Mai-Gisondi, Galina; Maaheimo, Hannu; Chong, Sun-Li; Hinz, Sandra; Tenkanen, Maija; Master, Emma

Functional comparison of versatile carbohydrate esterases from families CE1, CE6 and CE16 on acetyl-4-O-methylglucuronoxylan and acetyl-galactoglucomannan

Published in:
BIOCHIMICA ET BIOPHYSICA ACTA: GENERAL SUBJECTS

DOI:
10.1016/j.bbagen.2017.06.002

Published: 01/09/2017

Please cite the original version:
Functional comparison of versatile carbohydrate esterases from families CE1, CE6 and CE16 on acetyl-4-O-methylglucuronoxylan and acetyl-galactoglucomannan

Galina Mai-Gisondi1, Hannu Maaheimo2, Sun-Li Chong3, Sandra Hinz4, Maija Tenkanen5, Emma Master1,6*

1Department of Chemical Technology and Biotechnology, Aalto University; FI-00076 Aalto, Kemistintie 1, Espoo, Finland
2VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT Espoo, Finland
3Department of Food and Environmental Sciences, University of Helsinki; FI-00014 University of Helsinki, Latokartanonkaari 11, Helsinki, Finland
4moved to: Department of Biology and Biological Engineering Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
5DuPont Industrial Biosciences, Nieuwe Kanaal 7-S, 6709 PA Wageningen, The Netherlands
6Department of Food and Environmental Sciences, University of Helsinki; FI-00014 University of Helsinki, Latokartanonkaari 11, Helsinki, Finland
6Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada

*Corresponding author:
Emma R. Master
Telephone: 416-946-7891
Fax: 416-978-8605
Email: emma.master@utoronto.ca

Keywords: Acetyl (xylan) esterases, carbohydrate esterase families, hemicellulose, acetyl-4-O-methylglucuronoxylan and acetyl-galactoglucomannan, regio-selectivity
ABSTRACT

Background: The backbone structure of many hemicelluloses is acetylated, which presents a challenge when the objective is to convert corresponding polysaccharides to fermentable sugars or else recover hemicelluloses for biomaterial applications. Carbohydrate esterases (CE) can be harnessed to overcome these challenges.

Methods: Enzymes from different CE families, *AnAcXE* (CE1), *OsAcXE* (CE6), and *MtAcE* (CE16) were compared based on action and position preference towards acetyl-4-O-methylglucuronoxylan (MGX) and acetyl-galactoglucomannan (GGM). To determine corresponding positional preferences, the relative rate of acetyl group released by each enzyme was analyzed by real time 1H NMR.

Results: *AnAcXE* (CE1) showed lowest specific activity towards MGX, where *OsAcXE* (CE6) and *MtAcE* were approximately four times more active than *AnAcXE* (CE1). *MtAcE* (CE16) was further distinguished by demonstrating 100 times higher activity on GGM compared to *AnAcXE* (CE1) and *OsAcXE* (CE6), and five times higher activity on GGM than MGX. Following 24 h incubation, all enzymes removed between 78 to 93% of total acetyl content from MGX and GGM, where *MtAcE* performed best on both substrates.

Major Conclusions: Considering action on MGX, all esterases showed preference for doubly substituted xylopyranosyl residues (2,3-O-acetyl-Xylp). Considering action on GGM, *OsAcXE* (CE6) preferentially targeted 2-O-acetyl-mannopyranosyl residues (2-O-acetyl-Manp) whereas *AnAcXE* (CE1) demonstrated highest activity towards 3-O-acetyl-Manp positions; regiopreference of *MtAcE* (CE16) on GGM was less clear.

General significance: The current comparative analysis identifies options to control the position of acetyl group release at initial stages of reaction, and enzyme combinations likely to accelerate deacetylation of major hemicellulose sources.
1. INTRODUCTION

Hemicelluloses constitute approximately 20–30% of the total mass of annual and perennial plants. They are differentiated based on backbone and side group chemistries, which vary depending on the botanical source [1,2]. 4-O-methylgluronoxylans (MGX) are the main hemicellulose in deciduous wood such as eucalyptus trees, and contain xylopyranosyl (Xylp) backbone sugars that are connected through β-(1→4)-linkages and are substituted by α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcA) (Figure 1). By contrast, galactoglucomannans (GGM) are the main hemicellulose in coniferous wood such as spruce trees, and contain β-(1→4)-linked D-glucopyranosyl (Glc)p and β-D-mannopyranosyl (Manp) units that are likewise connected through β-(1→4) glycosidic bonds (Figure 1). The galactoglucomannan backbone is also substituted by α-(1→6)-linked D-galactose side groups, mainly to Manp in spruce galactoglucomannans [3].

Glucuronoxylans and galactoglucomannans are both acetylated in their natural forms [2]. Several biological functions have been attributed to the acetylation of these main hemicelluloses, including protection of plant cell walls from degradation by microbial enzymes, along with regulated interaction with cellulose [4,5]. Acetylation may occupy single O-2 or O-3 positions of Xylp or Manp subunits in glucuronoxylans and galactoglucomannans, respectively. Xylp in glucuronoxylans may also be di-acetylated [6–8], and Xylp decorated with 2-O-MeGlcA can be acetylated at the O-3 position (2-O-MeGlcA3-O-acetyl-Xylp) [6,7,9]. A summary of reported compositions of acetyl-4-O-methylgluronoxylans and acetyl-galactoglucomannans is provided in Supplemental Table 1.

