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In the cooling concept by adiabatic melting, solid 4He is converted to liquid and mixed with 3He to produce
cooling power directly in the liquid phase. This method overcomes the thermal boundary resistance that
conventionally limits the lowest available temperatures in the helium fluids and hence makes it possible to reach
for the temperatures significantly below 100 μK. In this paper we focus on the thermodynamics of the melting
process, and examine the factors affecting the lowest temperatures achievable. We show that the amount of
3He−4He mixture in the initial state, before the melting, can substantially lift the final temperature, as its normal
Fermi fluid entropy will remain relatively large compared to the entropy of superfluid 3He. We present the
collection of formulas and parameters to work out the thermodynamics of the process at very low temperatures,
study the heat capacity and entropy of the system with different liquid 3He, mixture, and solid 4He contents,
and use them to estimate the lowest temperatures achievable by the melting process, as well as compare our
calculations to the experimental saturated 3He−4He mixture crystallization pressure data. Realistic expectations
in the execution of the actual experiment are considered. Further, we study the cooling power of the process, and
find the coefficient connecting the melting rate of solid 4He to the dilution rate of 3He.

DOI: 10.1103/PhysRevB.99.054502

I. INTRODUCTION

One of the persistent great problems in the field of low-
temperature physics is the search for superfluidity of 3He
diluted by 4He. Superfluidity of pure 4He was discovered in
the late 1930s [1,2] at around 2 K, but the superfluidity of
pure 3He was observed not until three decades later, at three
orders of magnitude lower temperature [3,4]. To achieve that,
completely new cooling methods had to be developed. In the
quest for superfluidity of 3He in 3He−4He mixture, we are
in a similar situation: We have exhausted the search space
available using the present cooling techniques, and hence a
new approach is needed. The target temperatures are below
100 μK, where a BCS-type superfluid transition is expected
to occur between weakly interacting 3He atoms in the isotope
mixture [5–8]. Such a system would be a unique dense double-
superfluid ensemble consisting of fermionic 3He and bosonic
4He superfluids. In sparse ultracold atomic gases, this kind of
mixture superfluid phase has already been observed [9,10].

Adiabatic melting of solid 4He followed by its mixing with
3He is one novel cooling technique proposed to achieve this
temperature range. The major advantage of the method is that
it bypasses the rapidly increasing thermal boundary resistance
that limits the lowest temperatures available with external
cooling methods, such as adiabatic nuclear demagnetization.

*tapio.riekki@aalto.fi

Even as the walls of a helium container can be cooled to
tens of microkelvins range, the liquid inside will remain at an
elevated temperature due to the poor thermal coupling across
the thermal boundary resistance bottleneck. No matter how
small the heat load to the liquid is, the cooling power across
the bottleneck will struggle to overcome it when temperature
is low enough. The lowest directly measured temperature in
3He−4He mixture was 97 μK reported by Oh et al. [11],
achieved in an experimental volume with about 4000 m2

surface area cooled by a two-stage nuclear demagnetization
cryostat.

Since the cooling by adiabatic melting takes place directly
in liquid helium, the thermal boundary resistance is no longer
the main factor limiting the final temperature. In this tech-
nique, first, a system of solid 4He and liquid 3He is precooled
to as low temperature as possible with an external cooling
method. Then, as the solid is melted, it releases liquid 4He
which will be mixed with 3He producing cooling due to the
latent heat of mixing. The principle of operation is somewhat
similar to a conventional dilution refrigerator, the difference
being that the adiabatic melting method is not continuous, and
takes place at an elevated pressure [12–14].

