖H d τd/2(K√βWN
)d ∑

I ∈AM

λ|I |/2 e|I |/β2

= 2d‖ f ‖H d
(
K
√

τβWN
)d ∑

I ∈AM

(√
λ e1/β

2 )|I |

≤ 2d‖ f ‖H d
(
K
√

τβWN
)d(√

λ e1/β
2 )M ∑

I≥0

(√
λ e1/β

2 )|I |

= 2d‖ f ‖H d
(
K
√

τβWN
)d(√

λ e1/β
2 )M( 1

1 − √
λ e1/β2

)d
.

The claim therefore holds with

C = 2d

(
K

√
τβ

1 − √
λ e1/β2

)d

and η = √
λ e1/β

2
< 1. (4.10)


�

A multivariate version of Theorem 3.2 is obvious.

5 Numerical experiments

This section contains numerical experiments on properties and accuracy of the
approximate Gaussian kernel quadrature weights defined in Theorems 2.2 and 4.1.
The experiments have been implemented in MATLAB, and they are available at
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https://github.com/tskarvone/gauss-mercer. The value α = 1/
√
2

is used in all experiments. The experiments indicate that

1. Computation of the approximate weights in Eq. (2.11) is numerically stable.
2. The weight approximation is quite accurate, its accuracy increasing with the num-

ber of nodes and the length-scale, as predicted in Sect. 2.5.
3. The weights wk,n and w̃k,n are positive for every N and n = 1, . . . , N and their

sums converge to one exponentially in N .
4. The quadrature rule Q̃k converges exponentially, as implied by Theorem 3.2 and

empirical observations on the behaviour of its weights.
5. In numerical integration of specific functions, the approximate kernel quadrature

rule Q̃k can achieve integration accuracy almost indistinguishable from that of
the corresponding Gaussian kernel quadrature rule Qk and superior to some more
traditional alternatives.

This suggest Eq. (2.11) can be used as an accurate and numerically stable surrogate for
computing the Gaussian kernel quadrature weights when the naive approach based on
solving the linear system (1.2) is precluded by ill-conditioning of the kernel matrix.
Furthermore, the choice (2.10) of the nodes by scaling the Gauss–Hermite nodes
appears to yield an exponentially convergent kernel quadrature rule that has positive
weights.

5.1 Numerical stability and distribution of weights

We have not encountered any numerical issues when computing the approximate
weights (2.11). In this example we set N = 99 and examine the distribution of
approximate weights w̃k,n for � = 0.05, � = 0.4 and � = 4. Figure 1 depicts (i)
approximate weights w̃k,n , (ii) absolute kernel quadrature weights

∣∣wk,n
∣∣ obtained by

solving the linear system (1.2) for the points x̃n and, for � = 4, (iii) Gauss–Hermite
weights wGH

n . The approximate weights w̃k,n display no signs of numerical instabili-
ties; their magnitudes vary smoothly and all of them are positive. That w̃k,1 > w̃k,2
for � = 0.05 appears to be caused by the sum in Eq. (2.11) having not converged
yet: the constant 2α2β2/(1 + 2δ2) − 1, that controls the rate of convergence of this
sum, converges to 1 as � → 0 (in this case its value is 0.9512) and H2m(xGH

1 ) > 0 for
every m = 1, . . . , 49 while H2m(xGH

n ) < 0 for m = 46, 47, 48, 49. This and further
experiments in Sect. 5.2 merely illustrates that quality of the weight approximation
deteriorates when � is small—as predicted in Sect. 2.5. Behaviour of w̃k,n is in stark
contrast to the naively computed weights wk,n that display clear signs of numerical
instabilities for � = 0.4 and � = 4 (condition numbers of the kernel matrices were
roughly 2.66 × 1016 and 3.59 × 1018). Finally, the case � = 4 provides further evi-
dence for numerical stability of Eq. (2.11) since, based on Sect. 2.5, w̃k,n → wGH

n
as � → ∞ and, furthermore, there is reason to believe that wk,n would share this
property if they were computed in arbitrary-precision arithmetic. Section 5.3 and the
experiments reported by Fasshauer and McCourt [12] provide additional evidence for
numerical stability of Eq. (2.11).
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Fig. 1 Absolute kernel quadrature weights, as computed directly from the linear system (1.2), and the
approximate weights (2.11) for N = 99, nodes x̃k,n , and three different length-scales. Red is used to
indicate those of wk,n that are negative. The nodes are in ascending order, so by symmetry it is sufficient
to display weights only for n = 1, . . . , 50 (in fact, wk,n are not necessarily numerically symmetric; see
Sect. 5.2). The Gauss–Hermite nodes and weights were computed using the Golub–Welsch algorithm [13,
Section 3.1.1.1] andMATLAB’s variable precision arithmetic. Equation (2.11) did not present any numerical
issues as the sum, which can contain both positive and negative terms, was always dominated by the positive
terms and all its terms were of reasonable magnitude

5.2 Accuracy of the weight approximation

Next we assess quality of the weight approximation w̃k ≈ wk . Figure 2 depicts the
results for a number of different length-scales in terms of norm of the relative weight
error,

