Shen, Leiting; Li, X; Taskinen, Pekka

Thermodynamics of Tungsten Ores Decomposition Process Options

Published in:
Extraction 2018

DOI:
10.1007/978-3-319-95022-8_206

Published: 01/01/2018

Document Version
Peer reviewed version

Please cite the original version:
Thermodynamics of tungsten ores decomposition process options
Leiting Shen1, 2, *, Xiaobin Li1, Pekka Taskinen2

1 Central South University, School of Metallurgy and Environment, Changsha 410083, China
2 Aalto University, School of Chemical Engineering, Metallurgical Thermodynamics and Modeling Research Group, Espoo 02150, Finland
*Corresponding author: leiting.shen@aalto.fi

Abstract: The thermodynamics of tungsten ore decomposition in mineral acid and alkaline solutions were studied. The published thermodynamic data of tungsten minerals were collected and assessed. The Gibbs energies of CaWO4 (−1538.43 kJ/mol), FeWO4 (−1053.91 kJ/mol), MnWO4 (−1206.08 kJ/mol), H2WO4 (−1003.92 kJ/mol), and Na2WO4 (−1455.58 kJ/mol, aq) at 25 °C were adopted in the calculation using HSC software. The results show that CaWO4 is decomposed more readily in Na2CO3 solution than in NaOH, while FeWO4 and MnWO4 are more reactive in NaOH solutions. From a thermodynamic point of view, tungsten ore decomposes easily in acid solutions despite most ∆G°f increasing slightly with temperature. Oxidizing Fe2+ to Fe3+ in acidic solutions facilitates decomposition of FeWO4, and the reaction of CaWO4 in H2SO4 solution occurs more easily than in other mineral acids, due to the formation of sparsely soluble CaSO4. The results fit well with the experimental data and industrial experience previously reported in the literature.

Keywords: Scheelite; Wolframite; Mineral acid; Alkaline media; Gibbs energy

1. Introduction

Tungsten, a strategic and rare metal, has a wide range of industrial applications, such as hard materials, high temperature technology, lighting, X-ray technology, machine and engine construction, chemical industry, laser technology, armaments and aerospace industry. The key properties are low vapor pressure and thermal expansion, high density and melting point, good thermal and electrical conductivity, and high modulus of elasticity [1, 2]. Due to the lack of viable substitutes, the European Union has included tungsten in the list of critical raw materials [3]. Similarly, the British Geological Survey ranked it as number two in a supply list containing forty one critical elements [4]. The main tungsten minerals in nature are scheelite (CaWO4) and wolframite ((Fe,Mn)WO3), with approximately two-thirds of the world tungsten reserves consisting of scheelite [1, 2]. China has more than 60% of tungsten reserves in the world, and accounts for about 80% of the world tungsten production [5]. Ammonium paratungstate (APT), as the main intermediate in industrial tungsten production, is usually obtained from tungsten concentrates by a caustic/soda or hydrochloric acid treatment [6].

In modern industrial production technologies, caustic digestion is employed to treat wolframite producing soluble sodium tungstate and insoluble iron or manganese hydroxide at either atmospheric pressure (75–145 °C), in concentrated NaOH solutions (≥10 mol/L) [7], or under high pressures (135–255 °C), in a dilute NaOH solution (1.25–3.75 mol/L) [8]. When tungsten concentrate contains scheelite, Na2CO3 is added in NaOH solution to extract tungsten in an autoclave operating under elevated pressures (180–310 °C) [9]. Subsequently, solvent extraction or ion exchange is used to convert Na2WO4 to (NH4)2WO4, which requires excess acid to treat the Na2WO4 solution and a large amount of water to dilute the leach solution [10]. Obviously, the caustic/soda leaching method needs a large excess of reagents, and discharges huge volumes of high-salinity wastewater [11]. Furthermore, Leal–Ayala et al. [12] pointed out that 4% of tungsten would be lost in the APT production.