The realization of the adiabatic melting experiment is
quite a technical challenge [13]. In this paper, however, we
focus on the thermodynamic aspects: The success of the
melting process depends on the initial conditions and the
proper execution. The final temperature ultimately achievable
by this method is determined by the initial contents of the
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experimental cell, which should have as little entropy as pos-
sible to begin with. An ideal initial state would contain only
solid pure 4He, which has negligibly small entropy, and pure
superfluid 3He. Below the superfluid transition temperature,
its entropy decreases exponentially with temperature, so that
even a small reduction in the starting temperature can signif-
icantly diminish the entropy content of the total system. In
actual cases, however, there is always some 3He−4He mixture
present, and already in quite small quantities its contribution
easily dominates the total initial entropy.

We begin this paper by presenting the formulas and pa-
rameters to calculate the heat capacity and entropy of the
pure 3He–mixture–solid 4He-system at 4He crystallization
pressure, and then we examine the final temperatures that can
be reached with different starting conditions. A figure of merit
is the cooling factor, i.e., the ratio between the initial and the
final temperature. We will also discuss the cooling power due
to the melting/mixing process, which is proportional to the
phase transfer rate of 3He, which, in turn, is related to the rate
at which the 4He crystal is melted. Finally, we will compare
the temperature dependence of the crystallization pressure
deduced from our calculations to the experimentally obtained
values.

II. HEAT CAPACITY AND ENTROPY

We concentrate on the low-temperature properties (mostly
below 10 mK) of phase-separated 3He−4He mixture at its
crystallization pressure PC = 2.564 MPa [15]. Our system
thus consists of liquid rich and dilute 3He phases, as well
as solid 4He phase. Under these conditions, the 3He rich
phase is pure 3He, while the 3He dilute phase contains a
certain amount of 3He down to the zero-temperature limit.
This finite solubility is the basis of not only the conventional
dilution refrigerator but also the adiabatic melting method.
Superfluid 4He of the mixture phase is basically in its quantum
mechanical ground state and it acts as an inert background

for the 3He quasiparticles affecting on their effective mass
[16]. Meanwhile, the solid phase can be assumed to be pure
4He, provided that the crystal was grown at sufficiently low
temperature (�50 mK) [17–19].

The only free thermodynamic parameter of the system is
temperature T , as the solid 4He phase fixes the pressure to
the crystallization pressure, and the presence of the rich 3He
phase ensures that the dilute 3He−4He mixture remains at its
saturation concentration x = 8.12% [20]. The system is thus
a univariant three-phase system.

The Fermi systems in question, 3He in the rich or dilute
phase, are deep in the degenerate state so that the normal
fluid heat capacity is directly proportional to the temperature
C ∝ T . At the superfluid transition temperature of the pure
3He (Tc), its heat capacity suddenly increases and then drops
exponentially towards lower temperatures. The isotope mix-
ture, however, maintains the linear temperature dependence
down to much lower temperatures, so that even a very small
amount of 3He−4He mixture will eventually dominate the
heat capacity of the entire system. Compared to that, we can
ignore the phonon contributions to the heat capacity. This
applies to all phases present, and in particular the heat capacity
of the solid 4He can thus be approximated as zero. Further, we
assume that the molar volumes of all phases remain constant.

For the Tc of pure 3He at the 3He−4He mixture crystalliza-
tion pressure, we use the value 2.6 mK given by Pentti et al.
[15]. This is about 10% higher than the transition tempera-
ture suggested by the provisional PLTS-2000 [21] tempera-
ture scale, but it is consistent with other characteristic 3He
temperatures, such as A-B and Néel transition temperatures,
carefully determined at our cryostat during other experiments
[22]. The precise value of the Tc is not critical to the most
of the analysis presented in this paper, however, as the heat
capacity and entropy can be given with respect to their value
at the Tc.

The values for the parameters used in the following calcu-
lations are listed in Table I.

TABLE I. Values of the parameters used in our calculations at saturated 3He−4He mixture crystallization pressure. Vm, TF,m, and TF,3 were
calculated using the other listed parameters, while A and B are fitting parameters for the pure 3He heat capacity below the Tc. ‡This value was
scaled due to the difference in the temperature scales between Ref. [24] and us (see text).

