Soltani, Morteza; Sarabadani, Jalal; Zakeri, S. Peyman

Nonmonotonic Casimir interaction

Published in:
PHYSICAL REVIEW A

DOI:
10.1103/PhysRevA.95.023818

Published: 09/02/2017

Please cite the original version:
Nonmonotonic Casimir interaction: The role of amplifying dielectrics

Morteza Soltani,1 Jalal Sarabadani,2,* and S. Peyman Zakeri1

1Department of Physics, University of Isfahan, Isfahan 81746, Iran
2Department of Applied Physics, and COMP Center of Excellence, Aalto University School of Science,
P.O. Box 11000, FI-00076 Aalto, Espoo, Finland

(Received 25 January 2016; published 9 February 2017)

The normal and the lateral Casimir interactions between corrugated ideal metallic plates in the presence of an amplifying or an absorptive dielectric slab is studied by the path-integral quantization technique. The effect of the amplifying slab, which is located between corrugated conductors, is to increase the normal and lateral Casimir interactions, while the presence of the absorptive slab diminishes the interactions. These effects are more pronounced if the thickness of the slab increases and, also, if the slab comes closer to one of the bounding conductors. When both bounding ideal conductors are flat, the normal Casimir force is nonmonotonic in the presence of the amplifying slab and the system has a stable mechanical equilibrium state, while the force is attractive and is weakened by intervening the absorptive dielectric slab in the cavity. Upon replacing one of the flat conductors with a flat ideal permeable plate the force becomes nonmonotonic and the system has an unstable mechanical equilibrium state in the presence of either an amplifying or an absorptive slab. When the left-side plate is a conductor and the right one is permeable, the force is nonmonotonic in the presence of a double-layer dissipative-amplifying dielectric slab with a stable mechanical equilibrium state, while it is purely repulsive in the presence of a double-layer amplifying-dissipative dielectric slab.

DOI: 10.1103/PhysRevA.95.023818

I. INTRODUCTION

An interesting macroscopic result of confinement of the quantum electromagnetic (EM) field between two ideal, parallel, flat conductors is the Casimir effect [1]. Comparing the energy of the system in the presence and in the absence of bounding ideal metallic plates leads to a finite attractive potential energy. The derivation of this finite energy with respect to the distance between the two plates, H, is the Casimir force, F_C. The Casimir force per unit area, S, is then read as

$$\frac{F_C}{S} = -\frac{\hbar c}{2\pi \lambda^4},$$

where \hbar is the Planck constant multiplied by $1/2\pi$, and c is the speed of light in the vacuum [2]. The magnitude of this force is significant when H is less than a micron [3]. Therefore the Casimir effect must be taken into account in designing micro- and nanodevices [4–7].

In addition to the normal Casimir force, corrugated conductors can experience lateral Casimir force due to the translational symmetry breaking which was observed experimentally in 2002 [8]. The lateral Casimir effect between two rough conductors with sinusoidal corrugation has been studied theoretically in the context of the path-integral formalism [9–11]. This force is very sensitive to the characteristics of the rough surfaces and also sensitive to the medium between them. For a system composed of two rough ideal conductors immersed in a quantum vacuum, at a fixed mean separation distance between the two conductors, H, with λ the wavelength of corrugations on both plates, the stable and unstable equilibrium states for the position of the rough plates in the lateral direction occur when $l = n\lambda$ and $l = (n + \frac{1}{2})\lambda$, respectively [10], whereas for a system composed of a rough ideal conductor and an infinitely permeable corrugated plate, with the same H and λ, the stable and unstable equilibrium states for the position of the plates in the lateral direction occur when $l = n\lambda$ and $l = (n + \frac{1}{2})\lambda$, respectively [12].

Moreover, the Casimir force also strongly depends on the characteristics of the medium between the bounding plates. In a series of papers, it has been shown that the presence of absorptive dielectric medium between two bounding conductors can weaken the normal and lateral Casimir interactions [13–16]. The reason is that the absorptive dielectrics can dissipate the EM energy [18–20]. In the other hand, it has been shown that if the energy is pumped into the medium artificially, for example, by lasers, the EM energy can be amplified in some regions of frequency [21–25]. These kinds of media are called amplifying media, where the EM energy can be amplified. Although the physical properties of these media are different from those of dissipative dielectrics, the same formal methods can be used to quantize the EM field in the presence both of amplifying and of dissipative dielectrics [21,22,25].