Acid processing, as a classical method, can avoid the use of high temperatures and a large excess of leaching reagents, and treating or even discharging large amounts of sodium salts solutions. Hydrochloric acid, nitric acid, or sulfuric acid is used to decompose tungsten ores and produce insoluble tungstic acid. However, a solid or colloidal H2WO4 layer was observed covering the surfaces of the unreacted tungsten particles, thus
hindering the reaction rate and yield. Therefore, some strategies are usually adopted to increase the feasibility, such as reducing particle size [13], using a large excess of concentrated HCl [14], utilizing heated ball mill reactors [15], and employing organic acids to dissolve solid tungstic acid [16].

Additionally, many researchers have focused on decomposing tungsten concentrates to produce soluble tungsten compounds. Martins leached synthetic scheelite in hydrochloric or nitric acid at pH 1.5–3.0 in a temperature range of about 25–100 °C to obtain soluble metatungstates [17, 18]. Potashnikov et al. [19] and Kalpakli et al. [20] treated scheelite by oxalic acid to form soluble hydrogen aqua oxalate tungstate (H₂[WO₄(C₂O₄)H₂O]). Hydrochloric, nitric or sulfuric acid in the presence of phosphorus was found to decompose scheelite and form a water–soluble phosphotungstic acid chelate compound (12-tungstophosphoric heteropoly acid, H₃PW₁₂O₄₀) [21–24]. In previous work, we systematically studied the conversion of scheelite and mixed scheelite-wolframite concentrate in sulfuric acid, and found that the tungsten concentrates can be completely converted in H₂SO₄ solutions by adding an oxidizing agent and controlling the H₂WO₄ formation in moderate acid concentrations [25, 26].

Even though tungsten extraction technology has been developed for more than a hundred years since R. Oxiland in 1874 [1], there is limited thermodynamic information on the tungsten leaching chemistry. Osseo-Asare [27] applied the Pourbaix diagram concept to tungsten hydrometallurgy, but stated a lack of sufficient thermodynamic data. Martins [28] determined the equilibrium constants for wolframite and scheelite leaching systems, and also pointed out some inherent limitations due to the estimation of selected thermodynamic data. Zhao and Li [29] used a pseudo-ternary-system phase diagram to explain scheelite digestion in high concentration NaOH and Na₂CO₃ solutions.

Therefore, this paper focuses on collecting and assessing the thermodynamic data of tungsten minerals previously published. Gibbs free energy changes versus temperature were calculated with HSC software for tungsten minerals decomposing in mineral acid and alkaline solutions, using the adopted thermodynamic data. The calculations were finally compared with the experimental and industrial results previously reported in the literature. This work is beneficial to better understanding of various technologies in industrial tungsten processing.

2. Thermodynamics

2.1 Thermodynamic equation

For a chemical reaction, the Gibbs standard free energy as a function of temperature can be calculated by following equations:

\[
\Delta G^o_T = \Delta H^o_T - T \times \Delta S^o_T
\]

\[
\Delta H^o_T = \Delta H^o_{298} + \int_{298}^T \Delta C_P \, dT
\]

\[
\Delta S^o_T = \Delta S^o_{298} + \int_{298}^T \frac{\Delta C_P}{T} \, dT
\]

\[
\Delta G^o_T = \Delta G^o_{298} - (T - 298)\Delta S^o_{298} + \int_{298}^T \Delta C_P \, dT - T \int_{298}^T \frac{\Delta C_P}{T} \, dT
\]

where, \(\Delta G^o_T\) is the standard Gibbs energy of reaction at temperature T, (kJ mol⁻¹); \(\Delta H^o_T\) the standard enthalpy of reaction at temperature T, (kJ mol⁻¹); \(\Delta S^o_T\) the standard entropy of reaction at temperature T, (J mol⁻¹K⁻¹); \(\Delta C_P\) the molar heat capacity of reaction at constant pressure at temperature T, (J mol⁻¹K⁻¹); T is the temperature (K).