The carbohydrate active enzyme (CAZy) classification system (www.cazy.org) [10] currently assigns carbohydrate esterases (CEs) into 16 CE families. Deacetylating enzymes with reported activity on xylans and/or corresponding oligosaccharides include acetyl xylan esterases (AcXE; EC. 3.1.1.72) belonging to CE families CE1-7, an unclassified carbohydrate esterase [11], as well as acetyl esterases (AcE; EC. 3.1.1.6) belonging to family CE16 [12–14]. Nevertheless, only AXEs from CE1, CE3-CE6, and CE16 were confirmed to include enzymes with preferred activity towards xylans [15, 42]. By contrast, comparatively few enzymes have been reported to deacetylate galactoglucomannans or corresponding oligosaccharides. Notable examples include: 1) an AcE from Trichoderma reesei VTT-D-86271 (Rut C 30) (TrCE16) [16–19] an acetyl glucomannan esterase (AGME) and feruloyl esterase (FE; CE1) from Aspergillus oryzae VTT-D-85248 (presently renamed as Aspergillus tubingensis) [18–20]; 3) an esterase within a commercial
enzyme preparation from *Aspergillus niger* (Celluzyme) [21,22] and 4) two AcXEs belonging to CE1, one from *Penicillium purpuregenum* [23] and other from *Schizophyllum commune* VTT-D-88362 [24]. Low levels of acetyl group release from oligomers of galactoglucomannans was also detected in culture filtrates of *Aspergillus awamori* VTT-D-71025, *Aureobasidium pullulans* VTT-D-89397 and *Streptomyces olivochromogens* VTT-E-82157 [18].

Considering the impacts of hemicellulose acetylation summarized above, AcEs and AcXEs can be harnessed to promote hemicellulose saccharification [25–27], control the rheology and solubility of hemicelluloses [1,13], and improve thermomechanical pulp (TMP) yield [28]. The applied significance of AcEs and AcXEs, along with the inability to predict enzyme action based on CAZy family assignation alone, has motivated functional comparisons of several CE families [8,13,29–32]. Neumüller et al. [32] propose three distinguishing groups of xylan-active CEs: 1) those acting only on O-2 and O-3 monoacetylated Xylp, which have been identified in families CE2, CE3, and CE4; 2) those with further activity towards 2,3-di-O-acetylated Xylp, which have been identified in families CE1, CE5 and CE6, and 3) those with further activity towards 3-O acetylated Xylp substituted at O-2 by MeGlcPA; which have been identified in family CE16 (e.g. *An*CE16). Puchart et al. [33] subsequently isolated aldo-tetraouronic acid (Ac³MeGlcA³Xyl³) to compare the ability of selected CE16s to target 3-O acetylated Xylp substituted also at O-2 by MeGlcPA. Notably, *Tr*CE16 was the only CE16 esterase able to release acetyl group from both isomers of Ac³MeGlcA³Xyl³, containing acetyl group at O-3 and O-4, where acetyl group migration from O-3 to O-4 is possible.

Whereas recent comparative analyses of CEs have considerably advanced our understanding of enzyme regio-selectivity towards acetylated xylans, only one study has been reported that investigates CE action towards specific acetylated positions within mannan substrates [24]. Accordingly, herein we compare the activity and regio-selectivity of three CEs using major, wood-derived hemicelluloses, namely 4-O-methylglucuronoxylan (MGX) (herein, from *Eucalyptus globulus*) and acetyl-galactoglucomannan (GGM) (herein, from Norway spruce). The CEs were selected from three different CE families, namely acetyl xylan esterase *An*AcXE (CE1) from *Aspergillus nidulans*, acetyl xylan esterase *Os*AcXE (CE6) from *Orpinomyces* sp., and acetyl esterase *Mt*AcE (CE16) from *Myceliophthora thermophile*. Enzymes from these CE families were selected based on (1) our previous analysis of *An*AcXE (CE1) that confirmed activity on acetylated polysaccharides, including cellulose acetate [34], (2) *Os*AcXE (CE6) being a commercially available enzyme with reported activity on acetylated xylans [29,32], but so far not on mannans, which is notable given that the CE6 family comprises the largest number of
predicted plant acetyl esterases and so may be expected to possess broad substrate specificity and
act on both xylans and (gluco)mannans, and (3) few examples where CE16 enzymes have been
characterized using natural substrates even though reports to date indicate activity towards
typically resistant positions, such as (2-O-MeGlepA)3-O-acetyl-Xylp in MGX [33], and reported
activity towards (oligomeric) GGM [14,17,18].

Briefly, the current comparative analysis showed that positional preference of selected enzymes
towards MGX does not predict its positional preference towards GGM, and that enzymes showing
similar positional preference towards one substrate may differ when compared using another. The
present comparative analysis of CEs on both MGX and GGM underscores the importance of
including natural substrates when characterizing enzyme action, and the difficulty to predict
enzyme action on GGM based on known activity towards MGX or vice versa.

2. MATERIALS AND METHODS

2.1. Enzymes, substrates, and assay reagents

In-house and commercially available enzymes were used for this study. Specifically, AnAcXE
(AN6093.2) from Aspergillus nidulans was recombinantly produced in Pichia pastoris at pH 5.0
and 30 °C and then purified based on [35]. The CE6 AcXE from Orpinomyces sp. (AAC14690.1;
OsAcXE) was purchased from Megazyme (Wicklow, Ireland). The CE16 AcE acetyl esterase from
Myceliophthora thermophila (AGW01024.1; MtAcE) [8] was produced at DuPont Biosciences
(Wageningen, Netherlands) and polished using size exclusion and hydrophobic chromatography
(Supplemental Figure 1).

Acetyl-4-O-methylglucuronoxylan (MGX) isolated from milled (8 mm) chips of eucalyptus by
steam extraction [36] was kindly provided by Prof. J.C. Parajó (University of Vigo, Spain) and
acetyl-galactoglucomannan (GGM) obtained from the TMP mill process waters [37] was from
Prof. Willför (Åbo Akademi University, Finland). Total acetyl groups available in MGX or GGM
were determined as described in [9] and were found to be 15 and 9% of total substrate weight,
respectively. Briefly, 1 mg of GGM or MGX was suspended in 200 µL of 0.1 N NaOH and
incubated with shaking (120 rpm) for 24 h at room temperature; released acetic acid was
neutralized and then measured using the Acetic Acid Assay Kit (K-ACET) purchased from
Megazyme (Ireland).