To study an amplifying medium, one can introduce a susceptibility which must satisfy the Kramers-Kronig relations. Therefore, causality does not impose a fundamental limit to the dissipation and loss [26]. Similarly to the dissipative (or absorptive) dielectrics, the dielectric function of an amplifying medium, that is, $\varepsilon_{\text{amp}}(\omega)$, should have an imaginary part. But for dissipative dielectrics, the imaginary part of the dielectric function is positive, i.e., $\varepsilon_{\text{disp}}(\omega) > 0$, whereas for amplifying media, the imaginary part is negative, i.e., $\varepsilon_{\text{amp}}(\omega) < 0$ [22]. The same is true for the imaginary parts of the permeability of the dissipative and amplifying media [24]. One can quantize the EM field in the presence of the amplifying medium by adding a noise term into Maxwell equations [22,25,27] or using the canonical approach [22]. For quantization of the EM field in the presence of an amplifying medium, we use the path-integral formalism [13,17]. It should be noted that although the methods for field quantization which we use here for the amplifying and dissipative systems are the same, the characteristics of these two kinds of systems are completely different.
different. For example, vacuum fluctuations in the presence of dissipative and amplifying media behave in different ways. Moreover, an amplifying medium can be used to compensate the effect of dissipation [22].

As mentioned, the Casimir force is very sensitive to the characteristics of the dielectric media in the system. For example, in 1990 the Casimir force between dielectric slabs was calculated from the Maxwell stress tensor for a one-dimensional configuration, where only modes with the wave vector perpendicular to the plate’s surfaces were taken into account [28]. Later, the Casimir force between absorbing dielectrics was obtained by considering each dielectric body as an infinite set of quantum oscillators or effectively by using the Langevin force [29]. In 1993, the repulsive Casimir force between magnetic and electric dielectric slabs was also investigated for a one-dimensional configuration [30].

In the present paper, we study and compare the normal and the lateral Casimir interactions between two rough ideal conductors in the presence of an intervening dissipative and/or amplifying slab or of a double-layer with a mixture of them. This paper is organized as follows: In Sec. II we generally introduce the path-integral formalism to obtain the Casimir interaction energy for a system composed of a dielectric slab between two ideal rough metallic plates. Section III is devoted to study the Casimir interaction in a system composed of either an absorptive or an amplifying slab or of a double-layer with a mixture of them. Finally, we wrap up the paper with the conclusion in Sec. V.

II. FORMALISM
A. Quantization of the EM field

In this section we investigate the Casimir interaction between two ideal corrugated conductive plates in the presence of either a dissipative or an amplifying slab as depicted in Fig. 1. $X = (x_0,x)$ is the coordinate of a point in four-dimensional time-space with temporal coordinate x_0 and spatial coordinates $x = (x_1,x_2,x_3)$. The z component of X_1, which is in the direction of x_3, on the left conductor is $z = -H_1 - b/2 + h_1(x)$, while the z component of X_2 on the right conductor is $z = H_2 + b/2 + h_2(x)$, where $h_1(x)$ and $h_2(x)$ are the deformation fields on the left and on the right ideal plates, respectively. The average distance between the two conductors is H, the corrugation amplitude for both conductors is a, the wavelength of the corrugation in the x_1 direction for both conductors is λ, l is the lateral shift between surfaces in the x_1 direction, H_1 is the mean distance between the left side of the slab and the left conductor, H_2 is the mean distance between the right side of the slab and the right conductor, and b is the thickness of the slab.

To study the Casimir interaction between two corrugated ideal metallic plates in the presence of an intervening dissipative or amplifying slab (see Fig. 1), we first use the path-integral method to quantize the EM field. As we are only considering a uniaxial cavity (the translational invariant direction is x_2, while the corrugation is only in the x_1 direction), the EM field can be decomposed into the transverse electric (TE) and transverse magnetic (TM) waves. For TE waves all components of the EM fields are uniquely expressed by a scalar function corresponding to the magnetic field along the invariant direction, x_2, i.e., $\phi_{\text{TE}} = B_2(x_0,x_1,x_2,x_3 = z)$, while for TM waves a scalar function corresponding to the electric field along x_2, $\phi_{\text{TM}} = E_2(x_0,x_1,x_2,x_3 = z)$, gives all components of the field. The scalar fields ϕ_{TE} and ϕ_{TM} satisfy Dirichlet (D) and Neumann (N) boundary conditions (BCs), respectively, on both plates [10,11,31]. Indeed, the D BC should be satisfied by TM waves on both plates, that is, $\phi_{\text{TM}}(X_a) = 0$, while TE waves satisfy the N BC on both plates, that is, $\partial_n\phi_{\text{TE}}(X_a) = 0$, where $a = 1,2$ determines the left and right plates, respectively. For the sake of brevity, here we drop the subscripts TM and TE from ϕ_{TM} and ϕ_{TE}.