Parameter Symbol Value Ref.

3He−4He mixture crystallization pressure PC 2.564 MPa [15]
3He Sommerfeld constant‡ γ 3.44 K−1 [24]
3He superfluid transition temperature Tc 2.6 mK [15]
3He effective mass in 3He−4He mixture m∗/m3 3.32 [6]
Saturation concentration x 8.12% [20]
BBP-parameter α 0.164 [29]
Liquid 4He molar volume V4,l 23.16 cm3/mol [28]
Solid 4He molar volume V4,s 20.97 cm3/mol [32]
Liquid 3He molar volume V3 26.76 cm3/mol [31]
Liquid 3He−4He mixture molar volume Vm 23.47 cm3/mol Eq. (5)
3He−4He mixture Fermi temperature TF,m 0.378 K Eq. (4)
3He Fermi temperature TF,3 1.43 K = π 2(2γ )−1

Superfluid 3He energy gap �0 1.91Tc [26], [27]
First fitting parameter A 8.242 Eq. (3)
Second fitting parameter B 11.22 Eq. (3)
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The heat capacity for n moles of degenerate Fermi fluid is
given by [23]

C

nR
= π2

2

T

TF
, (1)

where R is the molar gas constant, and TF the Fermi temper-
ature. The heat capacity of normal fluid pure 3He is usually
expressed with the Sommerfeld constant γ = π2(2TF)−1 as

C3(T > Tc)

n3R
= γ T, (2)

where n3 is the amount of 3He in the pure phase. By interpo-
lating the data given by Greywall [24], we can find 4.14 K−1

for the γ -parameter at the PC. But the temperature scales used
by Greywall and us differ by about 10%, as manifested by the
different superfluid transition temperature values used by us
(Tc = 2.6 mK) and Greywall (Tc,Gw = 2.37 mK). Now, since
γ = C/T = dQ/(T dT ), we need to scale the above value by
(Tc,Gw/Tc)2 to maintain consistency, giving us γ = 3.44 K−1.
The value obtained this way is close to the coefficient inter-
polated from the data by Alvesalo et al. [25], approximately
3.2 K−1 at the PC. Although the about 20% margin in the
γ -parameter is rather inconvenient, it is not unheard of. As
already pointed out by Greywall [24], this magnitude of
discrepancy in the γ -values obtained by various experimental
groups can be attributed to the difference in their temperature
scales.

To describe the behavior of pure 3He below the superfluid
transition temperature Tc with a single smooth function over
the entire temperature range, we use the expression

C3(T � Tc)

n3R
= γ Tc

[(
A

T̃
+ BT̃ 2

)
exp

(
−�0

T

)]
, (3)

where T̃ = T/Tc is the reduced temperature, A and B are
fitting parameters, and �0 = 1.91Tc is the superfluid 3He
energy gap at the zero-temperature limit, taken as average of
the values given by Refs. [26] and [27]. The fit was made
against the normalized heat capacity data by Greywall [24].

The heat capacity of 3He−4He mixture is given by Eq. (1),
using the Fermi temperature of the mixture as [16,23]

TF,m = h̄2

2m∗kB

(
3π2NAx

Vm

)2/3

, (4)

where x = 8.12% [20] is the saturation concentration of the
mixture, and h̄, kB, and NA are the reduced Planck constant,
Boltzmann constant, and Avogadro constant, respectively. The
effective mass of 3He atom m∗ = 3.32m3 (m3 = 3.0160293 u
is the bare 3He mass) was calculated using the quasiparticle
interaction potential from Ref. [6] at the saturation concentra-
tion. Next, the molar volume of the mixture Vm is evaluated
from [5]