2.2. pH Optima

5
The pH optimum of each enzyme was evaluated using 4-methylumbelliferyl acetate (4-MUA) [38] (Supplemental Figure 2). Reaction mixtures (400 µL) comprised 100 mM of the selected buffer, 2.5 mM 4-MUA, and 10 µL of the enzyme sample. Enzyme doses were adjusted to ensure that linear rates of reaction were measured, and were 3.6 µg for AnAcXE (CE1); 0.2 µg for OsAcXE (CE6) and 0.05 µg for MtAcE (CE16). Chosen buffers were: sodium citrate buffer (pH 3.0 to pH 5.0), sodium phosphate buffer (pH 6.0 to pH 8.0), and glycine-OH buffer (pH 9.0 to pH 10.0). Following incubation at 40 °C for 10 min, reactions were stopped by adding 600 µL 50 mM citric acid (pH 2.2), vortexed, and then passed through a 0.2 µm GHP Acrodiscs 13 filter (PALL) to remove insoluble particles prior to measurement of 4-methylumbelliferone at 345 nm. pH optima were also confirmed using MGX and the Acetic Acid kit (K-ACET) (Supplemental Figure 3).

2.3. Enzyme stability at pH 6.0

Because overnight reactions with MGX and GGM were performed at pH 6.0 (see below), enzyme stabilities were also evaluated at this pH condition. In this case, 2.5 µg of AnAcXE (CE1), OsAcXE (CE6), or MtAcE (CE16) were incubated for 24 h in 50 µL of 100 mM sodium phosphate buffer (pH 6.0). Following the incubation period, 3.6 µg of AnAcXE (CE1), 0.2 µg of OsAcXE (CE6), and 0.05 µg of MtAcE (CE16) were transferred to 50 µL reaction mixtures comprising 100 mM sodium phosphate buffer (pH 6.0) and 2.5 mM 4-MUA. Reaction products were then processed and measured as described above.

2.4. Activity measurements using MGX and GGM

To measure specific activities for each enzyme on each substrate, reaction mixtures (200 µL) comprised 100 mM sodium phosphate buffer (pH 7.0), 0.5% (w/v) substrate, and 50 µL of the enzyme sample. Enzyme doses were adjusted to ensure that linear rates of reaction were measured. When using MGX, enzyme doses were 0.5, 1 or 5 µg of AnAcXE (CE1), 0.5, 1 or 5 µg of OsAcXE (CE6), and 0.5 or 1 µg of MtAcE (CE16). When using GGM, enzyme doses were 2.5 or 5 µg of AnAcXE (CE1), 2.5 or 5 µg of OsAcXE (CE6), and 0.05, 0.1 or 0.3 µg of MtAcE. Following incubation at 40 °C for 10 min, reactions were stopped by adding 40 µL of 0.33 M H₂SO₄. Released acetic acid was quantified using the Acetic Acid Assay Kit (K-ACET).

To quantify the extent of acetyl group released by each enzyme after 24 h, reaction mixtures (200 µL) comprising 100 mM sodium phosphate buffer (pH 6.0), 0.5% (w/v) substrate, and 10 µg of
AnAcXE (CE1), OsAcXE (CE6), or MtAcE (CE16) (i.e., 10 mg enzyme/ g substrate) were
incubated with shaking (120 rpm) at 40 °C. Overnight reactions were performed at pH 6.0 to
minimize the possibility of auto hydrolysis, release of acetyl groups from the substrate, and acetyl
group migration [39]. Reaction mixtures without enzyme served as negative controls and were
subtracted from test measurements.

2.5. HSQC NMR spectroscopy

Quantitative HSQC NMR was performed to quantify acetyl group release from MGX and GGM.
Analyses of MGX were carried out in D₂O, whereas analyses of GGM were carried out in
DMSO-d6. All NMR spectra were collected on a 600 MHz Bruker Avance III NMR
spectrometer equipped with a QCI H-C/N/P-D cryogenically cooled probe head. The
measurements were carried out at either 22 °C (samples dissolved in D₂O) or 60 °C (samples
dissolved in DMSO-d6). For the 1D ¹H spectra the residual water signal was suppressed by a
four second volume selective presaturation (so called 1D-NOESY presaturation). (Neuhaus et al.
1996). The quantitative HSQC spectra were acquired using matched sweep adiabatic pulses
optimised for ¹³C sweep width of 130 – 10 ppm for all 180° ¹³C pulses in order to compensate the
differences in the ¹JCH coupling constants (Bruker’s pulse program hsqcedetgpsisp2.3) (Zwahlen
et al. 1997). Matrices of 2048 x 256 data points were collected and zero filled once in F1; a π/2
shifted squared sine bell weighting function was applied in both dimensions prior to the Fourier
transformation.

2.6. HSQC NMR Spectra annotations and quantifications

The chemical shifts for MGX were referenced to the C-1 and H-1 signal of MeGlcpA (5.28 ppm,
98.85 ppm); chemical shifts for GGM in D₂O were referenced to C-1 of Glcp (103.55 ppm) and
H-2 of 2-O-acetyl Manp (5.42 ppm). In the case of GGM in DMSO, the chemical shifts were
calibrated against DMSO-d6 (2.50 ppm, 39.51 ppm). Annotation of MGX spectra were according
to [7] and [6]; annotation of GGM spectra were according to [40].

The relative content of the acetylated Xylp in the MGX was calculated from quantitative
heteronuclear single quantum coherence (qHSQC) spectra according to [41]. Briefly, the signals of
the H-1 and C-1 of substituted and nonsubstituted Xylp were summed to 100%, thereafter the
signals of H-2 of 2-O-acetyl, H-3 of 3-O-acetyl, H-2 of 2,3-O-acetyl, and H-3 of (2-O-
MeGlpA)3-O-acetyl-Xylp were integrated separately to calculate the relative content of each
form of O-acetyl-Xylp subunit. For the quantitation of relative content of acetylated Manp in the
GGM, the H-1 and C-1 of the substituted and non-substituted Manp, as well as the Glcp and Galp
were summed as 100%, thereafter the signal of H-2 of 2-O-acetyl- and H-3 of 3-O-acetyl-Manp
was integrated separately to calculate the relative content of each form of O-acetyl Manp. to 100%,
thereafter the signals of H-2 of 2-O-acetyl, H-3 of 3-O-acetyl, H-2 of 2,3-O-acyt, and H-3 of (2-
O-MeGlcpA)3-O-acetyl-Xylp were integrated separately to calculate the relative content of each
form of O-acetyl-Xylp subunit. For the quantitation of relative content of acetylated Manp in the
GGM, the H-1 and C-1 of the substituted and non-substituted Manp, as well as the Glcp and Galp
were summed as 100%, thereafter the signal of H-2 of 2-O-acetyl- and H-3 of 3-O-acetyl-Manp
was integrated separately to calculate the relative content of each form of O-acetyl Manp.

