Miah, Md.; Icheln, Clemens; Islam, Md Mazidul; Haneda, Katsuyuki

An Ultrawideband Conformal Antenna at 433 MHz for Wireless Capsule Endoscope of Pediatric Patients

Published in:
2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2018

DOI:
10.1109/PIMRC.2018.8580890

Published: 18/12/2018

Document Version
Peer reviewed version

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
An Ultrawideband Conformal Antenna at 433 MHz for Wireless Capsule Endoscope of Pediatric Patients

Md. Suzan Miah, Clemens Icheln, Md. Mazidul Islam, and Katsuyuki Haneda
Aalto University School of Electrical Engineering, Espoo, Finland
Email: md.miah@aalto.fi

Abstract—Wireless capsule endoscopy (WCE) systems are used to capture images of the human digestive tract for medical applications. The antenna is one of the most important components in a WCE system. In this paper, we propose a compact capsule antenna operating at the 433-MHz ISM band. The antenna conforms to the outer-wall of a small capsule module with dimensions of 19.5 mm × 10 mm. A colon-equivalent tissue phantom and CST Gustav voxel human body model were used to numerically verify the operation of the capsule antenna. The simulation results in the colon-tissue phantom were then validated through in-vitro measurements using a liquid phantom. According to the phantom simulations, the capsule antenna has −10 dB impedance matching from 2.88 to 2.20 GHz. The ultrawideband characteristic enables the capsule antenna to tolerate the detuning effects due to electronic modules in the capsule and due to the proximity of various different tissues in gastrointestinal tracts. While providing ultrawide operational bandwidth and sufficient radiation performance, the small size makes the antenna suitable especially for pediatric patients in addition to adults.

I. INTRODUCTION

Wireless capsule endoscopy (WCE) is used to record images of the digestive tract for medical applications [1]. One of the use cases of capsule endoscopy is to examine areas of the small intestine that cannot be reached by conventional types of endoscopy. Also, traditional techniques are painful for the patient, whereas WCE is non-invasive and painless. Current devices have dimensions of approximately 26 mm × 11 mm and are used for both adult and children patients. Thanks to the advanced microelectronics and sensor technology, overall capsule size can be largely reduced, whereas the size of the antenna, which is an important component, remains a challenge. The paper [2] proposes the frequency band 400 – 600 MHz for WCE systems because of relatively small propagation losses in the human body. The resonance length of the antenna, which is significantly larger than the capsule size, makes the design of miniaturized antennas at these frequency band challenging.

Recent research activities on capsule antennas have shown embedded [3]–[5] and conformal structures [6]–[18] as promising antenna design strategy. Embedded antennas are placed inside the capsule cavity. The conformal structure utilizes only the surface of the capsule module and leaves the interior for other components, allowing the most effective use of available surface area of a capsule and the antenna as large as possible for better radiation performance [17]. Several wideband conformal antenna designs for WCE systems, operating at frequencies up to 1400 MHz have been reported in literature [6]–[18]. Almost all assume a capsule size of 24 – 30 mm in length and 10 – 12 mm in diameter. The conformal antenna in [14]–[16] report −10 dB impedance matching bandwidth (BW_{10dB}) of 200 MHz, whereas in [7] BW_{10dB} = 20 MHz. In [8], an outer-wall conformal microstrip antenna is proposed with BW_{10dB} = 39.9 MHz, while the microstrip antenna in [9] reaches BW_{10dB} = 50 MHz. A patch with BW_{10dB} = 124.4 MHz is reported in [11], while a conformal meandered arm dipole reaches BW_{10dB} = 158 MHz in [12]. The loop antenna reported in [17] works at center frequency of 500 MHz with BW_{10dB} = 260 MHz. Another outer-wall loop antenna with BW_{10dB} = 785 MHz is reported in [18] but without experimental validation. In the authors’ own work [19], a conformal antenna reports a maximum BW_{10dB} of 795 MHz. A more complete comparison of these references is shown in Table 1.