Vm = V4,l (1 + αx), (5)

where V4,l = 23.16 cm3/mol [28] is the molar volume of
liquid pure 4He, and α is the BBP-parameter that describes
the extra volume occupied by the lighter 3He atoms with
their larger zero-point motion. We use the value α = 0.164
extrapolated from Ref. [29]. With these the mixture molar
volume is Vm = 23.47 cm3/mol. The Fermi temperature of the
mixture is thus TF,m = 0.378 K, and the heat capacity per mole
of 3He in the mixture nm,3 becomes

Cm,3

nm,3R
= 13.05

T

K
. (6)

In Fig. 1 we show the heat capacities for several 3He/4He
partitions, starting from a system consisting of pure 3He

2.6 5.21.362.0 25.00.130.0520.0260.013
(mK)

[24]

FIG. 1. Total heat capacity of pure 3He (C3), and 3He−4He mixture (Cm,3) system per mole of 3He as a function of the temperature below
2Tc calculated from Eqs. (2), (3), and (6). The heat capacity values are scaled by its value at the pure 3He Tc. Experimental data for pure 3He
by Greywall [24] are shown for comparison. The percentages tell how the total amount of 3He in the system is split between pure 3He phase
and 3He−4He mixture phase.
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p

w
s

m

2.6 5.21.362.0 25.00.130.0520.0260.013
(mK)

T0

FIG. 2. Total entropy of pure 3He (S3), and 3He−4He mixture (Sm,3) system per mole of 3He as a function of the temperature below 2Tc.
The entropy values are scaled by its value at the pure 3He Tc. The red arrows indicate a solidification (s)–precooling (p)–melting (m)–warm-up
(w) cycle with 5% of the total 3He remaining in mixture after the solid growth, considered as quite a conservative value. The precooling
temperature is indicated as T0. The cycle was drawn assuming losses during the melting process (m) due to the heat leak to the experimental
cell, while during the solidification (s) the precooling starts already as the solid is growing. The red horizontal dashed lines indicate perfectly
adiabatic melting and solidification paths for comparison. The percentages tell how the total amount of 3He in the system is split between pure
3He phase and 3He−4He mixture phase.

together with solid 4He, and then letting a portion of the
total 3He amount to be in the mixture phase so that the total
3He amount of the system remains constant. Entropies of 3He
and mixture can then be calculated from the heat capacity as
the integral S = ∫ T

0
C
T ′ dT ′; in the case of Eq. (3) numerical

integration is required. They are shown in Fig. 2.
In an ideal, perfectly adiabatic melting process, where the

pure 3He phase shrinks and the mixture phase grows, one
moves horizontally from right to left in diagrams like those
of Figs. 1 and 2, and the final temperature will be determined
by the initial conditions alone. If the initial mixture amount is
vanishingly small, even minor improvements to the precooling
conditions lead to a huge gain in the cooling factor, since
the entropy of the pure superfluid 3He phase decreases ex-
ponentially. However, in realistic cases, there is always some
small amount of mixture left. Then, from Fig. 2 we see that
precooling the system to below 0.15Tc no longer decreases
the total entropy as rapidly, since even a minuscule mixture
amount is enough to become the main contributor to the total
entropy at those temperatures. 0.15Tc is quite a reasonable
value for a decent precooling temperature, as it can be reached
using an adiabatic nuclear demagnetization refrigerator. Fig-
ure 2 also shows an example of an operational cycle of the
cooling process, which begins with the solidification of the
4He crystal (s), followed by the precool along the constant
pure 3He–mixture content curve (p). When the set precooling
temperature T0 is reached, the melting process is initiated by
removing 4He from the cell (m), and at the end one reaches
the mixture curve. In practice, the crystal may not always be
completely melted, but as the remaining undissolved 3He has
only very small entropy, this will not greatly affect the final

temperature. When the melting is done, the system may be
allowed to warm-up back to the precooling temperature (w),
after which the crystal is regrown. The cycle in Fig. 2 was
drawn by assuming some losses in the melting process due to
the external heat leak to the experimental cell, which we have
taken to be of order 200 pW/mol3He.