2.7. 1H NMR Analyses

Rates of acetyl group release from specific positions within MGX and GGM were monitored by
1H NMR. Both substrates (600 mg) were dissolved in 600 µL of 100 mM sodium phosphate buffer
(pH 6.0) following replacement of milliQ water by D$_2$O through freeze drying. All samples were
analyzed in 5.0 mm NMR tubes (Aldrich) using a Bruker Avance III 400 MHz spectrometer
equipped with a 5 mm BBFO Plus probe head. A water suppression pulse program (noesygppr1d)
with suppression power of 3.1623e-006 W was used for relative quantitative measurements. The
following acquisition parameters were applied: 90° pulse with relaxation delay of 4 s and
acquisition time of 5.1 s; 8 scans and 4 dummy scans; 65536 data points and spectrum width of
15.979 ppm. Before the reaction was initiated by addition of enzyme, the spectra of native
substrates were measured at 40 °C. After enzyme addition, acquisition parameters were adjusted
(e.g., to align signals) and then spectra were automatically recorded every 1.8 min over 30 min
(Figure 2). When using MGX, enzyme doses per mg of substrate were 5 µg of AnAcXE (CE1), 1
µg of OsAcXE (CE6), and 1 µg of MtAcE (CE16). When using GGM, enzyme doses per mg of
substrate were 10 µg of AnAcXE (CE1), 10 µg OsAcXE (CE6), and 1 µg/mg MtAcE (CE16). In
all cases, enzymes were prepared in 100 mM deuterated sodium phosphate buffer, spectra were
processed and analyzed using TopSpin 3.0 (Bruker).

Sum of integrals was normalized to 100% and signals were then plotted against time using
Origin 2016 64 bit (Supplemental Figure 4), and resulting slopes were used to calculate the rate
of acetyl groups release from specific positions by each enzyme [32].
3. RESULTS and DISCUSSION

3.1. Establishing reaction conditions for comparative analyses

AnAcXE (CE1), OsAcXE (CE6), and MtAcE (CE16) were similarly active at pH 7.0 or pH 6.0 (Table 1), by showing ≥90% of their maximal activity at pH 7.0 and ≥85% at pH 6.0. Accordingly, reaction rates were measured at pH 7.0 to ensure comparable substrate solubility, whereas overnight reactions were performed at pH 6.0 to minimize the possibility of autohydrolysis, non-enzymatic release of acetyl groups, and acetyl group migration. Notably, AnAcXE and MtAcE retained over 90% activity after 24 h at pH 6.0 (40 °C), whereas under these conditions, OsAcXE activity decreased by 40% after 5 h and 60% after 24 h (Figure 3).

3.2.Extent of carbohydrate esterase action on MGX

Acetic acid measurement and HSQC NMR analyses were performed to compare the deacetylation efficiency of AnAcXE (CE1), OsAcXE (CE6), and MtAcE (CE16) on MGX. In general, slightly higher deacetylation efficacies were calculated from HSQC spectra as compared to acetic acid measurements (Figure 4; Table 2), which likely reflects the relative sensitivity of the analytical methods used.

Following 24 h of incubation, maximal removal of acetyl groups from MGX by AnAcXE (CE1) was between 80%-90% (Figure 4; Table 2). This result was similar to that reported for other CE1 acetyl xylan esterases, including: (1) a CE1 from Schizophyllum commune (~80% deacetylation of DMSO-extracted birchwood MGX) [24]; (2) AnAXE from Aspergillus niger and MtAXE3 from Myceliophthora thermophila C1 (76-88% deacetylation of O-acetylated neutral xylo-oligosaccharides and 50–60% deacetylation of O-acetylated MeGlcPA-substituted xylo-oligosaccharides [8]); and (3) TeCE1 from Talaromyces emersonii (~80% deacetylation of MeGlcPA-substituted xylooligosaccharides) [32].

Similar to AnAcXE (CE1), OsAcXE (CE6) released 80-90% of acetyl groups from MGX (Figure 4; Table 2). Earlier analyses of OsAcXE (also known as OsCE6) show less than 50% of total acetyl group release from MGX. However, in that case, MGX enriched in acidic xylo-oligosaccharides AcUXOS (i.e., (2-O-MeGlcPA)-3-O-acetyl-Xylp) was used [32], and
Koutaniemi et al. [8] previously showed that enzymatic deacetylation of acidic xylo-
oligosaccharides is typically lower than neutral xylo-oligosaccharides. Compared to AnAcXE
(CE1) and OsAcXE (CE6), MtAcE (CE16) released the highest extent of acetyl groups from all
positions in MGX (~90% total released). By comparison, AnCE16 from Aspergillus niger was
reported to release 18% of acetyl groups from AcUXOS derived from Eucalyptus globulus
[32], whereas TrCE16 from Trichoderma reesei was reported to release 10% of acetyl groups
from xylo-oligomers with DP of ~10 [16,17]. These results suggested that TrCE16 and AnCE16
activity is restricted to the non-reducing end of corresponding substrates [19,32]. Different to
both AnCE16 and TrCE16, PaCE16 was able to act on birchwood acetyl-glucuronoxylan
leading to substrate precipitation [42]. Thus, given the extent of acetyl groups released from
MGX measured in the current study, MtAcE (CE16) likely targets both non-reducing and
internal positions within targeted substrates and so in this regard, is more similar to PaCE16
than TrCE16 or AnCE16.

Quantitative HSQC (qHSQC) was then used to identify acetylated positions in MGX most
susceptible to enzyme action. Less than 1% of 2-O-acetyl-Xylp positions, and approximately
5% of 3-O-acetyl-Xylp and 2,3-O-acetyl-Xylp positions remained following MGX treatment
with AnAcXE (CE1). Similarly, less than 5% 2-O-acetyl-Xylp positions in MGX remained
intact following treatment of MGX with OsAcXE (CE6). Somewhat lower deacetylation
efficiencies were measured for OsAcXE (CE6) action towards 3-O-acetyl-Xylp and 2,3-O-
acetyl-Xylp positions, where 10% and 20% of corresponding acetyl groups remained.

