Climente-Alarcon, Vicente; Arkkio, Antero; Antonino-Daviu, Jose A.

2-D magnetomechanical transient simulation of a motor with a bar breakage

Published in:
Proceedings of the 11th IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2017

DOI:
10.1109/DEMPED.2017.8062339

Published: 01/01/2017

Document Version
Peer reviewed version

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
2-D Magnetomechanical Transient Simulation of a Motor with a Bar Breakage

Vicente Climente-Alarcon, Antero Arkkio
Dept. of Electrical Engineering and Automation
Aalto University
Espoo, FINLAND
vielal@ieee.org, antero.arkkio@aalto.fi

José A. Antonino-Daviu
Instituto Tecnológico de la Energía, ITE
Universitat Politècnica de València
Valencia, SPAIN
joanda@die.upv.es

Abstract—The analysis of the vibration response of electrical machines has importance in noise prediction and more recently, fault diagnosis. This work presents a strongly coupled 2-D magnetomechanical simulation of an induction machine under heavy operational conditions: a direct-on-line startup. Both healthy and broken bar states are simulated in a time span long enough to allow the detailed study of the varying frequency components. The results yield, in addition to the usual electrical and magnetic quantities, electromagnetic induced vibration components in the stator. A comparison with current and vibration experimental data is also performed.

Keywords—induction motors, finite element analysis, fault diagnosis, rotors, vibrations, multiphysics.

I. INTRODUCTION

The diagnosis of rotating equipment in general and more specifically rotating electrical machines by examining its vibrational response is a well establish technique advantageously applied in the industry for its non-invasive nature, effectiveness in detecting and tracking defects, such as bearing faults [1, 2] and shorted rotor laminations [3], and conceptual simplicity, since it is related to the sound emission of such equipment.

Nevertheless, the study of the effect of electrical faults in the vibration characteristics of the machine is troublesome, due to its complex construction, with laminated cores, slots and either wound or encased conductors, the interaction between mechanical and electromagnetic phenomena, and the influence of temperature changes in the response of the system [4].

Comprehensively, seminal works on fault diagnosis of induction motors used the analytical study of the airgap flux permeance components to assess the impact of eccentricity in the vibration’s time and spatial waves of the machine [5]. In this case the influence of the system’s mechanical response to the magnetic force produced by those additional harmonics is not taken into account, just assuming that those same components exciting the structure from the airgap will appear on the external frame of the motor. Despite of this, several predicted frequencies and spatial waves could be detected in the experimental validation. A similar approach was followed in [6] where, due to the increasing availability of computational resources, a 2-D finite element simulation was performed instead to compute the electromagnetic state of an induction motor suffering electrical faults, the stress waves created by the radial magnetic flux density on the stator teeth were decomposed as a double Fourier series and the results experimentally validated.

A full consideration of the stator structure, able to predict not only the frequencies of some harmonics but the complete response of the machine, was recently proposed. In [7] a weak coupling between the 2-D electromagnetic finite element computation and a detailed 3-D structural model of the stator and end shields, validated by modal analysis, was introduced. A projection algorithm linked both models. The results were able to reproduce saturation and loading effects on the vibration waveforms measured on the stator frame and predict its main spatial waves. These models were applied in [8] to the difficult task of assessing the amplitude variation of specific vibration components according to the severity of the fault, in this case a bar breakage. A good agreement was obtained when the cases of a small number broken bars were studied. However, only frequencies between 87 Hz and 220 Hz were examined for stationary operation and the influence of the skew of the bars was not considered.

Nevertheless, the current trend in the development of computational procedures to predict the vibrations of an electrical machine aims at avoiding the excitation of the mechanical model on its inner surfaces using the Maxwell stress tensor (MST). Magnetic forces caused by the flux also inside the iron are computed instead and, in some cases, even the effect of magnetostriiction is taken into account, which would yield more accurate results concerning the amplitude of the vibrations generated [9]. Despite all these recent improvements, in this work it was preferred to maintain the relative simplicity of a 2-D magnetomechanical finite element analysis coupled using the MST on the inner surfaces of the stator with the purpose of performing a long time-stepping simulation able to reproduce a heavy transient in an induction machine.