III. COOLING FACTOR

Cooling factor of the adiabatic melting process cF is de-
fined as the ratio between the temperatures before and after the
melting, cF = T0/Tfinal. Above the pure 3He Tc, both the pure
and the dilute phase entropy follow the linear temperature
dependence, and hence the cooling factor remains constant.
The optimal value for the cooling factor above the Tc can be
evaluated from Eqs. (2) and (6) by assuming that the initial
state contains only pure 3He and solid 4He, while the final
state is exclusively 3He−4He mixture. We get cF(T > Tc) =
π2/(2γ TF,m) ≈ 3.8. The conventional dilution refrigerators
operate at low pressure with a cooling factor comparable to
this.

Below the Tc, however, the potential cooling factor in-
creases rapidly as soon as the entropy of pure 3He starts
to decrease exponentially. With ideal precooling conditions,
with the system at that stage consisting only of solid 4He and
superfluid pure 3He, with no mixture phase, the cooling factor
can reach values up to several hundreds as the precooling
temperature approaches 0.15Tc. The presence of the mixture
phase in the initial state severely limits the possible cooling
factors, as shown in Fig. 3. If even 1% of the total amount
of pure 3He remains in the mixture at the beginning, the

054502-4



THERMODYNAMICS OF ADIABATIC MELTING OF SOLID … PHYSICAL REVIEW B 99, 054502 (2019)

FIG. 3. Cooling factors in perfectly adiabatic melting processes, below 0.5Tc, as a function of the precooling temperature T0, with different
starting conditions from an ideal case with no mixture phase to one where 20% of the total 3He is in the mixture phase at the beginning of the
melting process. The solid lines indicate the melting processes that have no pure 3He left in the end, while the dash-dotted lines correspond to
incomplete melting processes ending with 5%, 10%, 15%, and 20% of the total 3He still in the pure 3He phase.

cooling factor levels out at around 100. Further precooling
will not help increase it, as the entropy of the entire system
is now dominated by the entropy of the mixture phase. Of
course, lower initial temperature still results in a lower final
temperature, but just in proportion. With nonideal starting
conditions, the upper limit for the cooling factor is deter-
mined by the ratio between the total amount of 3He in the
system and the amount of 3He in the mixture phase cF,max =
(n3 + nm,3)/nm,3. In conclusion, to achieve optimal cooling by
the adiabatic melting method, it is essential to minimize the
amount of 3He−4He mixture in the initial state.

Figure 3 shows not only the cooling factors in complete
melting processes where the final state contains no pure 3He
phase, but also the cooling factors for four different incom-
plete meltings. The effect on the cooling factor caused by
partial melting is not nearly as substantial as the presence
of the initial mixture phase. From practical aspects, it is not
always desirable to melt the crystal entirely to ensure easier
regrowth process as no new nucleation is required. Also, the
experimental cell may contain surplus of 3He to accommodate
separate sintered heat exchanger for the precooling stage,
where the mixture with rather large viscosity is not desired
to enter.

IV. COOLING POWER

The cooling power Q̇ of the adiabatic melting process is
due to the latent heat of mixing of 3He from the pure phase to
the mixture phase. It is given by

Q̇ = T ṅ3(Sm,3 − S3), (7)

where ṅ3 is the rate at which 3He is transferred between the
phases, and S3 and Sm,3 are the entropies per 3He atom in the

pure and the mixture phase, respectively. Well below the Tc,
when the temperature is low enough for the 3He−4He mixture
to dominate the total entropy of the system, we can ignore S3,
and the expression simplifies to

Q̇ ≈ 109
J

mol K2
ṅ3T 2. (8)

At T = 100 μK, and with ṅ3 = 100 μmol/s, this gives about
100 pW of cooling power. To achieve similar cooling power
with an external cooling method, the surface area of the
helium cell would have to be of order 10 000 m2, which
was estimated using the thermal boundary resistance values
from Ref. [30]. Such large surface areas are hard to obtain
in practice, as it would require several kilograms of sintered
silver powder layered on the cell surfaces.