By comparison, MtAcE (CE16) effectively targeted the broadest range of acetyl group
positions, leaving between 3-5% of 2-O-acetyl-Xylp, 3-O-acetyl-Xylp, and 2,3-O-acetyl-Xylp
positions, while also partially removing acetyl groups from (2-O-MeGlcpA)-3-O-acetyl-Xylp
positions (Table 2; Supplemental Figure 4B). Low but detectable and reproducible activity of
MtAcE towards (2-O-MeGlcpA)-3-O-acetyl-Xylp after 24 h of reaction is consistent with
reports of other CE16 enzymes, including P. anserina (PaCE16A) [42], which shares
approximately 70% of protein sequence identity with MtAcE (CE16), but also TrCE16 from T.
reesei [14,33,43] and AnCE16 from A. niger [32,33]. It was earlier postulated [8] and later
shown [33] that acetyl group migration from O-3 to O-4 could account, at least partially, for
MtAcE (CE16) activity towards (2-O-MeGlcpA)-3-O-acetyl-Xylp.

3.3. Extent of carbohydrate esterase action on GGM
All three enzymes were able to act on GGM in addition to MGX. During the 24 h incubation,
MtAcE released approximately 90% of acetyl groups in GGM, whereas roughly 80% of acetyl
groups were released by AnAcXE (CE1) and OsAcXE (CE6) under the same conditions
(Figure 4). MtAcE (CE16) action on GGM was comparable to that of an acetyl mannan esterase
(AGME) from Aspergillus niger [20,21], an acetyl xylan esterase (CE1) from Schizophyllum
commune [24], and a feruloyl esterase (CE1) from Aspergillus oryzae [24]. In each of these
cases, between 90 and 95% of acetyl groups from GGM were released. By comparison, the
family CE1 AcXEs from Penicillium purpurogenum (30%) and AGME (unclassified CE) from
Aspergillus oryzae [24] were previously shown to release approximately 70% of acetyl groups
from GGM.

Consistent with the expected higher degree of polymerization of GGM (recovered from a TMP
process waters) compared to MGX (recovered from a steam explosion process), reaction products
from GGM precipitated upon enzyme treatment. As a result, qHSQC analyses could not be
performed in D$_2$O or DMSO-d$_6$. Accordingly, 1H NMR spectra were collected to identify acetyl
group positions most resistant to enzyme action (Figure 5). Most notably, OsAcXE (CE6) targeted
all acetyl groups in GGM, whereas 2(b)-O-acetyl-Man$_p$ was resistant to hydrolysis by AnAcXE
(CE1) and MtAcE (CE16). Positions 2(a)-O-acetyl-Man$_p$ and 2(b)-O-acetyl-Man$_p$ (along with 3(a)-
O-acetyl-Man$_p$ and 3(b)-O-acetyl-Man$_p$) differ in terms of neighboring sugars [40,44]. Retention of
2(b)-O-acetyl-Man$_p$ in GGM therefore reveals that neighboring groups along the polysaccharide
backbone influence enzyme accessibility to pendent acetyl groups.

3.4. Specific activity and positional preference of selected carbohydrate esterases

OsAcXE (CE6) and MtAcE (CE16) showed similar specific activity towards MGX, which were
approximately four times higher than that obtained for AnAcXE (CE1) (Table 3). By contrast,
similar specific activities were measured for AnAcXE (CE1) and OsAcXE (CE6) on GGM, which
were lower than corresponding enzyme activities on MGX (Table 3). MtAcE (CE16) was
interestingly distinguished by demonstrating 100 times higher activity on GGM compared to
AnAcXE (CE1) and OsAcXE (CE6), and five times higher activity on GGM than MGX (Table 3).
The specific activity of MtAcE (CE16) towards GGM (~2000 nkat/mg; 120 µg/min/mg) was
comparable to that reported for AGME from Aspergillus niger (1190 nkat/mg) where 5 times
higher GGM concentration was used [20,21]. Similarities between MtAcE (CE16) and AGME
suggests that MtAcE (CE16) is likewise an unspecific acetyl mannan esterase [8].

Real time 1H NMR was then performed for each enzyme to unravel potential preferences for
specific positions within MGX and GGM. Positional preference was defined as the ratio of
deacetylation rate for a given acetyl group position to the abundance of corresponding acetyl groups
in the original substrate. It is important to note here that calculated rates of acetyl group release
from 2-O-acetyl-Xylp and 3-O-acetyl-Xylp may underestimate true values since reaction products
after removal of one of the acetyl groups from 2,3-O-acetyl-Xylp will contribute to these signals.

Although the specific activity of AnAcXE on MGX differed from both other enzymes, AnAcXE
(CE1), OsAcXE (CE6) and MtAcE (CE16) similarly demonstrated comparatively high activity
towards acetyl groups present on doubly substituted Xylp (i.e., 2,3-O-acetyl-Xylp, Table 4).
Although it was not possible to resolve which of these two acetyl residues were preferentially
targeted, preferred action towards 2,3-O-acetyl-Xylp positions was previously also reported for
Talaromyces emersonii TeCE1 [32], Orpinomyces sp. PC-2 OsCE6 [29,32], and Aspergillus
niger AnCE16A [33].

Considering singly substituted Xylp positions, AnAcXE (CE1), OsAcXE (CE6) and MtAcE (CE16)
all revealed preference towards 2-O-acetyl-Xylp positions, which is consistent with reported
activities for above mentioned TeCE1, OsCE6 and AnCE16A [29,32,33]. AnAcXE (CE1) and
OsAcXE (CE6) were similarly active towards 3-O-acetyl-Xylp, whereas activity towards this
position was not observed for MtAcE (CE16) (Table 4). In contrast to MtAcE (CE16), TrCE16 was
shown to preferentially target 3-O-acetyl-Xylp and 4-O-acetyl-Xylp positions of oligosaccharides
of acetyl-glucuronoxylan [43]. However, AnCE16A rapidly targets 2,3-O-acetyl-Xylp positions,
followed by 2-O-acetyl-Xylp and 3-O-acetyl-Xylp positions, of polymeric xylans [33], but poorly
targets 2-O-acetyl-Xylp positions in methyl β-D-xylopyranoside diacetates and triacetates Puchart
et al. 2016), thus showing differing position specificity with polymeric and monomeric substrates.
Similarly, then, the difference in reported positional preference of MtAcE and TrCE16 may be due
to differences in the length of substrates used in corresponding analyses.

