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We investigate a system of fermions trapped in a quasiperiodic potential from an open quantum system
theory perspective, designing a protocol in which an impurity atom (a two-level system) is coupled to a
trapped fermionic cloud described by the noninteracting Aubry-André model. The Fermi system is prepared in a
charge-density-wave state before it starts its relaxation. In this work we focus our attention on the time evolution
of the impurity in such an out-of-equilibrium environment and study whether the induced dynamics can be
classified as Markovian or non-Markovian. We find how the localized phase of the Aubry-André model displays
evidence of strong and stable memory effects and can be considered as a controllable and robust non-Markovian
environment.
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I. INTRODUCTION

A great deal of attention has been devoted to quasiperiodic
systems, described by Aubry-André (AA) -type Hamiltonians
[1]. These models have been often compared to Anderson
insulating systems for their ability of displaying similar lo-
calization phenomena but in a controllable way. In fact, the
localization in the AA model is fully deterministic, mak-
ing quasiperiodic geometries intrinsically different from true
disordered systems [2]. Experimentally, AA models can be
created by a combination of two periodic functions having
incommensurate wave numbers. A bichromatic optical lattice
designed in such a way allows one to realize a quasiperi-
odic geometry for a trapped gas in a cold-atom setup [3].
In this system, the interplay between the quasiperiodic po-
tential and the kinetic energy rules the metal-to-insulator
transition [4,5].

The high level of tunability and control of the strength
and shape of the external potentials forming the bichromatic
lattice makes these setups a unique candidate to explore a se-
ries of interesting physical phenomena. Recently, interacting
fermions trapped in quasiperiodic optical lattices were used
to observe effects of many-body localization and ergodicity
breaking. Specifically, using initial high-energy states with
strong charge-density-wave order, i.e., an initial state with
particles occupying exclusively odd or even sites, it has been
shown how the relaxation properties of such a system vary in
the presence of a quasiperiodic engineered on-site potential.
In particular, it has been observed how the crossover from er-
godic to nonergodic dynamics can be witnessed by monitoring
the density imbalance in the occupation of even and odd sites
at long times [6,7].

Furthermore, this system has been drawing attention as
an interesting setup in which to study impurity dynamics. In
[8] it was shown how, when adiabatically perturbed by local
perturbations, a nonlocal-density rearrangement occurs. This
allowed to introduce the concept of statistical orthogonality

catastrophe [9,10]. In [11] the effect of a sudden local
perturbation was used to characterize time irreversibility, and
the decay of the Loschmidt echo of the Fermi gas was found to
be exponential or algebraic in the two phases of the AA model.
In this last example the system was prepared in the charge-
density-wave state before introducing the impurity potential.
We are here interested in describing the AA model from an
open quantum system theory perspective: We consider the
fermions trapped in the quasiperiodic optical lattice to act as
an environment for an embedded impurity. In this paper we
link the open dynamics of the impurity to the Loschmidt echo
of the gas but, instead of examining properties such as long-
time dynamics and functional decay of the echo itself, we aim
at understanding whether the open dynamics of the impurity
can be classified as Markovian or non-Markovian. Our aim is
to explore the emergence of memory effects and see whether a
Markovian–to–non-Markovian crossover witnesses the metal-
to-insulator transition typical of the AA model.

Recent investigations of lattice systems as an environment
for impurities have looked, directly or indirectly, to the con-
nection between non-Markovian effects and localization in
two very different setups. In [12] it was shown, for example,
that for a system of coupled cavities with random disorder
the non-Markovian character of the open system dynamics
increases monotonically as the disorder is increased. In this
setup the localization phenomenon is exactly Anderson local-
ization, and for nonzero disorder the dynamics is found to be
always non-Markovian. On the other hand, in [13] a perturbed
Bose-Hubbard lattice was investigated, showing how the
superfluid–to–Mott-insulator transition roughly corresponds
to a Markovian–to–non-Markovian crossover. In that work,
however, the onset of memory effects and the critical point do
not coincide exactly. Rather, the onset of non-Markovianity
signals a change in how the information travels through the
quenched lattice. These works establish a connection between
memory effects and localization phenomena, in the former
case originated by a potential and in the latter induced by
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the interaction between the bosons. By using as the envi-
ronment the AA model and its unique features, we aim to
gain insight into the connection between non-Markovianity
and localization. When compared with the Bose-Hubbard
model, where the parameter driving the superfluid–to–Mott-
insulator transition is the interaction between the bosons,
we expect that, in an experimentally realistic scenario, the
quasiperiodic potential may display a higher level of con-
trollability. When compared with the one-dimensional An-
derson insulator, the main advantage is the existence of a
well-defined critical (nonzero) point in the metal-to-insulator
transition.