The cooling power depends on the rate ṅ3, at which 3He
atoms transfer from the pure phase to the mixture phase. In the
actual experiment, we cannot directly measure this, but rather
we have control over the extraction rate of 4He out from the
cell (ṅ4). To facilitate the melting process, the 4He amount
corresponding to the molar volume difference between the
solid and liquid phases has to be removed from the cell, and
vice versa if the crystal is grown. Hence, it is essential to
calculate the conversion factor ϑ in ṅ3 = ϑ ṅ4, which tells
us how the extraction rate of 4He corresponds to the phase
transfer rate of 3He. Let us denote the total volume of the
experimental cell as v, and assume that it contains n3 moles
of pure 3He, ns moles of solid 4He, and nm moles of 3He−4He
mixture, and thus

v = n3V3 + nsV4,s + nmVm, (9)

where V3 = 26.76 cm3/mol [31] is the molar volume of pure
3He, and V4,s = 20.97 cm3/mol [32] is the molar volume
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of solid 4He, while Vm is as given by Eq. (5). When an
infinitesimal amount of solid is melted (or grown) the contents
change to

v = (n3 − dn3)V3 + (ns − dns)V4,s + (nm + dnm)Vm. (10)

Combining Eqs. (9) and (10), and taking the time derivative,
results in

ṅ3V3 + ṅsV4,s − ṅmVm = 0. (11)

The total amount of 3He in the system remains constant,
which means that

ṅ3 − xṅm = 0, (12)

while the amount of 4He is changing by the amount required
to melt the crystal, giving

ṅs − (1 − x)ṅm = ṅ4, (13)

where ṅ4 is the rate at which pure 4He is removed from the
cell. Using Eqs. (12) and (13) together with Eq. (11) yields

ṅ3V3 +
[

ṅ4 + (1 − x)
ṅ3

x

]
V4,s − ṅ3Vm = 0

⇒ ṅ3 = xV4,s

(1 + αx)V4,l − xV3 − (1 − x)V4,s
ṅ4

≡ ϑ ṅ4. (14)

With the numerical values, that can be found from Table I,
we get ϑ ≈ (0.84 ± 0.01). Using this, the low temperature
cooling power of the adiabatic melting, expressed in terms of
the 4He extraction rate, becomes

Q̇ = 109
J

mol K2
ϑ ṅ4T 2 ≈ 91

J

mol K2
ṅ4T 2. (15)

Figure 4 shows the cooling power up to 400 μmol/s ex-
traction rates. Since there inevitably exists some background
heat leak in any real experimental setup, the lowest possi-
ble temperature is reached when the cooling power matches

FIG. 4. Cooling power of the adiabatic melting method at dif-
ferent 4He extraction rates ṅ4 calculated from the entropy difference
between the mixture and pure 3He phases [Eq. (7)].

the heat leak. Furthermore, the melting process itself may
cause rate dependent dissipation due to the movement of the
pure 3He–mixture interface, for example. Therefore, there
obviously exists an optimal melting rate which maximizes
the cooling power while keeping any additional losses at
sustainable level. With proper cell design the dissipative losses
should not become an issue. 400 μmol/s under 100 pW load
results in the equilibrium at T ≈ 0.022Tc ≈ 60 μK.

As a side note, another useful conversion factor is the
change in the amount of solid in the cell ṅs, when ṅ4

4He is
added or removed. We can solve it by eliminating ṅ3, and ṅm

from Eqs. (12)–(14), yielding

ṅs =
[

1 +
(

1 − 1

x

)
ϑ

]
ṅ4 ≈ 10.5ṅ4. (16)

This is useful in determining the amount of solid 4He in the
cell. Further, the denominator of Eq. (14) can be rearranged to

�V = (V4,l − V4,s) + x(αV4,l − V3 + V4,s)

≈ (2.19 − 1.99x) cm3/mol, (17)

which is the change in the molar volume between solid and
liquid phase in the saturated mixture. The first term is the
molar volume difference between pure liquid 4He and solid
4He, while the second term is due to the presence of 3He.