Consequently, after decomposing the EM field into TM and TE waves we quantize a massless scalar field, ϕ, in the presence of a dissipative slab between two conducting plates. To this end, we use the same method as in Refs. [9,10,13–16,31]. The dielectric medium can be a dissipative dielectric slab with a positive imaginary part of its dielectric function, that is, $\varepsilon_{\text{disp}}(\omega) > 0$, or it can be an amplifying slab with a negative imaginary part of its dielectric function in some frequency ranges, that is, $\varepsilon_{\text{amp}}(\omega) < 0$. The dielectric medium can be a layered dielectric with a mixture of dissipative and amplifying layers. Here, for the sake of simplicity and brevity we just present the formalism for a slab with only one dielectric layer, which can be either absorptive or amplifying, between the bounding conductors. To extend the path-integral formalism to study the Casimir effect in the presence of an absorptive [13] or an amplifying [32] medium, one must write the Lagrangian of the system with appropriate terms that lead to the correct
equations of motion. To this end, we consider the Lagrangian density
\[\mathcal{L} = \mathcal{L}_{\text{sys}} + \mathcal{L}_{\text{mat}} + \mathcal{L}_{\text{int}}, \]
(1)
where \(\mathcal{L}_{\text{sys}} = \frac{1}{2} \partial^a \phi(X) \partial_a \phi(X) \) is the Lagrangian density of the scalar field, the summand over \(a = x_0, x_1, x_2, \) and \(x_3 \) is assumed, and, as explained above, \(X = (x_0, x) \) is a coordinate of a point in four-dimensional time-space. \(\mathcal{L}_{\text{mat}} = \int_0^\infty d\omega \text{sgn} [\epsilon(\omega)] \left(\frac{1}{\omega^2} + \frac{1}{\omega^2 Y^2} \right) \) is the Lagrangian density of a matter field, where the matter is modeled by a continuum scalar field, the summation over \(\omega \) is assumed, and, as explained above, \(\epsilon(\omega) \) is the imaginary part of the dielectric function, and \(\epsilon(\omega) = \phi \) is the interaction Lagrangian density between matter and scalar fields. \(P = \int \text{dvol(Y)} \) is the polarization of the medium, and \(v(\omega) \) is the coupling function between the scalar and the matter fields \([13]\).

Using the Lagrangian in Eq. (1), the conjugate of the canonical momentum can be found. By employing the equal-time commutation relations, one can quantize the field, obtain the Hamiltonian of the system, and show that the scalar field \(\phi \) satisfies the equation
\[[\nabla^2 - \epsilon(\omega) \omega^2] \phi^+(\omega) = j^+_N(r, \omega). \]
(2)
The positive frequency part of the current density operator, \(j^+_N(r, \omega) \), is
\[j^+_N(r, \omega) = \Theta(\epsilon(\omega)) \sqrt{\frac{2 \omega \epsilon(\omega)}{\pi}} \hat{a}_N(r, \omega) \]
\[+ \Theta(-\epsilon(\omega)) \sqrt{\frac{2 \omega \epsilon(\omega)}{\pi}} \hat{a}^\dagger_N(r, \omega), \]
(3)
where \(\Theta(\ldots) \) is the Heaviside step function, \(\hat{a} \) is a bosonic field operator with a bosonic commutation relation, and \(\hat{a}^\dagger \) is the complex transpose of \(\hat{a} \). Then the Hamiltonian can be written as
\[H = \int d\omega \int d^3 r \sin[\epsilon(\omega)] \dot{\phi} \hat{a}^\dagger N(r, \omega) \hat{a}_N(r, \omega), \]
(4)
where \(\epsilon(\omega) = 1 + \int d\omega' \frac{\text{sgn}[\epsilon(\omega')]}{\epsilon(\omega') - \epsilon(\omega)} \) leads to \(\hat{v}^2(\omega) = \text{sgn}[\epsilon(\omega)] \text{Im}[\epsilon(\omega)] \). The main difference between the calculations for the amplifying medium and those for the dissipative medium is the presence of \(\Theta(\epsilon(\omega)) \) and \(\text{sgn}[\epsilon(\omega)] \) in the above equations, which has been discussed extensively in \([22,23,25,27]\). It should be mentioned that the Hamiltonian in Eq. (4) is consistent with the result in Ref. \([25]\).