Whereas AnAcXE (CE1) and OsAcXE (CE6) displayed similar positional preferences in MGX, the
positional preferences of OsAcXE (CE6) and MtAcE (CE16) were most similar when evaluated
using GGM. Specifically, when considering the anomeric region of corresponding 1H NMR spectra
where peak signals were clearly resolved, it could be seen that both OsAcXE (CE6) and MtAcE
(CE16) displayed similar preference for 2-O-acetyl-Manp positions in GGM, whereas highest rates
of AnAcXE (CE1) activity were towards 3-O-acetyl-Manp substituents. Notably, however,
positional preference within GGM was less clear when considering the acetyl region of
corresponding 1H NMR spectra, where peak signals are more intense but also overlapping (Figure
2B, Table 5). Still, the comparably high activity of MtAcE (CE16), as well as AnAcXE (CE1) and OsAcXE (CE6) towards the O-2 acetylated position of both Xylp in MGX and Manp in GGM suggests that stereochemistry plays a minor role in substrate recognition by these enzymes. TrCE16 preferentially targets 3-O-acetyl-Xylp in oligo-saccharides of MGX; it was also shown to deacetylate oligomers of GGM [18], however, regio-selective activity of TrCE16 or other AcEs from CE16 on oligomers or polymers of GGM has not been characterized.

4. CONCLUSION

The comparison of three CE families using both MGX and GGM uncovered substrate-dependent and enzyme dependent differences in reaction rates, extent of substrate conversion, and regio-selectivity. In particular, the acetyl xylan esterases AnAcXE (CE1) and OsAcXE (CE6) displayed different specific activities towards MGX yet similar regio-selectivity. On the other hand, these enzymes were similarly active towards GGM. Notably, MtAcE (CE16) was set apart from both acetyl xylan esterases by its comparatively high specific activity towards GGM. Nevertheless, comparably high activity of all three enzymes on 2-O-acetylated positions in GMX and GGM, which has equatorial orientation in Xylp and axial orientation in Manp, suggests that the stereochemistry of the acetyl group has little effect on the activity of these enzymes.

The comparative analysis of three CE families on MGX and GGM underscore the impact of the selected substrate on reported enzyme activity as well as regio-selectivity, further highlighting known challenges associated with predicting enzyme action based on model compounds.

Positions within major hemicellulose sources that remain resistant to CE action were confirmed, including (2-O-MeGlcP)3-O-acetyl-Xylp in MGX, and some 2-O-acetyl-Manp or 3-O-acetyl-Manp in GGM, thereby identifying targets for enzyme discovery as well as enzyme combinations that could be harnessed to promote hemicellulose recovery (e.g., through precipitation) versus full saccharification. Finally, earlier reports which tested AXE activity on ground wood powder [45], and fungal AXE expressed in plants [26], show that enzyme action on hemicelluloses embedded with plant fibre could be predicted from enzyme action on extracted hemicelluloses. However, direct comparison of different AXEs on MGX or GGM present in plant fibre remains to be done.

ACKNOWLEDGEMENTS
This work was supported by a grant to GM from Ella and Georg Ehrnrooth foundation (Finland), a FiDiPro Fellowship to ERM from the Finnish Funding Agency for Technology and Innovation (Tekes), and an ERC Consolidator Grant to EM (BHIVE – 648925).

REFERENCES

Isolation and characterization of galactoglucomannan from spruce (Picea abies), Carbohydr.

[45] E. Margolles-Clark, M. Tenkanen, H. Söderlund, M. Penttilä, Acetyl Xylan Esterase from
Trichoderma reesei Contains an Active-Site Serine Residue and a Cellulose-Binding
2013).
Table 1. Specific activity (µmol/min/mg) of AnAcXE (CE1), OsAcXE (CE6) and MtAcE (CE16) on 4-MUA at pH 6.0 and 7.0.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>pH 6.0</th>
<th>pH 7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnAcXE (CE1)</td>
<td>24 ± 0</td>
<td>26 ± 1</td>
</tr>
<tr>
<td>OsAcXE (CE6)</td>
<td>201 ± 13</td>
<td>237 ± 5</td>
</tr>
<tr>
<td>MtAcE (CE16)</td>
<td>506 ± 7</td>
<td>547 ± 28</td>
</tr>
</tbody>
</table>

n=3; errors indicate standard deviation

Table 2. HSQC NMR analysis of enzyme treated acetyl-4-O-methylglucuronoxylan. Mole percent remaining (compared to untreated MGX) of specific acetyl group positions following enzyme treatment.

<table>
<thead>
<tr>
<th>acetyl-4-O-methylglucuronoxylan (MGX)</th>
<th>Untreated<sup>a</sup></th>
<th>AnAcXE (CE1)</th>
<th>OsAcXE (CE6)</th>
<th>MtAcE (CE16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-O-acetyl-Xylp</td>
<td>24.1 ± 0.2</td>
<td>0.2</td>
<td>1.1</td>
<td>1.1 ± 0.4</td>
</tr>
<tr>
<td>3-O-acetyl-Xylp</td>
<td>57.6 ± 0.4</td>
<td>2.3</td>
<td>4.9</td>
<td>2.7 ± 1.4</td>
</tr>
<tr>
<td>2,3-O-acetyl-Xylp</td>
<td>6.5 ± 0.3</td>
<td>0.2</td>
<td>1.2</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>(2-O-MeGlcP)3-O-acetyl-Xylp</td>
<td>11.7 ± 0.1</td>
<td>8.1</td>
<td>9.0</td>
<td>7.6 ± 0.9</td>
</tr>
<tr>
<td>total acetylation (%)</td>
<td>100.0</td>
<td>10.8</td>
<td>16.3</td>
<td>11.6 ± 0.2</td>
</tr>
<tr>
<td>reduction acetylation (%)</td>
<td></td>
<td>89.2</td>
<td>83.7</td>
<td>88.4</td>
</tr>
</tbody>
</table>