For its experimental and fundamental interest we assume
our environment to be a fermionic system prepared in a
charge-density-wave state, before embedding the impurity in
the lattice. In general, fermionic baths are much less explored
environments in the open quantum system community and,
conceptually, since the environment is not initially prepared in
an eigenstate, this scenario allows us to explore the dynamics
of an open system interacting with an out-of-equilibrium en-
vironment, which will evolve even in the absence of the impu-
rity. In this context, deriving a master equation is a challenging
task, but we overcome this limit by focusing our studies on
noninteracting fermions. This allow us to compute exactly and
efficiently the dynamics of the open system through determi-
nant formulas. Our work can be framed within the quantum
probing paradigm, whose basic idea is the extraction of rel-
evant information about a many-body system by monitoring
the time evolution of an embedded impurity. In this framework
the impurity acts as readout device and permits, in principle,
one to extract information about the many-body nature of
the environment by measurements performed exclusively on
the open system. So far many protocols have been proposed
to probe trapped cold atoms with quantum impurities, for
example, protocols that use the impurities as thermometers
[14] or to measure quantum correlations in bosonic systems
[15], and to probe the orthogonality catastrophe in trapped
fermion environments [16–20].

The paper is organized as follows. In Sec. II we introduce
the microscopic model considered: We describe in detail the
Aubry-André Hamiltonian, the impurity, and the impurity-
fermion interaction. We define our figure of merit, i.e., the
Loschmidt echo of the trapped Fermi gas and the non-
Markovianity measure. Throughout this work we quantify
memory effects through the measure proposed by Breuer
et al. [21]. This measure is defined in terms of the amount
of information backflow, i.e., the information that travels
back from the environment to the open system during the
dynamics. We then show how the exact solution for the time
evolution of the impurity can be computed in terms of a
determinant formula, i.e., the Levitov formula. In Sec. III
we study the Loschmidt echo, describe its behavior for dif-
ferent values of the quasiperiodic potential, and quantify the
memory effects related to the open dynamics of the impu-
rity. We discuss the role of the lattice size, of the effec-
tive strength of the impurity-fermion interaction, and of the
phase factor present in the quasiperiodic potential. Finally,
in Sec. IV we summarize our findings and show how the
insulating phase is a source of dominant and robust memory
effects.

II. MODEL, PROTOCOL, AND METHODS

A one-dimensional gas of atoms trapped in a bichromatic
optical potential confined to the lowest Bloch band can be
described by the tight-binding Hamiltonian

ĤAA = −J
∑
i=1

(â†
i+i âi + â

†
i âi+1)

+�
∑
i=1

cos(2πβi + φ)â†
i âi (1)

in which J is the hopping parameter, � is the the strength of
the on-site potential, β is the ratio between the frequencies
of the two optical potentials generating the lattice, and âi

and â
†
i are standard fermionic ladder operators. The hopping

parameter and the localizing potential can be derived from
the local forces and potentials acting on the atoms [22]. This
model is known as the Aubry-André Hamiltonian. It has been
proven that, for irrational β, i.e., when the on-site potential is
quasiperiodic, at � > 2J the model shows a transition from
delocalized to localized single-particle eigenstates.

Here we aim at using a single atomic impurity to explore
the features of the model in its two phases, the delocalized one
and the localized one. We assume the impurity to be placed in
a site of the bichromatic optical lattice, say, i = x, and coupled
to the lattice gas through a density-density interaction, which
couples the internal levels of the impurity to the local number
operator n̂x . Furthermore, we assume that only the two lowest
internal levels of the impurity contribute to the dynamics,
labeling them |e〉 and |g〉, and that |g〉 is transparent to the gas.
The interaction Hamiltonian reads, under these assumptions,

Ĥint = ε|e〉〈e| ⊗ â†
x âx, (2)

in which ε is an effective coupling constant. The chosen form
of the interaction Hamiltonian in Eq. (2) guarantees that the
evolution of the impurity is a purely dephasing dynamics, i.e.,