To quantize the field, we calculate the generating function for the interacting system \([34]\). The generating function is defined as
\[Z[J_\phi, J_P] = Z_0^{-1} e^{i \int dX L_{\text{sys}}(x, \phi, \bar{\phi}, \partial_x \phi)} Z_0[J_\phi, J_P] \]
\[= Z_0^{-1} \sum_{n=0}^\infty \frac{1}{n!} \left[i \int dY \frac{\delta}{\delta \phi(Y)} \frac{\delta}{\delta \bar{J}_P(Y)} \right]^n \]
\[\times Z_0[J_\phi, J_P]. \]
(5)
where \(Z_0 = \int D\phi \text{exp}(i \int dX L_{\text{sys}}) \) is the generating function for free space, \(Z_0[J_\phi, J_P] = \int D\phi \prod_x D\bar{Y}_x \text{exp}(i \int dX \mathcal{L}_{\text{mat}} + i J_\phi \phi + \int \text{dvol}(Y)) \) is the generating function for the noninteracting part of the system, and \(J_\phi \) and \(J_P \) are source fields that are coupled to the free fields \(Y_0 \) and \(\phi \), respectively. Then by integrating over \(\phi \) and \(Y_0 \) the generating function can be written as
\[Z[J_\phi, J_P] = \exp \left\{ i \int dX \int dX' \left[J_\phi G_{\phi,\phi}(X - X') J_\phi \right. \right. \]
\[+ J_\phi G_{\phi,P}(X - X') J_P + J_P G_{P,P}(X - X') J_P \right\}, \]
(6)
where the Fourier transformation of the Green’s function, \(G_{\phi,\phi} \), is
\[G_{\phi,\phi}(q_0, \omega) = \left[q_0^2 - q_0^2 \left(1 + \int dq_0' \frac{\text{sgn}(\epsilon(q_0'))}{q_0'^2 - q_0^2 + i0^+} \right) \right]^{-1}, \]
(7)
and for the other Green’s functions it can be calculated as
\[G_{\phi,P}(q_0, \omega) = i q_0 \int dq_0' \frac{\text{sgn}(\epsilon(q_0'))}{q_0'^2 - q_0^2 + i0^+} G_{\phi,\phi}(q_0, \omega), \]
\[G_{P,P}(q_0, \omega) = \left[\int dq_0' \frac{\text{sgn}(\epsilon(q_0'))}{q_0'^2 - q_0^2 + i0^+} \right] G_{\phi,\phi}(q_0, \omega) \]
\[+ \frac{q_0^2}{q_0^2}, \]
(8)
where \(\vec{q} = (q_0, \omega), \) \(\vec{q} = (q_1, q_2), \) and \(q_0 \) is the temporal Fourier component. The above Green’s functions are fully in agreement with those in Refs. \([35,36]\). Using the definition \(\chi(q_0) = \int dq_0 \frac{\text{sgn}(\epsilon(q_0'))}{q_0'^2 - q_0^2 + i0^+} \), it can be shown that \(G_{\phi,\phi} \) is the Green’s function of Eq. (2), and using it together with the residue theorem, one can show that \(\text{Im}(\chi(q_0)) = \pi \text{sgn}(\epsilon(q_0'))(q_0^2)/(2q_0^2) \). Combining \(\text{Im}(\chi(q_0)) \) with the definitions of \(G_{\phi,P} \) and \(G_{P,P} \) yields \(P^+ = i q_0 \chi\phi^+ + P_0^+ \), where \(i q_0 P_0^+ = j^+_N(\omega) \). Here, we have assumed that the matter is homogeneous. As shown in Ref. \([13]\), among the Green’s functions \(G_{\phi,\phi}, G_{\phi,P}, \) and \(G_{P,P} \), only \(G_{\phi,\phi} \) makes a contribution to the partition function and, consequently, to the Casimir interaction. Therefore, hereafter we drop the subscript \(\phi \) from \(G_{\phi,\phi} \). Moreover, for both amplifying and dissipative media, \(G_{\phi,\phi} \) is the Green’s function of Eq. (2), and therefore, the Casimir interaction between ideal conductors in the presence of a dissipative or an amplifying slab (see Fig. 1) has the same mathematical form. The only difference is in the sign of \(\epsilon(q_0) \).