According to the studies reported in [20], current devices are relatively large for children to swallow. Similarly, [21] shows that 11% of children were even unable to swallow such a capsule. In order to make such WCE system suitable for pediatric applications, the overall size of the capsule should be reduced. In addition to the requirement of miniaturization, the bandwidth of the antenna needs to be as wide as possible to overcome the detuning effects due to varying tissue properties through the digestive tract, as well as to realize higher data rates. According to the author’s best knowledge, the smallest capsule antenna is reported for a capsule with a size of only 17 mm × 7 mm in [6] and [10], but the BW_{10dB} is only 17 MHz and 53 MHz, respectively. Keeping in mind the operation environment of a WCE system, these matching bandwidths are relatively narrow.
Since a standard size of the capsule for pediatric patients is not defined yet, main design requirement of a capsule antenna is that it should have wider matching bandwidth with a same or smaller capsule size than the existing designs. In this paper, we propose an ultrawideband conformal loop antenna attached on the outer-wall of a capsule module with the size of $19.5 \,\text{mm} \times 10 \,\text{mm}$ operating at 433 MHz industrial, scientific and medical (ISM) band. The simulation results show that proposed antenna has a $\text{BW}_{-10\text{dB}}$ of 1912 MHz (288-2200 MHz), which is a much wider than reported existing designs, and allows a much smaller capsule size except for that in [6], [10]. It was also demonstrated that the proposed antenna is robust against changes of surrounding environments such as other components in the capsule, different tissues in the digestive tract, different locations, and varying orientations inside the body.

The remainder of this paper is organized as follows. Section II illustrates the proposed capsule antenna configuration and simulations, while Section III addresses the experimental validation of the numerical results. Finally, Section IV concludes this paper.

II. CAPSULE ANTENNA DESIGN AND SIMULATIONS

A. Antenna Structure

The proposed antenna is a loop antenna patterned on a $100 \,\mu\text{m}$ thick flexible substrate Preperm 255 with relative permittivity, ε_r, and loss tangent, $\tan \delta$ of 2.55 and 5.0×10^{-4}, respectively. The flexible substrate allows the antenna to be wrapped around the capsule. The proposed antenna before and after wrapping it around the capsule is shown in Fig. 1(a) and Fig. 1(b), respectively. The antenna occupies the outer-wall of the cylinder and one side of a dome of the capsule module, whereas other remains free for optical components and camera. The capsule module is made of polystyrene with $\varepsilon_r = 2.6$ and $\tan \delta = 0.05$ at 1 GHz. The thickness of the capsule’s wall, diameter, and length of the capsule are 0.5 mm, 10 mm and 19.5 mm, respectively. After wrapping the antenna on the outer wall of the capsule module, the points A and B in Fig. 1(a) were connected at the top of the capsule dome to complete the loop. The feeding point of the antenna in the simulations is indicated by a red triangle in Fig. 1.

B. Capsule Implementation and Detuning Factors Analysis

In simulations, the surrounded medium of the capsule is set to homogeneous colon-tissue equivalent material with the electrical properties of $\varepsilon_r = 62$ and conductivity, $\sigma = 0.87$ at 433 MHz. The simulation was performed using CST Microwave Studio 2018. The X-oriented capsule without biocompatible layer and electronic components in the module was placed at the center of the colon-tissue phantom as shown in Fig. 2. Note that X-oriented means the longest dimension of the capsule is aligned along the X-axis. Fig. 3(a) shows the simulated magnitude of a reflection coefficient, $|S_{11}|$. The antenna has two modes of resonance, one at 420 MHz and another one at 1225 MHz. The antenna shows ultrawide-band matching the $|S_{11}| = -10$ dB is achieved across 288 MHz to 2200 MHz. The realized gain of the antenna is $-34.5 \,\text{dBi}$ at 433 MHz, whereas radiation efficiency is $-38 \,\text{dB}$ (0.016%). Since antenna operates inside the very lossy medium, the low radiation efficiency is expected. The remaining part of this subsection includes the studies of detuning of the antenna resonance due to several factors such as orientations and locations of the capsule, as well as electronics inside the module.