ρ̂S (t ) = �t [ρ̂S (0)] = Tr[Û (t )ρS (0) ⊗ ρE (0)Û †(t )]

=
(

ρgg (0) χ∗(t )ρge(0)

χ (t )ρeg (0) ρee(0)

)
, (3)

where ρ̂S (0) and ρ̂E (0) are the initial states of impurity and
environment, respectively, which are assumed to be initially
uncorrelated. By means of the Levitov formula [23] we can
write the time evolution of the off-diagonal element of the
reduced density matrix of the impurity as

χ (t ) = det(1 − r̂ + r̂e−iĥet eiĥg t ), (4)

FIG. 1. Sketch of an impurity atom (orange) embedded in a
trapped Fermi lattice (red). At t = 0 the gas is prepared in the
so-called charge-density-wave state in which they occupy only odd
(or even) lattice sites.
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where r̂ is a single-particle operator depending on the spe-
cific choice of the initial state of the fermionic environ-
ment and ĥe (g) is the single-particle counterpart of Ĥe (g) =
〈e (g)|ĤAA + Ĥint|e (g)〉.

Several measures or witnesses of non-Markovianity, based
on different properties, have been proposed and employed in
the attempt to define and quantify memory effects [24–29]. In
this work we follow the framework set by Breuer et al., which
identifies non-Markovianity with information flowing from
the environment to the open system [21]. This measure is built
considering how the distinguishability between two quantum
states evolves in time under the effect of a dynamical map.
Distinguishability is defined here through trace distance that,
for two generic quantum states ρ̂1 and ρ̂2, reads D(ρ̂1, ρ̂2) ≡
1
2 Tr

√
(ρ̂1 − ρ̂2)(ρ̂1 − ρ̂2), and is contractive under completely

positive and trace-preserving maps. Variations in the distin-
guishability are associated with a flow of information between
the open system and the environment. If the distinguishability
decreases, the information is flowing from the open system
to the environment; if the distinguishability increases, some
information, previously lost to the environment, is flowing
back to the open system. In a Markovian process, the distin-
guishability can only decrease, monotonically, as a function of
time, signaling a loss of information, with information flowing
exclusively to the environment. Breuer et al. in [21] identified
a partial and temporary increase in trace distance with non-
Markovian dynamics. Consequently, the non-Markovianity
measure is defined as

N [�] = max
ρ1,2(0)

∫
Ḋ>0

dt

[
d

dt
D(�t ρ̂1(0),�t ρ̂2(0))

]
, (5)

which is often referred to as information backflow. In the case
of a two-level system undergoing a dephasing dynamics, the
maximization over the optimal pair of initial states appearing
in Eq. (5) can be carried out analytically. It can be shown
that the optimal pair of states satisfies the relations [ρ̂1(0) −
ρ̂2(0)]gg = 0 and |[ρ̂1(0) − ρ̂2(0)]eg|2 = 1 [30]. With these
conditions it is straightforward to show that the optimized
trace distance is given by the absolute value of the decoher-
ence function

Dopt(t ) = |χ (t )|. (6)

With the ultimate goal of probing the fermionic environ-
ment, we can design a Ramsey-type interferometric protocol
in which we assume the total initial state to be initially
factorized as ρ(0) = |ψ〉〈ψ | ⊗ |�〉〈�|, with |�〉 being the
initial state of the fermionic gas and |ψ〉 = 1√

2
(|g〉 + |e〉) the

initial state of the impurity. In this case the Loschmidt echo
L(t ) of the Fermi gas and the off-diagonal element of the
impurity reduced density matrix χ (t ) are simply related by

√
L(t ) = |χ (t )| = |〈�|e−iĤet eiĤg t |�〉|. (7)

In the following we consider the initial state of the fermionic
environment to be the so-called charge-density-wave state, in
which only even or odd sites are initially populated by the
fermions of the environment. Choosing to populate the odd
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FIG. 2. Square root of the Loschmidt echo for different system
parameters: (a) �/J = 1.5, 1.55, 1.6, 1.65, and 1.7 from blue to
purple, respectively, and (b) �/J = 2.03, 2.08, 2.13, 2.18, and
2.23 from blue to purple, respectively. In (a) and (b) L = 233 and
ε/J = 10−1 are used. (c) Square root of the Loschmidt echo for
�/J = 0.5 for three different sizes L = 233, 377, and 987 in solid
green, dashed red, and dotted blue lines, respectively. (d) Square
root of the Loschmidt echo for �/J = 2.5 for three different sizes
L = 233, 377, and 987 in green, red, and blue, respectively. In (c)
and (d) ε/J = 10−2.