In order to calculate more accurate \(\Delta G^o_T\), the estimation of the heat capacity term \(\Delta C_P\) plays a critical role. Barner and Kust [30] has assessed the various approaches for estimating \(\Delta C_P\). The molar heat capacity \(C_P\) of each substance relating to temperature T was used in the calculation, as shown in empirical equation (5).

\[
C_P = A + BT \times 10^{-3} + CT^{-2} \times 10^5 + DT^2 \times 10^{-6}
\]

The general equation describing the temperature dependence of equilibrium constant can be derived from

\[
\ln K = \frac{\Delta G^0}{RT}
\]

(6)

2.2 Thermodynamic data

Standard–state thermochemical properties are prerequisites for the modeling of chemical reactions. Various thermodynamic properties of tungsten compounds have been reported. However, there is no assessment of the thermodynamic data available. So the primary target is to select the reliable data for tungsten compounds.

A number of values of \(\Delta H^0 \) have been reported for scheelite (CaWO\(_4\)) at 298 K. The proposed value changes in the range of –1623.00 to –1683.70 kJ·mol\(^{-1}\), as reviewed by Wood and Samon [31], and the adopted value is –1645.1 kJ·mol\(^{-1}\). This value is widely accepted by Lange’s Handbook of Chemistry [32], HSC software [33], and last by Martins [28]. King and Weller [34] determined the heat capacity of scheelite at low temperatures (up to 298.15 K), and from this they derived a third law entropy, \(S^0_{298} = 126.4 \) J·K\(^{-1}\)·mol\(^{-1}\), which has been adopted in all major compilations of thermodynamic data on scheelite. Combined with the heat capacity of scheelite (298–1000 K) from Barin and Knacke [35], the parameters for temperature dependence of \(C_p \) are obtained. The values of \(\Delta H^0_{298} \) and \(S^0_{298} \) result in \(\Delta G^0_{298} = -1538.43 \) kJ·mol\(^{-1}\). The thermodynamic data adopted for scheelite are shown in Table I.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\Delta H^0_{298})</th>
<th>(\Delta G^0_{298})</th>
<th>(S^0_{298})</th>
<th>(C_p = A + BT \cdot 10^{-3} + CT^{-2} \cdot 10^{5} + DT^{2} \cdot 10^{-6})</th>
</tr>
</thead>
</table>
| CaWO\(_4\) | –1645.10 | –1538.43 | 126.4 | |}
| FeWO\(_4\) | –1154.80 | –1053.91 | 131.8 | | |}
| MnWO\(_4\) | –1035.83 | –1206.08 | 127.4 | | |}
| H\(_2\)WO\(_4\) | –1131.77 | –1003.92 | 112.6 | | | |}
| Na\(_2\)WO\(_4\)(aq) | –1554.02 | –1455.58 | 160.3 | | | |}

\(\Delta H^0_{298} \) and \(\Delta G^0_{298} \), kJ·mol\(^{-1}\); \(S^0_{298} \) and \(C_p \), J·mol\(^{-1}\)·K\(^{-1}\)