TM and TE waves can be treated as two scalar fields which separately satisfy the differential equation \[\nabla^2 - q_0^2 [1 + \chi(q_0, x)] \phi = 0. \] For TM modes, \(\phi \) and \(\phi_0 \), and for TM waves, \(\epsilon(q_0') \phi_0 \phi_0 \) should be continuous on the left and also on the right surfaces of the slab, and in addition, the Green’s function, \(G \), must satisfy the same BCs. Moreover, D and N BCs should be satisfied by TM and TE waves on the surfaces of both conductors, respectively.

B. Casimir interaction
To obtain the Casimir interaction, one should calculate the partition function of the system from the generating function. To this end, Wick rotation, \(x_0 \rightarrow i \tau, \) on the time axis must be applied. After applying the above BCs on all fields, expressing D and N BCs in terms of the path integral over the auxiliary
fields [11,13,14], and integrating over all Gaussian fields, the partition function can be cast as
\[\ln Z_{\text{TM/TE}} = -\frac{1}{2} \ln |\det \Gamma_{\text{TM/TE}}|, \]
where \(\Gamma_{\text{TM/TE}} \) is a second-rank matrix with relevant elements of \([\Gamma_{\text{TE}}]_{ij} = \partial x \partial y, G(x-y,z_\alpha(x),z_\beta(y)) \), \([\Gamma_{\text{TM/TE}}]_{ij} = G(x-y,z_\alpha(x),z_\beta(y)) \), where \(\alpha, \beta = 1 \) and 2, \(z_1(x) = -H_1 - \frac{\gamma}{2} + h_1(x) \), and \(z_2(x) = H_1 + \frac{\gamma}{2} + h_2(x) \). The Green’s functions in the Fourier space can be written as
\[G_{\text{TM/TE}}(\vec{q}, -H_1 - \frac{\gamma}{2} + h_2 - \frac{b}{2}, -H_1 - \frac{\gamma}{2} + h_2 + \frac{b}{2}) \]
\[= G_{\text{TM/TE}}(\vec{q}, H_2 + \frac{b}{2}, -H_1 - \frac{\gamma}{2} + h_2 + \frac{b}{2}) \]
\[= \frac{1}{2Q_1} \frac{\Delta_{\text{TM}}^{\text{TM}}}{\Delta_{\text{TM}}^{\text{TM}}} \left(1 + \frac{\omega^2 q_m^2}{\Delta_{\text{TM}}^{\text{TM}}^2} + \omega^2 q_m^2 \right), \]
where \(j = 1, 2, \Delta_{\text{TM}}^{\text{TM}} = \frac{\omega_m^2 - \epsilon_{\text{TM}}(q_m^2)}{\omega_m^2 + \epsilon_{\text{TM}}(q_m^2)}, \Delta_{\text{TM}}^{\text{TM}} = \frac{\omega_m^2 - \epsilon_{\text{TM}}(q_m^2)}{\omega_m^2 + \epsilon_{\text{TM}}(q_m^2)}, \) and \(Q_1 \equiv i \sqrt{\epsilon_1(q_0)^2 q_0^2 + q_1^2 + q_2^2} \), with \(\epsilon_1(q_0) = \epsilon_2(q_0) \), while for \(\zeta = 1, 2 \), which corresponds to two vacuum-space regions between the slab and the rough plates, \(\epsilon_1(q_0) = \epsilon_2(q_0) = 1 \). For a general case where the dielectric slab has magnetic properties in addition to the electric ones, the definition of \(\Delta \) must be adjusted accordingly. The general form of \(\Delta \) is presented in Appendix C.