sites, the initial state of the Fermi gas can be written as

|�〉 =
∏
i odd

â
†
i |0〉, (8)

where |0〉 represents the vacuum state. Contrarily to the usual
assumption in open quantum system theory the initial state
of the environment is not an eigenstate of the unperturbed
Hamiltonian and will evolve in time even without the impurity
(a sketch of the setup is provided in Fig. 1). In this situation,
deriving a master equation by standard techniques is a rather
challenging task. However, the coherences of the impurity
can be computed exactly and efficiently from the determinant
formula introduced in Eq. (4) as

χ (t ) = det(1 − n̂CDW + n̂CDWe−iĥet eiĥg t ), (9)

where n̂CDW = ∑
i odd |i〉〈i|. The information backflow asso-

ciated with this time evolution, combining Eqs. (5)–(7), is

N− =
∑

n

√
L(t2n) −

√
L(t1n), (10)

where [t1n, t2n] are the time intervals over which
√

L in-
creases. Notice that we have included a minus sign subscript
to highlight that during these time intervals some of the pre-
viously lost information regarding the state of the impurity is
temporarily recovered. In the same fashion, summing instead
over the time intervals in which

√
L decreases, we can define

the information outflow N+, i.e., the information that flows
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FIG. 3. (a) Plot of R as a function of �/J with ε/J = 10−1.
The green circles, red squares, and blue triangles correspond to
the results for L = 233, 377, and 987, respectively. (b) Plot of R
for a fixed size L = 233 with different impurity-fermion coupling,
namely, ε/J = 10−1, 10−2, and 10−3 for the green circles, red
squares, and blue triangles, respectively. The vertical lines in (a) and
(b) are at �/J = 2.

from the system to the environment. In what follows we
consider a normalized version of the non-Markovianity mea-
sure in Eq. (5), defined as the ratio between the information
backflow and the information outflow:

R = N−
N+

. (11)

The non-Markovianity quantifier defined in this way is natu-
rally bounded between zero and one.

III. RESULTS

In this section we show how, tracking the time evolution
of the impurity coherences and quantifying the information
backflow, the Fermi gas can act as a tunable environment
where the amount of memory effects is determined by the
strength of the quasiperiodic on-site potential. We take β to
be the golden ratio, i.e., β = 1+√

5
2 , and the lattice length L

to coincide with a number from the Fibonacci sequence. With
this choice for the size of the lattice we can impose periodic
boundary conditions and avoid effects due to the interaction
of the impurity with edge states. We fix the position of the
impurity to be x = 1 and consider the sums in the Hamiltonian
of Eq. (1) to run from i = −L−1

2 to i = L−1
2 . Where not

specified otherwise, we consider the phase factor φ = 0.
In Fig. 2 we start off by displaying the square root of the

Loschmidt echo and show how it qualitatively changes as a
function of the lattice parameters. In Figs. 2(a) and 2(b) we
keep fixed the lattice size L = 377 and the fermion-impurity
coupling ε/J = 10−1 and change the strength of the on-site
potential. By varying �/J we can study how the response of
the trapped gas changes in the two phases of the Aubry-André
model. The two phases are indeed found to give rise to very
different behaviors for the Loschmidt echo. In the delocalized
phase, displayed in Fig. 2(a), the Loschmidt echo appears to
decay in time without displaying any appreciable structure in
the timescale considered. In this regime the decay gets faster
and faster as the ratio �/J is increased. In the localized phase,
displayed in Fig. 2(b), the decay of the Loschmidt echo ap-
pears to be suppressed for stronger values of the quasiperiodic

FIG. 4. (a) Square root of the Loschmidt echo, shown in logarith-
mic scale, for �/J = 1.5 for three different sizes L = 233, 377, and
987 in solid green, dashed red, and dotted blue lines, respectively.
(b) Ratio between information backflow and information outflow as
a function of the ratio �/J . Ten random values of the phase φ have
been used and they correspond to the different colors and shapes. In
both (a) and (b) ε/J = 10−1. The vertical line in (b) is at �/J = 2.

potential and displays a series of clear and strong oscillations.
As anticipated, revivals in the coherences of the open system
undergoing a dephasing time evolution are signals of non-
Markovian dynamics and memory effects. In the two phases
the dependence of the behavior of Loschmidt echo from the
system size is also dramatically different. In the delocalized
phase, displayed in Fig. 2(c), the Loschmidt echo decays on
longer timescales when the lattice size is increased. On the
other hand, in the localized phase, displayed in Fig. 2(d), the
Loschmidt echo appears to be size independent as expected
for a localized system.