Similarly to scheelite, the values of \(\Delta H^0 \) reported for ferberite (FeWO\(_4\)) at 298 K have been also reviewed by Wood and Samon [31]. As with scheelite, the standard entropy of ferberite, \(S^0_{298} = 131.8 \) J·K\(^{-1}\)·mol\(^{-1}\), was calculated from the low-temperature calorimetric measurements of heat capacity by Weller [36]. This value was adopted in this research. Combined with the heat capacity of ferberite (5–500 K), measured by Lyon and Westrum [37] using adiabatic calorimetry, the parameters for temperature dependence of \(C_p \) were fitted by HSC software. However, there are big differences in the values of \(\Delta H^0_{298} \) and \(\Delta G^0_{298} \) for ferberite. The more negative values are in the range –1184 to –1192 kJ·mol\(^{-1}\) and –1085 to –1089 kJ·mol\(^{-1}\), while the opposed higher values range from –1154 to –1158 kJ·mol\(^{-1}\) and –1054 to –1057 kJ·mol\(^{-1}\) [31]. We favor the higher values because thermodynamic calculation result show an accordant trend with the experimental results [26], while the more negative values seem more suited to pyrometallurgical calculations. So we accept, respectively, –1154.8 and –1053.91 kJ·mol\(^{-1}\) for \(\Delta H^0_{298} \) and \(\Delta G^0_{298} \) of ferberite in this paper, which was also accepted in the recent research of Martins [28] and Lange’s Handbook of Chemistry [32].

There are limited thermodynamic data available for hübnerite (MnWO\(_4\)). In the HSC Database, the \(\Delta H^0_{298} \), \(\Delta G^0_{298} \), and \(S^0_{298} \) for hübnerite are –1305.83 kJ·mol\(^{-1}\), –1053.08 kJ·mol\(^{-1}\), and 140.58 J·K\(^{-1}\)·mol\(^{-1}\), respectively. These data, together with the parameters for \(C_p \), originate from Barin and Knacke [35], and they are very similar to the values adopted by Horner [38].
The thermodynamic value for \(\Delta G_{298} \) for \(H_2WO_4 \), is in the range of \(-1003.9 \) to \(-1006.9 \text{ kJ·mol}^{-1} \) except for the estimate by Osseo-Asare [27], which has been compared by Martins [28]. The value in the HSC Database is \(-1003.92 \text{ kJ·mol}^{-1} \), similar to Lange’s Handbook of Chemistry [32]. This was adopted in the calculations together with the other data.

The \(\Delta G_{298} \) of Na\(_2\)WO\(_4\) in aqueous solution was reviewed by Martins [28], ending up with a value of about \(-1455 \text{ kJ·mol}^{-1} \). This value is also available in the HSC Database. As for CaWO\(_4\) and FeWO\(_4\), the entropy, \(S_{298}^0 = -160.3 \text{ J·K}^{-1}·\text{mole}^{-1} \), was calculated from low-temperature calorimetric measurements of heat capacity by King and Weller [34]. Combined with the heat capacity in Barin and Knacke [35], the parameters for temperature dependence of \(C_p \) were fitted at temperatures of 275–800 K (see Table I).

The adopted thermodynamic data for tungsten compounds are presented in Table I. The other data for substances used in the calculation were taken from the HSC Database. They are close to the values adopted by Martins [28], except the \(C_p \) parameters.

3. Thermodynamic results

3.1 Tungsten ores decomposing in NaOH and Na\(_2\)CO\(_3\) solutions

The decompositions of tungsten ores (CaWO\(_4\), FeWO\(_4\), and MnWO\(_4\)) in NaOH and Na\(_2\)CO\(_3\) solutions are expressed with equations (7)–(12). The standard Gibbs energy changes versus temperature for these reactions are depicted in Fig. 1 and Fig. 2 for sodium hydroxide and carbonate solutions, respectively.

In NaOH solutions

\[
\begin{align*}
\text{CaWO}_4 (s) + 2\text{NaOH (aq)} &\rightleftharpoons \text{Ca(OH)}_2 (s) + \text{Na}_2\text{WO}_4 (aq) \quad (7) \\
\text{FeWO}_4 (s) + 2\text{NaOH (aq)} &\rightleftharpoons \text{Fe(OH)}_2 (s) + \text{Na}_2\text{WO}_4 (aq) \quad (8) \\
\text{MnWO}_4 (s) + 2\text{NaOH (aq)} &\rightleftharpoons \text{Mn(OH)}_2 (s) + \text{Na}_2\text{WO}_4 (aq) \quad (9)
\end{align*}
\]