Then, after performing the perturbative expansion up to the second order with respect to the deformation fields, \(h_1/H \) and \(h_2/H \), the partition function is written as
\[\ln Z_{\gamma} = \ln Z_{\gamma,0} + \ln Z_{\gamma,2}, \]
where the zeroth order of the partition function in the presence of the flat bounding conductors is
\[\ln Z_{\gamma,0} = -S \int d^3\vec{q} \ln K_{\gamma}^{(0)}(\vec{q}), \]
and the second order is
\[\ln Z_{\gamma,2} = \int d^3x d^3y \left\{ -\frac{1}{2} K_{\gamma}^{-1}(x-y)[h_1(x)h_2(y) + h_2(x)h_1(y)] + \frac{1}{4} K_{\gamma}^{(0)}(x-y)[(h_1(x) - h_1(y))^2 + (h_2(x) - h_2(y))^2] \right\}, \]
where the subscript, \(\gamma = \text{TM or TE} \), stands for Dirichlet or Neumann BCs, respectively. It should be mentioned that the first-order term of the logarithm of the partition function vanishes because we assumed that \(\int h_i(x) d^3x = 0 \), where \(i = 1 \) and 2. The explicit forms of \(K_{\gamma} \) and \(K_{\gamma}^{(0)} \) for the geometry depicted in Fig. 1 are presented in Appendixes A and B, and the explicit forms of \(K_{\gamma}^{(0)} \) for different geometries are reported in Sec. III and Appendixes C and D. Using Eq. (11), one can obtain the Casimir energy per unit area, \(S \), as
\[\frac{E(H)}{S L} \sum_\gamma \left[\ln Z_{\gamma}(H) - \ln Z_{\gamma}(H \to \infty) \right], \]
where \(L \) is the overall Euclidean length in the temporal direction [10]. \(E(H) \) is the potential energy of the system, which is required to bring two ideal plates from a long distance to a separation \(H \) [2]. It should be mentioned that each term on the right-hand side of Eq. (14) is an infinite quantity but \(E(H) \) has a finite value which is physically meaningful. Then Eq. (14) is employed to study the Casimir interaction in different geometries in Secs. III and IV.

III. FLAT BOUNDARIES

In this section, we study the normal Casimir interaction either between two flat ideal conductors \((\epsilon \to \infty) \) or between a flat ideal conductor and a flat ideal permeable plate \((\mu \to \infty) \) in the presence of a flat dielectric or a flat double-layer dielectric slab between the ideal plates. Section III A is devoted to investigation of the Casimir force between two ideal conductors in the presence of a dissipative or an amplifying slab [see Fig. 2(a)] or in the presence of a double-layer dielectric slab with one layer of dissipative and one layer of amplifying dielectrics [see Fig. 2(b)], while in Sec. III B we consider the Casimir force between an ideal conductor and an ideal permeable plate in the presence of either an absorptive or an amplifying [see Fig. 4(a)] or a double-layer dielectric [see Fig. 4(a)] slab.

To this end, we model the susceptibility of the amplifying slab by the Lorentz model with gain and loss, which is one of the best choices for modeling the amplifying media [22,35,32]. Linear gain occurs when the medium is pumped below the lasing threshold [37]. Therefore, we consider the following model for an amplifying medium: \(\epsilon_{\text{amp}}(\omega) = 1 - \frac{\omega_p^2}{\omega_0^2 - \omega^2 - \gamma \omega} \), where \(\omega_p = 0.75 \omega_0, \gamma = 10^{-3} \omega_0, \) and \(\omega_0 = 10^3 \) Hz [22]. It can be shown that for amplifying media, the imaginary part of the dielectric function is negative, i.e., \(\epsilon_{\text{amp}}(\omega) < 0 \). After applying Wick rotation, \(\omega \to i q_0 \), the above dielectric function

![Image](https://via.placeholder.com/150)
is rewritten as

\[\varepsilon_{\text{amp}}(iq_0) = 1 - \frac{\alpha_p^2}{\omega_0^2 + q_0^2 + \gamma q_0^2}. \]

(15)

The dielectric function of the absorptive slab is also modeled here by a Lorentz-oscillator model that, after the application of Wick rotation, can be read as

\[\varepsilon_{\text{disp}}(iq_0) = 1 + \frac{\alpha_p^2}{\omega_0^2 + q_0^2 + \gamma q_0^2}. \]

(16)

A. Conductor-conductor

To obtain the Casimir interaction between two flat conductors we set the deformation fields for both conductors to

\[h_1(x) = h_2(x) = 0, \]

Then the Casimir interaction energy per unit area for a system composed of a dielectric slab between two flat conductors, depicted in Fig. 2(a), reads as

\[\frac{E_{CC}}{S} = \hbar c \int \frac{d^3q}{(2\pi)^3} \ln \left[1 + \frac{\mathcal{B}_{mn}^{TM}}{\mathcal{D}_{mn}^{TM}} \right] + \left[(\text{TM}) \rightarrow (\text{TE}) \right], \]