During transients such as a direct-on-line startup, the motor is subjected to high mechanical and electrical stresses and incipient faults may be easier to detect [10], yet the analysis of quantities becomes more complicated as the frequency decomposition using the Fast Fourier Transform (FFT) is generally unsuitable to be applied to study rotor-generated components. Several signal analysis procedures have been devised, tested and validated for diagnosis of motors under transient operation based on different time-frequency decomposition (TFD) tools, such as discrete [11] and continuous [12] Wavelets, the Hilbert Huang transform (HH) [13] and the Wigner-Ville (WVD) and Zhao-Atlas-Marks...
distributions (ZAM) [14-16], among others. Nonetheless, their application to the study of the complex vibrational response of a motor under such demanding conditions has been limited. In [17] the axial vibration of a double cage motor under Field Oriented Control (FOC) was examined using an approach based on the discrete Wavelet transform with the purpose of detecting a bar breakage. The ZAM is utilized in [16] to tackle the problem of analyzing a long startup in which sidebands around the Principal Slot Harmonics (PSH) were detected.

Thus, the aim of this work is to simulate the vibrational response of the motor tested in [16]. In this way, mechanical and electromagnetic quantities can be compared and an initial assessment of how they influence each other during the severe conditions of a direct-on-line (DOL) startup can be established.

For this purpose, the remaining of this paper is structured as follows: Section II introduces in detail the computational method used to carry out the simulations, Section III explains the expected evolutions of the harmonics introduced by the bar breakage in the current and vibration spectrum and summarizes the signal processing method employed to study them. Section IV presents the results and Section V yields the conclusions reached.

II. COMPUTATIONAL PROCEDURE

COMSOL commercial finite element analysis software has been used to perform two multiphysics simulations (healthy and one broken bar states) using two coupled solvers: rotating machinery (magnetic) and solid mechanics (linear elastic).

A. Electromagnetic Analysis

The conventional 2-D formulation for finite element analysis of electrical machines has been employed to obtain the electromagnetic state of the machine during the transient. Eq. 1, in which \(\mu \) stands for the magnetic permeability for the corresponding material, \(\sigma \) for its conductivity and \(A \) for the component of the magnetic vector potential perpendicular to the computing plane, is solved along the circuit equations. The parameter \(k \) takes a value of 0 in most of the mesh, except for the stator and rotor slots, where it equals the current density in the first case and a value dependent on the voltage difference at the bar ends for the second.

\[
-\nabla \cdot \left(\frac{1}{\mu} \nabla A \right) + \sigma \frac{\partial A}{\partial t} = k \tag{1}
\]

The electromagnetic torque is computed integrating the Maxwell stress tensor around the perimeter of the rotor and used in the movement equations to obtain its position in the next time step

\[
\tau_{MST} = \begin{pmatrix} B_t^2 - \frac{1}{2} |B|^2 & B_r B_t \\ B_r B_t & B_t^2 - \frac{1}{2} |B|^2 \end{pmatrix} \tag{2}
\]

where \(B_r \) is the radial and \(B_t \) the tangential component of the magnetic flux density.

B. Solid mechanics analysis

With the purpose of studying the effect of the bar breakage in the vibrational spectrum of the machine, a linear elastic finite element computation is applied to the stator iron. The equation to be solved is

\[
\rho \frac{\partial^2 \mathbf{d}}{\partial t^2} - \nabla \cdot \mathbf{\tau} = \mathbf{f} \tag{3}
\]

where \(\rho \) is the density, \(\mathbf{d} \) the displacement field, \(\mathbf{f} \) the given volume force and \(\mathbf{\tau} \) the stress tensor, which is related to the displacements by the strain \(\varepsilon \) and the elastic modulus \(\mathbf{C} \); in this computation reduced to a scalar, since no anisotropy in the material was considered.