V. CRYSTALLIZATION PRESSURE

Once we have the entropies and molar volumes for all
components of the system, we can work out the slope of the
crystallization pressure as the function of temperature through
the Clausius-Clapeyron relation dPC/dT = �S/�V . This is
a directly measurable quantity. Both at the zero-temperature
limit and above the Tc up to about 50 mK this is directly
proportional to temperature, so that the derivative of PC with
respect to T 2 is expected to be constant at these regimes.

Above the Tc, the quadratic crystallization pressure coeffi-
cient is given by [15]

dPC

d (T 2)

∣∣∣∣
T >Tc

= x(Sm,3 − S3)

2�V

= xπ2R

4�V

(
1

TF,m
− 1

TF,3

)
, (18)

where �V is given by Eq. (17), and TF,m and TF,3 = π2(2γ )−1

are the mixture and the pure 3He Fermi temperatures, re-
spectively. At the zero-temperature limit (effectively when
T � 0.2Tc), this reduces to [15]

dPC

d (T 2)

∣∣∣∣
T →0

= xSm,3

2�V
= xπ2R

4�V TF,m
, (19)

as S3 � Sm,3. The ratio of the coefficients between the two
regimes is then (1 − TF,m/TF,3)−1, which assumes the numer-
ical value 1.36 with our choice of parameters (Table I).

There are experimental data on these coefficients at dif-
ferent temperature intervals in Refs. [15], [33], and [34].
Pentti et al. [15] give data within a limited temperature
range both below and above the Tc and quote the values
0.92 Pa(mK)−2 above the Tc and 1.52 Pa (mK)−2 at the zero-
temperature limit, resulting in a ratio 1.65 between the two.

054502-6



THERMODYNAMICS OF ADIABATIC MELTING OF SOLID … PHYSICAL REVIEW B 99, 054502 (2019)

(a)

(b)

FIG. 5. Difference of the crystallization pressure �PC from the
pure 4He zero-temperature value (2.530 MPa) as a function of T 2.
(a) The data points are the experimental data by Salmela et al.
[33] (•) and Pentti et al. [15] (◦), while the solid line is a fit
to the (•) data with K = dPC/d (T 2) = (1.6 ± 0.1) Pa (mK)−2 and
P0 = (33.8 ± 0.1) kPa. The dashed lines indicate the confidence
bounds of the fit. (b) Close-up of the crystallization pressure data by
Pentti et al. [15].

Salmela et al. [33] give data in the normal state up to about
50 mK. However, they present fitted values for the quadratic
coefficients only at constant concentrations below saturation
(thus on crucially different two-phase systems), but the paper
also gives data on the saturated system as discrete points.
Performing a similar fit upon these data gives the quadratic
coefficient (1.6 ± 0.1) Pa (mK)−2, represented in Fig. 5. This
result is in perfect agreement with the corresponding value
dPC/d (T 2) = 1.60 Pa(mK)−2 calculated with Eq. (18) using
the parameters at Table I [below the Tc with Eq. (19) we
get 2.17 Pa (mK)−2 ]. This result thus supports the validity
of our adopted parameter values. In particular, our choice
for the Tc = 2.6 mK at the mixture crystallization pressure,
the overall temperature scale, and the suggested scaling for
the normal state heat capacity coefficient γ of pure 3He get
some backing from this. Without scaling the Greywall’s [24]
γ value, the above Tc slope would become 1.48 Pa (mK)−2,
which is also off from the value determined by Pentti et al.
[15] [0.92 Pa(mK)−2].