To summarize these findings we now quantify the memory
effects characterizing the impurity dynamics through the non-
Markovianity measure defined in Eq. (11). The behavior of the
normalized information backflow R, illustrated in Fig. 3(a),
shows that in the localized phase of the Aubry-André model,
the impurity dynamics is clearly strongly non-Markovian.
However, for these values of the parameters, the metal-to-
insulator transition of the Aubry-André model does not coin-
cide with the Markovian–to–non-Markovian crossover. This
result appears to be effectively independent of the lattice size,
as shown in the same figure. Interestingly, however, a greater
role is played by the coupling between the fermions and the
impurity. In fact, when reducing this interaction strength, the
rise of strong memory effects shifts towards the critical point
of the Aubry-André model. This is shown in Fig. 3(b), where
the normalized information backflow R signals a sharper
separation between the delocalized phase and the localized
phase, as we decrease the values of the fermion-impurity
interaction. In other words, the delocalized phase is extremely
sensitive to small perturbations and already for small values
of the probe-environment coupling memory effects occur.
However, a sharp increase in R occurs at the metal-insulator
transition point in the weak-coupling regime, as shown in
Fig. 3(b) by blue triangles. These memory effects appear also
to be robust and stable in the localized phase in the sense
that for different couplings the ratio between information
backflow and information outflow, after the critical point,
reaches comparable values.

It is important to stress that we are not claiming that the
impurity dynamics in the delocalized phase of the AA model
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is fully Markovian; in fact, in Fig. 4(a) we show the Loschmidt
echo of the Fermi lattice for �/J = 1.5 and even in this case
we can witness some revivals. However, the resulting informa-
tion backflow is found to be several orders of magnitude lower
than the information outflow, making it very difficult to detect
in a feasible experimental scenario. Moreover, it is strongly
dependent on the lattice size. We conjecture, however, that
in the weak probe-environment coupling regime and in the
thermodynamic limit, the information backflow will vanish.

To conclude our analysis we finally briefly discuss the role
of the phase factor φ appearing in the on-site potential of the
Aubry-André Hamiltonian. In Fig. 4(b) the non-Markovianity
quantifier R is displayed for a set of random values of the
phase factor φ. The effect of different phase factors is to
shift randomly the rise of strong non-Markovianity in the
critical region close to �/J = 2. For some values of the phase
factor the onset moves farther from the critical point, while
for others it moves toward it. Nevertheless, the trend appears
to be similar after the metal-to-insulator transition with the
ratio between information backflow and information outflow
increasing as the quasiperiodic potential is increased as well.

IV. CONCLUSION

Our results contribute to the exploration of the possible
connection between the presence of memory effects in the im-
purity dynamics and localization in the environment. We can-
not claim that the Markovian–to–non-Markovian crossover,
which we demonstrate occurs in this system, coincides with
the metal-to-insulator transition typical of the Aubry-André

model. Nevertheless, the two phases of the Aubry-André
model induce very different behaviors in the impurity dynam-
ics as witnessed by the Loschmidt echo, for an initial charge-
density-wave state of the Fermi gas. When the environment is
in the delocalized phase, we witness indeed negligible oscilla-
tions (from a realistic experimental perspective) and a strong
dependence on the system parameters, such as the lattice
length, the impurity–Fermi-gas coupling, and the phase factor
present in the quasiperiodic potential. In the localized phase
of the environment, for �/J > 2, the impurity dynamics is
instead characterized by strong and robust non-Markovian
effects. In this region the ratio between information backflow
and information outflow becomes incredibly stable against
the system parameters. In particular, it is size independent,
as it is also the Loschmidt echo in this regime, and varying
the coupling between the impurity and the trapped fermions
does not affect considerably the non-Markovianity quantifier.
These findings make the Aubry-André Fermi lattice an ideal
candidate for a tunable fermionic environment, allowing us to
investigate fundamental phenomena of open quantum systems
dynamics in a controlled way and using a nontrivial environ-
ment model.
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