√√√√ N∑
n=1

(
wk,n − w̃k,n

wk,n

)2
. (5.1)

As the kernel matrix quickly becomes ill-conditioned, computation of the kernel
quadrature weights wk is challenging, particularly when the length-scale is large.
To partially mitigate the problem we replaced the kernel quadrature weights with their
QR decomposition approximations w̃M

k derived in Sect. 2.2. The truncation length M
was selected based on machine precision; see [12, Section 4.2.2] for details. Yet even
this does not work for large enough N . Because kernel quadrature rules on symmetric
point sets have symmetric weights [16,28, Section 5.2.4], breakdown in symmetricity
of the computed kernel quadrature weights was used as a heuristic proxy for emer-
gence of numerical instability: for each length-scale, relative errors are presented in
Fig. 2 until the first N such that

∣∣1 − wk,N /wk,1
∣∣ > 10−6, ordering of the nodes being

from smallest to the largest so that wk,N = wk,1 in absence of numerical errors.

5.3 Properties of the weights

Figure 3 shows the minimal weights minn=1,...,N w̃k,n and convergence to one of∑N
n=1

∣∣w̃k,n
∣∣ for a number of different length-scales. These results provide strong

numerical evidence for the conjecture that w̃k,n remain positive and that the assump-
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Fig. 2 Relative weight approximation error (5.1) for different length-scales
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Fig. 3 Minimal weights and convergence to one of the the sum of absolute values of the weights for six
different length-scales

tions of Theorem 3.2 hold. Exact weights, as long as they can be reliably computed
(see Sect. 5.2), exhibit behaviour practically indistinguishable from the approximate
ones and are not therefore depicted separately in Fig. 3.

5.4 Worst-case error

The worst-case error e(Q) of a quadrature rule Q( f ) = ∑N
n=1 wn f (xn) in a repro-

ducing kernel Hilbert space induced by the kernel k is explicitly computable:

e(Q)2 = μ(kμ) +
N∑

n,m=1

wnwmk(xn, xm) − 2
N∑

n=1

wnkμ(xn). (5.2)

Figure 4 compares the worst-case errors in the RKHS of the Gaussian kernel for
six different length-scales of (i) the classical Gauss–Hermite quadrature rule, (ii) the
quadrature Q̃k( f ) =∑N

n=1 w̃k,n f (x̃n) of Theorem 2.2, and (iii) the kernel quadrature
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Fig. 4 Worst-case errors (5.2) in the Gaussian RKHS as functions of the number of nodes of the quadrature
rule of Theorem 2.2 (SGHKQ), the kernel quadrature rule with nodes placed uniformly between the largest
and smallest of x̃n (UKQ), and the Gauss–Hermite rule (GH). WCEs are displayed until the square root of
floating-point relative accuracy (≈ 1.4901 × 10−8) is reached

rulewith its nodes placed uniformly between the largest and smallest of x̃n .We observe
that Q̃k is, for all length-scales, the fastest of these rules to converge (the kernel
quadrature rule at x̃n yields WCEs practically indistinguishable from those of Q̃k

and is therefore not included). It also becomes apparent that the convergence rates
derived in Theorems 3.1 and 3.2 for Q̃k are rather conservative. For example, for
� = 0.2 and � = 1 the empirical rates are e(Q̃k) = O(e−cN ) with c ≈ 0.21 and
c ≈ 0.98, respectively, whereas Eq. (3.4) yields the theoretical values c ≈ 0.00033
and c ≈ 0.054, respectively.

5.5 Numerical integration

Set � = 1.2 and consider the integrand

f (x) =
d∏

i=1

exp

(
− ci x2i

2�2

)
xmi . (5.3)

When 0 < ci < 4 and mi ∈ N for each i = 1, . . . , d, the function is in H [25,
Theorems 1 and 3]. Furthermore, the Gaussian integral of this function is available in
closed form:

(2π)−d/2
∫
Rd

f (x) e−‖x‖2/2 dx =
d∏

i=1

mi !
2mi /2(mi/2)!

(
�√
ci

)mi +1( 1

1 + �2/ci

)(mi +1)/2

when mi are even (when they are not even, the integral is obviously zero). Figure 5
shows integration error of the three methods (or, in higher dimensions, their tensor
product versions) used in Sect. 5.4 and the kernel quadrature rule based on the nodes
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Fig. 5 Error in computing the Gaussian integral of the function (5.3) in dimensions one and three using
the quadrature rule of Theorem 2.2 (SGHKQ), the corresponding kernel quadrature rule (KQ), the kernel
quadrature rule with nodes placed uniformly between the largest and smallest of x̃n (UKQ), and the Gauss–
Hermite rule (GH). Tensor product versions of these rules are used in dimension three

x̃n for (i) d = 1, m1 = 6, c1 = 3/2 and (ii) d = 3, m1 = 6, m2 = 4, m3 = 2,
c1 = 3/2, c2 = 3, c3 = 1/2. As expected, there is little difference between Q̃k and
Qk .
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