In Na\(_2\)CO\(_3\) solutions

\[
\begin{align*}
\text{CaWO}_4 (s) + \text{Na}_2\text{CO}_3 (aq) &\rightleftharpoons \text{CaCO}_3 (s) + \text{Na}_2\text{WO}_4 (aq) \quad (10) \\
\text{FeWO}_4 (s) + \text{Na}_2\text{CO}_3 (aq) &\rightleftharpoons \text{FeCO}_3 (s) + \text{Na}_2\text{WO}_4 (aq) \quad (11) \\
\text{MnWO}_4 (s) + \text{Na}_2\text{CO}_3 (aq) &\rightleftharpoons \text{MnCO}_3 (s) + \text{Na}_2\text{WO}_4 (aq) \quad (12)
\end{align*}
\]

Fig. 1 Standard Gibbs energy changes versus temperature of tungsten ores decomposing in NaOH solutions.
The results in Fig. 1 indicate that raising temperature favors the decomposition of tungsten ores in NaOH solution thermodynamically, especially for CaWO$_4$. The standard Gibbs energy change of CaWO$_4$ becomes negative at the temperature of above about 220 °C, while for FeWO$_4$ and MnWO$_4$ it decreases slightly with increasing temperature but is negative over the whole temperature range. The results indicate that the decomposition of CaWO$_4$ in NaOH solutions should be done at elevated temperatures.

When these tungsten compounds are decomposed in Na$_2$CO$_3$ solutions, as shown in Fig. 2, the trend is similar to that in NaOH solutions. However, the temperature, at which the standard Gibbs energy change of CaWO$_4$ decomposition in Na$_2$CO$_3$ solutions becomes negative, significantly decreases to ~75 °C, 80 °C, and 90 °C when producing calcite, aragonite, and vaterite, respectively. The standard Gibbs energy changes of FeWO$_4$ and MnWO$_4$ decomposition in Na$_2$CO$_3$ solutions are more positive than in NaOH solutions at the same temperature.

It should be noted that the equilibrium constants of CaWO$_4$ decomposition in NaOH and Na$_2$CO$_3$ solutions are positive at temperatures above 50 °C and 25 °C, respectively, as reported by reference [28]. These results differ from the above calculation according to equation (6). Wan et al. [39] synthesized scheelite by adding Ca(OH)$_2$ into Na$_2$WO$_4$ solution in a temperature range of 20–110 °C. However, Zhao et al. [40] studied the kinetics of sodium hydroxide leaching of scheelite at 60–100 °C. The results seem to be in disagreement. Considering that Zhao et al. [40] used NaOH concentrations in the range of 8–16 mol/L, these conditions cannot be assumed to be ideal as adopted in thermodynamic calculation. Kinetic theory can be used to explain those results. Chen et al. [41] extracted tungsten mechanochemically using caustic processing of scheelite according to reaction (13), and found a reverse reaction when washing the products in water. So NaOH concentration plays a key role in CaWO$_4$ decomposition. This is evidence that our thermodynamic calculation is reliable for CaWO$_4$ decomposing in NaOH solutions.

$$\text{CaWO}_4(s) + 2\text{NaOH}(s) \rightleftharpoons \text{Ca(OH)}_2(s) + \text{Na}_2\text{WO}_4(s) \quad (\Delta G_{298}^{\circ} = -30 \text{ kJ mol}^{-1})$$