\[
\varepsilon = \frac{1}{2} (\nabla \mathbf{d} + (\nabla \mathbf{d})^T) \tag{4}
\]

\[
\mathbf{\tau} = \mathbf{C} : \varepsilon \tag{5}
\]

The coupling between both solvers, electromagnetic and linear elastic, is carried out along the internal surfaces of the stator, setting as force boundary condition the output of the integration of the Maxwell stress tensor (2) on those same surfaces. For this particular case, the expression is simplified to just:

\[
\mathbf{\tau} = \mathbf{\tau}_{MST} \tag{6}
\]

The setting of the corresponding values for the external surface in this 2-D simulation is not trivial, since the body of the motor is actually supported only at two small segments of its entire length. In this case it has been decided to limit the displacements along the entire external perimeter of the stator to zero, imposing a Dirichlet boundary condition. Fig. 1 shows these arrangements.

More than 3.3 seconds of the startup transient of a healthy motor and a motor having a broken bar have been simulated. The breakage was reproduced adding in the circuit equations...
of the rotor a series resistance on one bar with a value several orders of magnitude higher than the calculated bar resistance. For the linear elastic analysis silicon steel was selected for the stator with an elastic modulus of 193 GPa and a Poisson’s coefficient of 0.29. Since the displacements on the stator surface were not allowed, the stress in both directions in a point situated in the intersection of the horizontal symmetry plane with this external surface were measured instead (Fig. 1).

III. ANALYSIS PROCEDURE

In this section the components introduced by the bar breakage in both the stator’s vibration response and the stator’s currents are presented, as well as a summary of the signal analysis procedure used to depict and quantify their variable frequency evolution during the DOL startup transient.

A. Components arisen due to the asymmetry

In [16] it was obtained, following the rotating field approach, an expression for the vibrational high frequency components evolution with respect to the slip s:

$$f_{v,\text{high}}(s) = \left(k_1 R \frac{1-s}{p} \pm k_2 2s \pm k_3 \right) f$$ \hspace{1cm} (7)

where R is the number of rotor bars, p the number of pole pairs and f is the stator’s feeding frequency. This equation (7) depicts the rotor bar passing frequency (RBPF) and its harmonics (k_1, k_3), for a healthy machine if $k_2 = 0$ (shown in Fig. 2 as (a1)). However, in the case a bar breakage exists, it was proved in [16] that the negative sequence component that arises due to this disturbance in the rotor m.m.f. produces additional sidebands with a characteristic evolution during a direct-on-line startup ($k_2 \neq 0$) (a2).

Furthermore, if there is no current flowing in one bar, its corresponding field won’t exist and hence an unbalanced magnetic pull appears [4]. This induces further lower frequency vibration components with a frequency equal to the rotational frequency of the rotor and its harmonics (a3).

$$f_{v,\text{low}}(s) = k_4 \cdot \frac{1-s}{p} f = k_4 \cdot f_r$$ \hspace{1cm} (8)

All these vibration components are depicted in Fig. 2.

In the case of the stator currents, a general expression for the frequency of the components that the rotor asymmetry produces, also as a function of the slip s, is [18]:

$$f_{c,\text{j,k}}(s) = \left(\frac{k_j}{p} \left(1-s \right) \pm s \right) f, \quad k_j = 1,3,5,...$$ \hspace{1cm} (9)

From this equation, for each current harmonic of k_j/p order, two components are obtained whose frequencies at steady state ($s \approx 0$) are slightly smaller; one of such low sidebands (LSH) evolves directly (“+” sign in (9)) and the other evolves indirectly, first reducing its frequency and then increasing it again (“−” sign in (1)).