^a The mole percent of acetyl group positions in the original MGX. n=2 for untreated and MtAcE (CE16), otherwise n=1.
Table 3. Specific activity (µmol/min/mg) of AnAcXE (CE1), OsAcXE (CE6) and MtAcE (CE16) on MGX and GGM. Reactions were performed at pH 7.0 and 40º C; acetyl group release was measured using the acetic acid kit.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>AnAcXE (CE1)</th>
<th>OsAcXE (CE6)</th>
<th>MtAcE (CE16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus acetyl-4-O-</td>
<td>5.4 ± 0.7</td>
<td>22.8 ± 3</td>
<td>20.1 ± 2</td>
</tr>
<tr>
<td>Spruce acetyl- galactoglucomannan</td>
<td>1.2 ± 0.1</td>
<td>1.6 ± 0.3</td>
<td>120 ± 20</td>
</tr>
<tr>
<td>(GGM)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n=3 (minimum); errors indicate standard deviation

Table 4. Relative activity (%) towards specific acetyl group positions in eucalyptus acetyl-4-O- methylglucuronoxylan (MGX) determined using real time 1H NMR.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>2-O-acyt-Xylp</th>
<th>3-O-acyt-Xylp</th>
<th>2,3-O-acyt-Xylp</th>
<th>(2-O-MeGlcA)3-acyt-Xylp</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnAcXE (CE1)</td>
<td>32</td>
<td>13</td>
<td>55</td>
<td>ND</td>
</tr>
<tr>
<td>OsAcXE (CE6)</td>
<td>40</td>
<td>15</td>
<td>46</td>
<td>ND</td>
</tr>
<tr>
<td>MtAcE (CE16)</td>
<td>45</td>
<td>ND</td>
<td>55</td>
<td>ND</td>
</tr>
</tbody>
</table>

Relative activity was calculated as follows: (slope/mg enzyme/(% acetyl groups at the specific position in untreated MGX)/ Σ (slope/mg enzyme/(% acetyl groups at the specific position in untreated MGX) *100. ND, not determined given that corresponding slope values were insignificantly different from zero (Suppl. Fig. 4).
Table 5. Relative activity (%) towards specific acetyl group positions in spruce acetyl-galactoglucomannan (GGM) determined using real time 1H NMR.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>2-O-acetyl-Manp</th>
<th>3-O-acetyl-Manp</th>
<th>2-O-acetyl-Manp; H2</th>
<th>3-O-acetyl-Manp; H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnAcXE (CE1)</td>
<td>39</td>
<td>61</td>
<td>31</td>
<td>69</td>
</tr>
<tr>
<td>OsAcXE (CE6)</td>
<td>56</td>
<td>44</td>
<td>83</td>
<td>17</td>
</tr>
<tr>
<td>MtAcE (CE16)</td>
<td>50</td>
<td>50</td>
<td>84</td>
<td>16</td>
</tr>
</tbody>
</table>

Calculation for relative activity: \(\frac{\text{slope/mg enzyme}}{\% \text{ acetyl groups at the specific position in untreated GGM}} \times \frac{1}{\sum \left(\text{slope/mg enzyme} / \% \text{ acetyl groups at the specific position in untreated GGM} \right)} \times 100. \)
FIGURE LEGENDS

Fig. 1. Molecular structures of acetyl-4-O-methylglucuronoxylan (MGX) (A) and acetyl-galactoglucomannan (GGM) (B). Acetyl group positions are shown in red.

Fig. 2. 1H NMR spectra following enzyme action on acetyl-4-O-methylglucuronoxylan (MGX) and acetyl-galactoglucomannan (GGM) in buffered D$_2$O at 40°C. The first spectrum was collected after 10 min of reaction; subsequent spectra were collected every 1.8 min. (A) MGX before and after treatment with AnAcXE (CE1) (5 µg/mg MGX), OsAcXE (CE6) (1 µg/mg MGX), MtAcE (CE16) (1 µg/mg MGX); (B) GGM before and after treatment with AnAcXE (CE1) (10 µg/mg GGM), OsAcXE (CE6) (10 µg/mg GGM), MtAcE (CE16) (1 µg/mg GGM).

Fig. 3. Enzyme stability at pH 6.0 and 40°C for up to 24 h. Relative activity was measured using 4-MUA. Average values are indicated above each bar. n=3; error bars indicate standard deviation.

Fig. 4. Deacetylation of acetyl-4-O-methylglucuronoxylan (MGX; black bars) and acetyl-galactoglucomannan (GGM; grey bars). Percent of acetyl group content released by AnAcXE (CE1), OsAcXE (CE6), and MtAcE (CE16) (10 µg enzyme /1 mg substrate) measured after 24 h at 40°C and pH 6.0, using the Acetic Acid kit from Megazyme. Average values are indicated above each bar. Non-enzymatic release of acetyl groups from MGX and GGM at pH 6.0 after 24 h was 4 % and 2%, respectively. n=3; error bars represent standard deviation.

Fig. 5. HSQC spectra of GGM in DMSO at 60°C. Acetyl-galactoglucomannan (GGM) in DMSO-d6 before and after treatment with AnAcXE (CE1), OsAcXE (CE6), MtAcE (CE16) (10 µg enzyme /1 mg substrate) for 24 h at pH 6.0 and 40°C. Scaling for the native substrate was adjusted to show all available peaks. Acetylated O-2 (H2) and O-3 (H3) positions in the anomeric region are shown due to the partial overlap of signals in the acetyl group region between 2.5-2.0 ppm.
Fig. 1.
A. 1H NMR spectra of enzyme treated MGX

$AnAcXE$

(CE1)

$OAcXE$

$MtAE$

2-O-acetyl-

3-O-acetyl-

(2-O-MeGlcpA)3-O-

2,3-O-acetyl-

Fig. 2.