Furthermore, the stability of the products seems to influence the thermodynamic reaction sequence based on Fig. 1 and Fig. 2, especially for scheelite which has a very small equilibrium constant. The solubility product K_{sp} values at 298 K for Ca(OH)$_2$, CaCO$_3$, Fe(OH)$_2$, FeCO$_3$, Mn(OH)$_2$, and MnCO$_3$ are $10^{-4.38}$, $10^{-7.91}$ (calcite), $10^{-8.22}$ (aragonite), and $10^{-8.47}$ (vaterite), $10^{-16.31}$, $10^{-10.5}$, $10^{-12.72}$ and $10^{-10.63}$, respectively [32, 42], which is in accordance with thermodynamic calculation sequence. Chen et al. [41] used a 0.1 M Na$_2$CO$_3$ solution washing the compositions of Na$_2$WO$_4$ and Ca(OH)$_2$ by forming more stable CaCO$_3$ and added Al(OH)$_3$ to the co-grinding of CaWO$_4$ and NaOH for producing more stable katoite [Ca$_3$Al$_2$(OH)$_{12}$] and in order to avoid the reverse reaction. All these observations verify the above analysis.

3.2 Tungsten ores decomposing in mineral acid

The decompositions of tungsten ore (CaWO$_4$, FeWO$_4$, and MnWO$_4$) in HCl, HNO$_3$, and H$_2$SO$_4$ solutions
occur according to reactions (14)–(23). The oxidization of Fe$^{2+}$ to Fe$^{3+}$ is also taken into account below, due to the strong oxidation power of HNO$_3$ solutions.

In HCl solutions

\[
\text{CaWO}_4 (s) + 2\text{HCl (aq)} \rightleftharpoons \text{CaCl}_2 (aq) + \text{H}_2\text{WO}_4 (s) \tag{14}
\]

\[
\text{FeWO}_4 (s) + 2\text{HCl (aq)} \rightleftharpoons \text{FeCl}_2 (aq) + \text{H}_2\text{WO}_4 (s) \tag{15}
\]

\[
\text{MnWO}_4 (s) + 2\text{HCl (aq)} \rightleftharpoons \text{MnCl}_2 (aq) + \text{H}_2\text{WO}_4 (s) \tag{16}
\]

In HNO$_3$ solutions

\[
\text{CaWO}_4 (s) + 2\text{HNO}_3 (aq) \rightleftharpoons \text{Ca(NO}_3)_2 (aq) + \text{H}_2\text{WO}_4 (s) \tag{17}
\]

\[
\text{FeWO}_4 (s) + 2\text{HNO}_3 (aq) \rightleftharpoons \text{Fe(NO}_3)_2 (aq) + \text{H}_2\text{WO}_4 (s) \tag{18}
\]

\[
\text{MnWO}_4 (s) + 2\text{HNO}_3 (aq) \rightleftharpoons \text{Mn(NO}_3)_2 (aq) + \text{H}_2\text{WO}_4 (s) \tag{19}
\]

\[
\text{FeWO}_4 (s) + 4\text{HNO}_3 (aq) \rightleftharpoons \text{Fe(NO}_3)_3 (aq) + \text{H}_2\text{WO}_4 (s) + \text{NO}_2(g) + \text{H}_2\text{O (aq)} \tag{20}
\]

In H$_2$SO$_4$ solutions

\[
\text{CaWO}_4 (s) + \text{H}_2\text{SO}_4 (aq) \rightleftharpoons \text{CaSO}_4 (s) + \text{H}_2\text{WO}_4 (s) \tag{21}
\]

\[
\text{FeWO}_4 (s) + \text{H}_2\text{SO}_4 (aq) \rightleftharpoons \text{FeSO}_4 (aq) + \text{H}_2\text{WO}_4 (s) \tag{22}
\]

\[
\text{MnWO}_4 (s) + \text{H}_2\text{SO}_4 (aq) \rightleftharpoons \text{MnSO}_4 (aq) + \text{H}_2\text{WO}_4 (s) \tag{23}
\]

![Fig. 3 Standard Gibbs energy changes versus temperature for tungsten ore decomposition in HCl solutions.](image)

As seen in Fig. 3, raising temperature does not favor the tungsten ore decomposition in HCl solutions thermodynamically. The standard Gibbs energy changes of CaWO$_4$, MnWO$_4$, and FeWO$_4$ decomposition increase slightly, but keep a relatively negative value with increasing temperature. In addition, the preferential conversion order or driving force of reaction is FeWO$_4$ > MnWO$_4$ > CaWO$_4$ at <100 °C, from a thermodynamic point of view.