In addition, the torque pulsation caused by these low sidebands modulates the speed of the machine triggering further descending harmonics [19]. Therefore, for the main current component a full set of sidebands surrounding it would appear in the current spectrum during stationary operation:

$$f_{c,\text{j,k}}(s) = (1 \pm 2 \cdot k_6 \cdot s) \cdot f \quad k_6 = 1,2,3,...$$ \hspace{1cm} (10)

Finally, in order to conclude the account of variable frequency harmonics, the Principal Slot Harmonics (PSH), related to the bar passing frequency and that under certain conditions also appear in the current spectrum, can be affected by the breakage [20]:

$$f_{PSH,\text{h,k}}(s) = k_7 \cdot R \frac{1-s}{p} \pm k_8 \cdot f$$ \hspace{1cm} (11)

All these current components are summarized in Fig. 3.
B. Time-frequency analysis procedure

As in [16] the vibration waveforms are analyzed using the Zhao-Atlas Marks distribution (ZAM) to avoid the effect of the cross terms or artifacts that appear between the components of the signal. This same tool has been employed to decompose the currents during the transient, in order to facilitate the comparison of results between both magnitudes.

\[
ZAM_x(t, \omega) = \frac{1}{4\pi a} \int_{-\infty}^{t} g(\tau) e^{-j\omega \tau} d\tau \\
+ \int_{-\infty}^{t} x(t + \frac{\tau}{2}) \cdot x^*(t - \frac{\tau}{2}) d\tau d\tau
\]

(12)

In (12) \(x(t) \) is the signal studied, and \(\tau \) is the delay variable. \(g(\tau) \) and \(a \) are a given function and a given parameter that perform the filtering of the cross terms in the ambiguity plane.

Since the ZAM does not preserve the energy content of the signal, for the integration of the variable frequency harmonics' energy (an indication of the fault's severity) a procedure presented in [20] and based on the Wigner-Ville distribution (WVD) and particle filtering is preferred instead:

\[
WVD_x(t, \omega) = \frac{1}{2\pi} \int_{-\infty}^{t} x(t + \frac{\tau}{2}) \cdot x^*(t - \frac{\tau}{2}) e^{-j\omega \tau} d\tau
\]

(13)

For the WVD the kernel is equal to 1 and therefore there is no filtering of crossterms by the distribution itself. These are tackled using Finite Impulse Response filters prior to the computation of (13). Advanced notch filters eliminate the constant frequency components, such as the main current one, and bandpass filters limit a time-frequency box where the evolution of one harmonic prevails. A Particle Filtering-based procedure tracks the evolution of the harmonic and accurately integrates the energy on its path. The comparison of this energy \(E_{t,sh} \) with the one in the original waveform \(i \) (Fig. 4) provides a numerical indicator of the fault:

\[
\gamma_{w, e} = 10 \cdot \log \left[\frac{2}{\varepsilon_{e,sh}} \sum \varepsilon_{e,sh}^2 \right]
\]

(14)

IV. RESULTS

This section presents some of the results obtained from the two simulations: healthy and broken bar.

A. Vibration’s time-frequency decomposition

The analysis using the Zhao-Atlas-Marks distribution of the vibration (Fig. 4, top) and current (Fig. 4, bottom) waveforms for both cases is presented in Fig. 5. Healthy states are displayed on the left-hand side and broken bar on right-hand side. For the first case (upper left) the rotor bar passing frequency (RBPF) and its harmonics prevail in the high frequency area, rapidly increasing their frequency as the rotor accelerates. Several family groups of harmonics can be appreciated for \(k=3 \) (c1), \(k=2 \) (c2) and \(k=1 \) (c3) in (7). The high frequencies they rapidly reach causes aliasing, seen as descending components in the high frequency after 2,000 ms. Lower frequencies are dominated by the constant twice line frequency component and its harmonics (c4) at 100 Hz, 200 Hz and 300 Hz, whose amplitude reflects electrical faults in the stator, not simulated here. The amplitude of the first of them is fairly constant during the entire transient.

The upper right diagram in Fig. 5 shows the time-frequency decomposition of the vibration waveform for the case of a machine having a broken bar. In addition to the components depicted in the healthy state (left), rotor induced ones appear related to its rotational speed (1x) in the low frequencies (c5) according to (8) and even as the sidebands (c6) of the rotor bar passing frequency ones (\(k_1=1, k_2=2 \) and \(k_3=-1, -2 \) in (7)) studied in [16]. In the first case it must be remarked that in an actual machine many different causes (such as eccentricity, rotor bow, etc.) can contribute to this rotating frequency harmonics, however, in a simulated machine the influence of just one fault can be assessed. Up to seven such harmonics can be seen with stationary operation frequencies between 50 Hz and 350 Hz. The highest amplitude corresponds to 1x although in this faulty case also the twice line frequency vibration component has the highest amplitude.