1) Biocompatible layer: We started the studies of detuning factors to the antenna resonance by implementing a thin layer of biocompatible material around the capsule. Since the antenna is made of non-biocompatible material and utilizes the outer-wall of the capsule, it is inevitable to use a biocompatible material layer around the capsule to ensure that the antennas’ material does not cause any toxic reactions, effects, or injuries in the human body. For this purpose, an X-oriented capsule antenna with 0.1 mm thick Polyamide layer ($\varepsilon_r = 4.3$ and $\tan \delta = 0.004$), which is one of the popular biocompatible materials was simulated at the center of the colon-tissue phantom. A comparison of $|S_{11}|$ of the capsule antenna with and without biocompatible layer is shown in Fig. 3(a). As expected, the resonance of the antenna with the biocompatible layer is slightly up in frequency, because of lower dielectric loading effect than
The antenna in small intestine shows a lower gain due to the distance from body surface as well as the size of the capsule. The antenna implant depth, D, was first changed along Z-axis from top to bottom while maintaining $H = 117.5$ mm from the left wall of the phantom, as shown in Fig. 2. Similarly, the antenna location, H, was changed along Y-axis, while maintaining $D = 50$ mm. The simulated $|S_{11}|$ are presented in Fig. 3(c), showing that they are quite stable for all the tested locations.

3) Electronic components inside a capsule: The endoscopy capsule should contain several electronic components, such as illuminating light, telemetry unit, camera, printed circuit board (PCB), and battery. These components near the antenna can affect its resonance performance. Since the battery is the largest among other components, we numerically simulated $|S_{11}|$ of the antenna at the center of the phantom for varying sizes of the battery, placed at the center of the capsule. The battery was modeled as a cylinder made of a perfect electric conductor with three different diameters of 7.5, 8.5 and 9 mm, while height was set to 7.2 mm. Results are shown in Fig. 3(d) indicating that for three sizes the resonance frequency of the antenna slightly increases compared to a hollow capsule. However, for the battery diameter of 7.5 and 8.5 mm, the antenna still maintained $|S_{11}|$ lower than -10 dB for a wide frequency range of about 1700 MHz.

C. Resonance, Radiation, Specific Absorption Rate (SAR) in a Realistic Human Body Model

Once a capsule is swallowed, it experiences a significant change of relative permittivity and conductivity depending on the surrounding tissues, such as, colon ($\varepsilon_r = 62, \sigma = 0.87$), stomach ($\varepsilon_r = 67.2, \sigma = 0.626$) and small intestine ($\varepsilon_r = 65.2, \sigma = 1.22$). Furthermore, the resonance and radiation characteristics of the ingestible antenna depend on the position of the capsule and surrounding tissues [22], [23], we therefore numerically studied these by simulating antenna with the 3-D CST Gustav voxel human body model. Note that due to the limited computing resources, only a torso with the volume $290 \times 230 \times 100$ mm3 was considered. When implanted in the colon, stomach, and small intestine, the capsule was 50, 90 and 85 mm away from the nearest body surface, respectively. Fig. 4 presents the simulated $|S_{11}|$ of the capsule antenna with a biocompatible layer for three tissues. The results demonstrate that for the proposed antenna $|S_{11}|$ is better than -10 dB at 433 MHz for all tissues and maintains a wider impedance matching bandwidth than any literature reports. The BW$_{-10\text{dB}}$ is enhanced when the antenna was in the small intestine, because of the low-quality factor of the antenna due to the highest tanδ among other tissues. The simulated realized gain is -26.7, -28.2, and -33 dBi for the capsule antenna implanted in the colon, stomach, and small intestine, respectively. The antenna in small intestine shows a lower gain due to the higher conductivity compared to colon and stomach. It is worth mentioning that the gain is also affected by the distance from body surface as well as the size of the phantom.

Since the capsule antenna operates in a human body, radiation safety needs to be considered. One of the well-accepted radiation safety measures is the specific absorption ratio (SAR), which is the rate of energy deposited per unit mass of tissue. The IEEE C95.1-1999 [24] and C95.1-2005 [25] specify that 1-g and 10-g averaged SAR should be less than 1.6 W/kg and 2 W/kg, respectively. The maximum allowable input powers to the X-orientated capsule antenna have been numerically evaluated using the SAR calculator in CST Microwave Studio 2018 with the Gustav voxel model. The results show that the capsule antenna is safe to be used at the transmit power less than 4.3 and 25 mW in the colon,
4.1 and 22.5 mW in the small intestine and 4.5 and 24 mW in the stomach for the 1-g and 10-g averaged SAR, respectively.