Yet another set of data can be found from Ref. [34],
whose measurements extend beyond the domain of valid-
ity of the quadratic temperature dependence. These authors
give the quadratic coefficient as 1.285 Pa(mK)−2 and find
it necessary to amend the description by a quartic term
−2.065 MPa(mK)−4, good from 60 to 140 mK. The devia-
tion from the quadratic behavior is caused in part by the
increase in the liquid mixture saturation concentration when
the temperature rises, by the molar volumes departing from
their constant values, but most importantly by the fact that 3He
begins to dissolve into the solid phase as well at that range of
temperatures. The extremely neat quadratic behavior of PC(T )
below 50 mK demonstrates that the solid phase is indeed free
from dissolved 3He there.

The inconveniently broad range of the quadratic coeffi-
cients above the Tc indicated by these works is, of course,
somewhat disconcerting. The measurements of Refs. [33]
and [15] utilized differential pressure gauges with extremely

good sensitivity, but the measurements of Ref. [15] may have
suffered from the effect of rather small reference volume,
as discussed in Ref. [35]. This deficit was improved by
the measurements in Ref. [33]. Also, the temperature span
covered in Ref. [15] was rather limited and the quoted value
for the saturation concentration 7.3% is questionable. No good
reason for the discrepancy between the measurements in Refs.
[33] and [34] can be given, except that the necessity to include
the quartic term in the fit of Ref. [34] may have introduced
some bias towards the quadratic term as well. The conclusion
must be that the genuine values for these parameters at very
low temperatures are not yet as well established as one might
wish.

VI. CONCLUSIONS

Growing the solid phase into a helium mixture at low
temperature can result in a complete phase-separation into
solid 4He and liquid 3He. Adiabatic melting of such solid
4He, and its following mixing with liquid 3He is a cooling
method that can be used in attempts to reach sub-100 μK tem-
peratures in superfluid 3He and saturated 3He−4He mixture
at its crystallization pressure. The ability to reach the lowest
possible temperature is strongly dependent on the mixture
content of the experimental volume before the melting process
is initiated: Relative to pure superfluid 3He, 3He−4He mixture
carries a large amount of entropy, and therefore its presence in
the initial state can significantly limit the final temperature.
The ideal initial state would contain only solid 4He and
pure 3He, and since below the Tc, the pure 3He entropy will
decrease exponentially, the total entropy content of the system
drops rapidly enabling reduction in temperature ideally by
several orders of magnitude.

The question regarding the practical execution of the ex-
periment is how to minimize the amount of the initial state
mixture. If the mixture amount is determined by some in-
trinsic property of the setup, such as geometry disrupting the
growth of the solid, or porous structures (e.g., sinter) trapping
the mixture phase, one cannot reduce it below some threshold
value. Another question is whether it is safe to assume that
there are no 3He inclusions in the solid phase. Such 3He
bubbles in the crystal would remain hotter than the bulk liquid
during the precooling process, and while melting one should
then be able to observe sudden heating spikes caused by the
release of these inclusions. This can obviously be avoided by
proper growing conditions [17] and is not expected to be a
serious issue.

Another crucial point is to determine where the heat leak
to the experimental cell is coming from, and how to minimize
it. Some of it is coming from the precooling stage through
the thermal boundary resistance bottleneck, since the liquid is
cooled to a lower temperature than the cell structures at the
melting period. Measurements themselves contribute to this
and the connecting capillaries are bound to conduct heat from
the hotter parts of the cryostat. Since one can never completely
get rid of the heat leak, an obvious question is, what is the
optimal melting rate of the solid under the given conditions.
The heat leak would have the least effect on the final temper-
ature if the melting was done as quickly as possible, limited
by the critical velocity in the 4He extraction line, or the time
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needed for performing the necessary measurements. But if
there are some dissipative losses related to the movement of
the pure 3He–mixture-interface, then there may exist possibly
lower optimum value. These questions will be addressed in the
future, once our running experiment has produced sufficient
amount of data to enable such analysis.
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