B. Current’s time-frequency decomposition

The lower part of Fig. 4 shows the time-frequency decomposition of the currents for a healthy (left) and faulty (right-hand side) machine. With the purpose of portraying the evolution of fainter harmonics, the main current component has been filtered as in [20]. For both cases two PSH dominate the diagram (\(k_1=1, k_2=3, -1 \)) as the increasing speed of the rotor moves them toward higher frequencies (d1). Using the ZAM, no other constant components need to be filtered in order to prevent crossterms, so the winding harmonics at 250 Hz and 350 Hz (d2), as well as others weaker ones 11f, 13f, 17f and 19f can also be appreciated, as usual in a motor.

Nevertheless, when the current spectrum for the startup transient of the faulty machine is analyzed, clear components related to the rotor asymmetry appear at low frequencies: ascending ones for \(k/p=3,5 \) in (d4), descending ones towards the suppressed main current component at 50 Hz (d5).
and the LSH 50 \((1-2s)/f\) (d6), whose amplitude dominates in this case the diagram, moving from 50 Hz to 0 Hz and then back to 50 Hz as the slip changes from 1 to 0. This is the harmonic commonly used to detect a rotor bar breakage by means of current analysis.

C. Quantitative validation

Fig. 6 depicts the energy of that LSH 50 current component as tracked by the particle filtering method, for both simulated and experimental data of the same machine having a bar breakage [16]. The experimental test lasted longer, around 5.5 seconds instead of the 3.3 seconds simulated in this work, however, this shouldn’t affect the values of the fault indicator. Two lobes can be appreciated in both results, corresponding to the descending and ascending branches of its evolution (Fig. 5 (d6)). Nevertheless, the energy found in the simulated case is much higher, due to the increase of the resistance for the entire bar, a limitation of 2D simulations. In the real case, interbar currents exist and contribute to damping the effect of the fault [21]. The indicator (14) yields 42.5 dB for the experimental case and 37 dB for the simulated one.

![Fig. 5. ZAM distribution of the vibration waveform (up) for healthy (a) and broken bar (b) states, and ZAM distribution of the current waveform for healthy (c) and broken bar states (d). The rotor-speed dependent harmonics the asymmetry adds are clearly shown.](image)

![Fig. 6. LSH 50 (current) component’s energy for the broken bar case.](image)
A similar quantification procedure can be applied to the vibration component 1x (Fig. 5 (c5)) evolving from 0 Hz to nearly 50 Hz during the transient. Harmonic tracking is more difficult under these conditions, especially due the fact that several components share the same time-frequency box. Moreover, both waveforms cannot be directly compare since they show different magnitudes: stress in the case of the simulation and acceleration, for the experimental measurements. Nevertheless, for the broken bar case good results were achieved, yielding the fault indicator (14) a value of 25.2 dB for the simulated waveform and 30.8 dB when studying the experimental one. Fig. 7 shows the energy distribution for both analysis, differing greatly since the real motor crosses a resonant region before achieving stationary speed and these effects for which also the load and the support structure contribute, cannot be taken into account in a 2D simulation.

![Fig. 7](image_url)

Fig. 7. Energy in the 1x (vibration) component for the broken bar case.

V. CONCLUSIONS

This work validates a procedure to obtain the simulated vibration spectrum of an induction motor during transients. A coupled electromagnetic, for the full section of the motor, and mechanical, for the stator, procedure is able to yield even faint sidebands of high frequency harmonics. The application of the Maxwell stress tensor to the inner surfaces of the stator initially suffices for assessing the influence of electrical faults independent of other mechanical sources of vibration. However, 3D effects and resonances of the structure cannot be modelled in this way.

VI. REFERENCES