III. ANTENNA FABRICATION AND MEASUREMENTS

The fabricated flat antenna before wrapping on the capsule module is presented in Fig. 5(a), whereas Fig. 5(b) shows it after wrapping on the outer surface of the pill. The details of the fabrication process are described in [26]. The capsule module is made of polystyrene with $\varepsilon_r = 2.6$ and $\tan \delta = 0.05$ at 1 GHz. The diameter and length of the capsule are 10 mm and 19.5 mm, respectively, whereas the thickness of the wall is 0.5 mm. After wrapping, points A and B in Fig. 5(a) were soldered together to form the loop so that the prototype was identical to the simulated design.

An illustration of the in-vitro measurement set-up for the antenna is presented in Fig. 6. The setup included a vector network analyzer (VNA) and a rectangular-shaped plastic container, which was filled with a liquid mimicking the colon tissue. The liquid was formulated by mixing 70% salted water (7.85 g/L) and 21% TritonX-100. An HP 8720C network analyzer and 85070A dielectric probe kit were used to verify the electrical properties of the liquid phantom. The measured permittivity and loss tangent values at 433 MHz were 61.4 and 0.60, respectively, which are very close to the values used in Section II-B. As to the feeding of the antenna, we used the similar method as presented in [17].

For differential feeding a wideband surface mount balun (Analen B0322J5050AHF) was used at the feeding point of the antenna in order to avoid the possible problem caused by the interaction between balanced antenna and unbalanced coaxial cable. The antenna was connected to the balanced ports of the balun, whereas center and outer conductors of the SMA connector were soldered to the unbalanced port and ground of the balun, respectively. During the measurements, we used a layer of sticky rubber with $\varepsilon_r = 2.2$, $\tan \delta = 5.0 \times 10^{-4}$ around the feeding components including balun, SMA connector, and coaxial cable to avoid the direct contact with the liquid. As the VNA was calibrated to the reference plane of the SMA connector, the capsule antenna was also simulated with the SMA connector to test its impact on matching. We found a negligible impact on matching. The proposed capsule antenna was placed inside the colon-tissue liquid phantom as visualized in Fig. 6.

The comparison of the simulated and measured $|S_{11}|$ of an X-oriented capsule at the center of the liquid phantom is presented in Fig. 7. Note that the biocompatible layer and any components inside the capsule were not included in the measurement. The simulated plot is identical to the one in Fig. 3(a). The measurements agree well with the simulations, with only slight differences in the matching level, which might come from the fabrication process of the prototype. The measured $|S_{11}|$ of the proposed capsule antenna is better than -10 dB across the frequency range from 250 MHz to 1740 MHz, which agrees well with the simulated matching bandwidth. Thus the close agreement between simulation and measured results for this colon tissue case validates the robustness of proposed capsule antenna against different detuning factors. Table I shows a comparison of reported capsule antennas in the literature, designed frequencies are up to 1400 MHz. The matching bandwidth of the proposed capsule antenna is the widest among the existing solutions even though it utilizes much smaller capsule except [6], [10], which report much narrower matching bandwidth for a WCE system.

IV. CONCLUSION

In this paper, an ultrawideband conformal loop antenna is presented for a WCE system operating at 433 MHz. The antenna utilizes the outer-wall of the capsule module with a size of only 19.5 mm \times 10 mm. Thus, the capsule size can be significantly reduced compared to existing WCE solutions. The proposed antenna shows a bandwidth $BW_{-10\text{dB}} = 1912$ MHz, i.e. from 288 to 2200 MHz. The proposed capsule antenna maintains the desired performance even if electronic modules are
TABLE I
A COMPARISON OF REPORTED CONFORMAL CAPSULE ANTENNAS IN THE LITERATURE, DESIGNED FREQUENCIES ARE UP TO 1400 MHZ:
ANTENNA TYPE, OPERATING FREQUENCY, CAPSULE SIZE INCLUDING TWO DOMES, \(BW - 10 \text{dBI}, \) RADIATION PERFORMANCE IN THE REPORTED PHANTOM