B. 1H NMR spectra of enzyme treated GGM

3b-O-acetyl-

3a-O-

2a-O-acetyl-

2b-O-acetyl-

[ppm]
Fig. 3.
Fig. 4

- Acetyl-4-O-methyl glucuronoxylan
- Acetyl-galactoglucomannan

Percent of total released

<table>
<thead>
<tr>
<th></th>
<th>AnAcXE (CE1)</th>
<th>OsAcXE (CE6)</th>
<th>MtAcE (CE16)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>79 ± 1</td>
<td>89 ± 1</td>
<td>93 ± 1</td>
</tr>
<tr>
<td></td>
<td>81 ± 1</td>
<td>78 ± 1</td>
<td>90 ± 1</td>
</tr>
</tbody>
</table>
Fig. 5.
Supp. Table 1. Reported compositions (mol%) of acetyl-4-O-methylglucuronoxylan (MGX), acetyl-galactoglucomannan (GGM), determined using NMR or by acid methanolysis/gas chromatography (Meth-GC)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MGX (Birch)</td>
<td>DMSO/NMR</td>
<td>68</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>29 (0.4)</td>
<td>[9]</td>
</tr>
<tr>
<td>MGX (Beech)</td>
<td>NMR</td>
<td>70</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26 (0.3)</td>
<td></td>
</tr>
<tr>
<td>MGX (Aspen)</td>
<td>Microwave/NMR</td>
<td>60</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>35 (0.6)</td>
<td>[7]</td>
</tr>
<tr>
<td>GGM (Birch)</td>
<td>Hot water/NMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.2)</td>
<td>[10]</td>
</tr>
<tr>
<td>GGM (Spruce)</td>
<td>Meth-GC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.5)</td>
<td>[3]</td>
</tr>
</tbody>
</table>

DS: degree of substitution
- not determined or not detected
TMP: thermomechanical pulp
SUPPLEMENTAL FIGURES

Suppl.Fig. 1. SDS-PAGE analysis of purified enzymes (15 µg). Lanes, PageRuler™ Prestained Protein Ladder, 10 to 180 kDa (ThermoFisher Scientific; USA), 2: *AnAcXE* (CE1); 3: *OsAcXE* (CE6); 4: *MtAE* (CE16).

Suppl.Fig. 2. Optimum pH of selected enzymes measured using 4-MUA. (A) *AnAcXE*(CE1); (B) *OsAcXE* (CE6), and (C) *MtAE* (CE16).

Suppl.Fig. 3. Optimum pH of (A) *AnAcXE* (CE1) and (B) *MtAcE* (CE16) using MGX.

Suppl.Fig. 4. Normalized resonance signals from H\(^1\) NMR plotted against time. (A) Plots showing activity of each enzyme towards each acetyl group in MGX and GGM, (B) Slopes calculated from plots shown in (A). Prob(F) values were obtained using ANOVA (Origin 2017 software); Prob(F) values >0.05 indicate insignificant difference from zero.
A. *AnAcXE* (CE1)

B. *OsAcXE* (CE6)

C. *MtAcE* (CE16)

Suppl. Fig. 2
A. *AnAcXE* (CE1)

![Graph A](image)

B. *MtAcE* (CE16)

![Graph B](image)

Suppl. Fig. 3
Suppl. Fig. 4A
Calculated slopes derived from enzyme-treated MGX

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>2-O-acetyl-Xylp</th>
<th>Prob (F) 2-O-acetyl-Xylp</th>
<th>3-O-acetyl-Xylp</th>
<th>Prob (F) 3-O-acetyl-Xylp</th>
<th>2,3-O-acetyl-Xylp</th>
<th>Prob (F) 2,3-O-acetyl-Xylp</th>
<th>(2-O-MeGlc)pA 3-O-acetyl-Xylp</th>
<th>Prob (F) (2-O-MeGlc)pA 3-O-acetyl-Xylp</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnAcXE (CE1)</td>
<td>0.11 ± 0.02</td>
<td>3.5 x 10^-6</td>
<td>0.06 ± 0.01</td>
<td>7.8 x 10^-4</td>
<td>0.10 ± 0.002</td>
<td>0.0</td>
<td>0.002 ± 0.002</td>
<td>3.1 x 10^-1</td>
</tr>
<tr>
<td>OsAcXE (CE6)</td>
<td>0.11 ± 0.01</td>
<td>1.9 x 10^-11</td>
<td>0.05 ± 0.01</td>
<td>3.9 x 10^-7</td>
<td>0.07 ± 0.003</td>
<td>2.1 x 10^-12</td>
<td>0.001 ± 0.002</td>
<td>6.1 x 10^-1</td>
</tr>
<tr>
<td>MtAcE (CE16)</td>
<td>0.11 ± 0.01</td>
<td>4.9 x 10^-7</td>
<td>0.003 ± 0.007</td>
<td>7.1 x 10^-1</td>
<td>0.07 ± 0.01</td>
<td>1.3 x 10^-8</td>
<td>0.01 ± 0.003</td>
<td>6.3 x 10^-2</td>
</tr>
</tbody>
</table>

Calculated slopes derived from enzyme-treated GGM

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>2-O-acetyl-Manp</th>
<th>Prob (F) 2-O-acetyl-Manp</th>
<th>3-O-acetyl-Manp</th>
<th>Prob (F) 3-O-acetyl-Manp</th>
<th>2-O-acetyl-Manp; H2</th>
<th>Prob (F) 2-O-acetyl-Manp; H2</th>
<th>3-O-acetyl-Manp; H3</th>
<th>Prob (F) 3-O-acetyl-Manp; H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnAcXE (CE1)</td>
<td>0.25 ± 0.02</td>
<td>1.1 x 10^-9</td>
<td>0.26 ± 0.02</td>
<td>5.3 x 10^-9</td>
<td>0.08 ± 0.02</td>
<td>5.2 x 10^-4</td>
<td>0.24 ± 0.03</td>
<td>8.1 x 10^-8</td>
</tr>
<tr>
<td>OsAcXE (CE6)</td>
<td>0.23 ± 0.03</td>
<td>3.9 x 10^-7</td>
<td>0.13 ± 0.02</td>
<td>1.1 x 10^-6</td>
<td>0.19 ± 0.01</td>
<td>2.3 x 10^-10</td>
<td>0.05 ± 0.01</td>
<td>7.7 x 10^-5</td>
</tr>
<tr>
<td>MtAcE (CE16)</td>
<td>0.31 ± 0.01</td>
<td>2.2 x 10^-16</td>
<td>0.19 ± 0.01</td>
<td>3.1 x 10^13</td>
<td>0.36 ± 0.01</td>
<td>0</td>
<td>0.09 ± 0.01</td>
<td>6.3 x 10^-8</td>
</tr>
</tbody>
</table>

Suppl.Fig. 4B