The relationships of the standard Gibbs energy changes of CaWO$_4$, MnWO$_4$, and FeWO$_4$ decomposition in HNO$_3$ solutions versus temperature are depicted in Fig. 4, showing similar trends as in HCl solutions. Considering the oxidation of ferrous to ferric by HNO$_3$, the standard Gibbs energy change of FeWO$_4$ decreases significantly in HNO$_3$ solution. This implies that the equilibrium end product in the solution has an obvious influence on the decomposition.

Fig. 5 presents the standard Gibbs energy changes versus temperature for the decomposition of CaWO$_4$, MnWO$_4$, and FeWO$_4$ in H$_2$SO$_4$ solutions. The trends for FeWO$_4$ and MnWO$_4$ are similar to those in HCl and HNO$_3$ solutions. The standard Gibbs energy change of CaWO$_4$ notably decreases in H$_2$SO$_4$ solutions. The effect may be increased by the lower concentration of Ca$^{2+}$ compared to Fe$^{2+}$ and Mn$^{2+}$ in the leaching solutions, due to the formation of sparingly soluble CaSO$_4$ ($K_{sp} = 10^{-4.38}$). The solubility of CaSO$_4$ decreases with increasing temperature [43, 44], which further explains this trend reversal.

Our previous research [26] showed that increasing Fe$^{2+}$ in the solution hinders the FeWO$_4$ decomposition, while oxidization of Fe$^{3+}$ to Fe$^{3+}$ or/and renewing the acid solution by a two-stage decomposition favors FeWO$_4$.
reaction. This explains the impact of oxidization by HNO\(_3\) in Fig. 4 and the difference between scheelite and wolframite decomposition in sulfuric acid in Fig. 5.

Fig. 4 Standard Gibbs energy changes versus temperature of tungsten ore decomposition in HNO\(_3\) solutions.

Fig. 5 Standard Gibbs energy changes versus temperature of tungsten ore decomposition in H\(_2\)SO\(_4\) solutions.

The current thermodynamic results give an explanation of wolframite treatment by caustic soda when scheelite is digested by soda in modern industrial APT practices. When tungsten ore is decomposed in acid solutions, a solid H\(_2\)WO\(_4\) product layer will form on the surfaces of unreacted tungsten mineral particles. It can be dissolved incorporating actions, such as controlling the acid concentration and adding an oxidizing agent [25, 26, 45]. Due to the absence of thermodynamic data, unfortunately, this paper does not carry out a detailed thermodynamic analysis on tungsten ore decomposition to H\(_2\)[WO\(_3\)(C\(_2\)O\(_4\))H\(_2\)O] and H\(_3\)PW\(_{12}\)O\(_{40}\).

4. Conclusion

Thermodynamics is fundamental in metallurgical research. It plays an active role in high-temperature metallurgy, but seems to have been left out of hydrometallurgy in recent years. This paper studied the thermodynamics of tungsten ore decomposition, combining the available experimental and industrial experience. The previously published thermodynamic data of tungsten minerals were assessed to obtain a more reliable thermodynamic picture. The results explain why, in modern industrial APT practice, wolframite is usually treated with caustic soda while scheelite is treated with soda ash. Tungsten ores decompose easily in acid solutions from a thermodynamic point of view. The concentration of metal ion influences the decomposition of tungsten ores, which can be explained by kinetics, such as oxidizing to high valence ion, forming insoluble product, and multi-step decomposition. For that purpose, a dilute solution approach is inadequate in strong e.g. caustic or salt solutions, and proper solution models are needed to describe the solution properties accurately [46, 47]. This work is beneficial for further understanding the tungsten minerals decomposition process thermodynamically.
References