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Antenna type</th>
<th>Frequency (MHz)</th>
<th>Capsule Size (mm)</th>
<th>Bandwidth (MHz)</th>
<th>Gain (dBi)</th>
<th>Phantom: tissue, shape, size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6]</td>
<td>inner-wall microstrip</td>
<td>434</td>
<td>17 × 7</td>
<td>17</td>
<td>-22</td>
<td>Muscle, sphere, O100</td>
</tr>
<tr>
<td>[7]</td>
<td>outer-wall helix</td>
<td>433</td>
<td>30 × 10</td>
<td>20</td>
<td>-40.9</td>
<td>Muscle, cube, 190³</td>
</tr>
<tr>
<td>[8]</td>
<td>outer-wall microstrip</td>
<td>402</td>
<td>28 × 11</td>
<td>39.9</td>
<td>-29.6</td>
<td>Muscle, cube, 100³</td>
</tr>
<tr>
<td>[10]</td>
<td>microstrip</td>
<td>434</td>
<td>17 × 7</td>
<td>53</td>
<td>-33</td>
<td>ε_r = 49.6, σ = 0.51, cyl., Ø 200</td>
</tr>
<tr>
<td>[11]</td>
<td>inner-wall patch</td>
<td>433</td>
<td>25 × 12</td>
<td>124.4</td>
<td>-36.9</td>
<td>ε_r = 56.4, σ = 0.82, cyl. Ø 100 × 200</td>
</tr>
<tr>
<td>[12]</td>
<td>dipole</td>
<td>402</td>
<td>24 × 11</td>
<td>158</td>
<td>-37</td>
<td>Skin, cube, 180³</td>
</tr>
<tr>
<td>[14]</td>
<td>inner-wall loop</td>
<td>915</td>
<td>20 × 11</td>
<td>185</td>
<td>-19.4</td>
<td>ε_r = 55, σ = 0.95 S/m, cube, 100³</td>
</tr>
<tr>
<td>[16]</td>
<td>inner-wall dipole</td>
<td>1400</td>
<td>26 × 11</td>
<td>200</td>
<td>-36</td>
<td>Muscle, box, 600 × 300 × 400</td>
</tr>
<tr>
<td>[17]</td>
<td>outer-wall loop</td>
<td>500</td>
<td>24 × 11</td>
<td>260</td>
<td>-26</td>
<td>ε_r = 56.4, σ = 0.82, cyl. Ø150</td>
</tr>
<tr>
<td>[18]</td>
<td>outer-wall loop</td>
<td>500</td>
<td>21 × 11</td>
<td>785</td>
<td>-36</td>
<td>ε_r = 56.4, σ = 0.82, cube, 200 × 150 × 100</td>
</tr>
<tr>
<td>[19]</td>
<td>outer-wall loop</td>
<td>433</td>
<td>27 × 11</td>
<td>795</td>
<td>-35</td>
<td>Colon, box, 235 × 220 × 100</td>
</tr>
<tr>
<td>This paper</td>
<td>outer-wall loop</td>
<td>433</td>
<td>19.5 × 10</td>
<td>1912</td>
<td>-34.5</td>
<td>Colon, box, 235 × 220 × 100</td>
</tr>
</tbody>
</table>

Fig. 7. Comparison of simulated and measured reflection coefficient:
(a) X-oriented capsule antenna at the center of the phantom; the simulated curve is identical to the one in Fig. 3(a).

added into the capsule, and when the antenna is located at varying locations in the phantom, i.e., different tissues in the GI tract. With its very small size, ultrawide operational bandwidth and sufficient radiation performance, the proposed capsule antenna is especially suitable for pediatric patients, in addition to adult patients. Our future work includes evaluation of propagation losses between our proposed capsule antenna and an on-body receive antenna, and their link performance analysis, as well as a possible further capsule size reduction.

REFERENCES