(17)

where the index \(m = D, A \) stands for a dissipative or an amplifying slab, respectively, and \(D_{mn}^{TM(TE)} \) and \(B_{mn}^{TM(TE)} \) are functions of \(H_1, H_2, b, \varepsilon_1, \varepsilon_2, \varepsilon_m \) (permittivities of different layers), \(\mu_1, \mu_2, \mu_m \) (permeabilities of different layers), \(\tilde{q} \), and \(c \). The explicit forms of \(D_{mn}^{TM(TE)} \) and \(B_{mn}^{TM(TE)} \) are presented in Appendix C. According to Eq. (12), the kernel at the zeroth order with respect to the deformation fields, where \(h_1(x) = h_2(x) = 0 \), is \(K_0^{(TM)\rightarrow(TE)} = 1 + \frac{\mathcal{D}_{mn}^{TM}}{\mathcal{B}_{mn}^{TM}} \).

Using either the path-integral formalism [13–15,34] or the transfer matrix method [38–40], the Casimir interaction energy per unit area for a system composed of a double-layer dielectric slab between two flat conductors, depicted in Fig. 2(b), can be written as

\[\frac{E_{CC}}{S} = \hbar c \int \frac{d^3q}{(2\pi)^3} \ln \left[1 + \frac{\mathcal{B}_{mn}^{TM}}{\mathcal{D}_{mn}^{TM}} \right] + \left[(\text{TM}) \rightarrow (\text{TE}) \right], \]

(18)

where the indices \(m, n = D, A \) stand for a dissipative and an amplifying slab, respectively, and \(D_{mn}^{TM(TE)} \) and \(B_{mn}^{TM(TE)} \) are functions of \(a, \mu_n \) in addition to \(H_1, H_2, b, \varepsilon_1, \varepsilon_2, \varepsilon_m, \varepsilon_r, \mu_1, \mu_2, \mu_m, \mu_a, \tilde{q} \), and \(c \). The explicit forms of \(D_{mn}^{TM(TE)} \) and \(B_{mn}^{TM(TE)} \) are given in Appendix C.

To show the effect of the presence of a dielectric slab between two conductors on the Casimir interaction in the system depicted in Fig. 2(a), the Casimir force per unit area that the right conductor experiences at fixed \(H_1 \) and at fixed \(b \) can be obtained as

\[\frac{F_{CC}}{S} = - \frac{\partial E_{CC}}{\partial H_2} \bigg|_{H_1, b}. \]

(19)

A similar procedure is performed to calculate the Casimir force on the right conductor in the presence of double-layer dielectrics [see Fig. 2(b)] as

\[\frac{F_{CC}}{S} = - \frac{\partial E_{CC}}{\partial H_2} \bigg|_{H_{1,a}, b}. \]

(20)

To compare the difference between \(F_{CC} \), the Casimir force in the presence of a dissipative slab, and \(F_{\text{AMP}} \), the Casimir force in the presence of an amplifying slab, in Fig. 3(a) the force per unit area is plotted as a function of the distance between the bounding conductors, \(H = H_1 + H_2 + b \), with \(H_1 = H_2 \), for two values of the dissipative (solid and dashed black curves) and amplifying (dashed-dotted and dashed-dotted-dotted red curves) slab thicknesses \(b = 100 \) and \(125 \) nm. Clearly, the force in the presence of the dissipative dielectric slab is attractive for the whole distance range between the bounding conductors, while in the presence of the amplifying slab, for small distances, the force is repulsive, as the distance increases the force decreases, and beyond a certain distance its sign changes and it becomes attractive. Therefore, there is an equilibrium distance, \(H_{\text{eqil}} \), which the value of the force is 0. This equilibrium distance is a function of the amplifying slab thickness, its dielectric function, and the distance between the bounding conductors, \(H \). By increasing the thickness of the amplifying slab, the deviation of the point is shifted to larger distances. The inset shows a log-log plot of \(-\frac{F_{CC}}{S} \) as a function of \(H \), which approximately reveals that when \(H_2 > b/8 \) the force scales as \(H^{-4} \). In Fig. 3(b), the Casimir force per unit area, \(\frac{F_{CC}}{S} \), in the presence of a double-layer slab between two bounding conductors [depicted in Fig. 2(b)] is plotted as a function of \(H \), with \(H_1 = H_2 \), for two values of the dissipative and amplifying slab thicknesses, \(a, b = 40 \) and \(50 \) nm. Here, \(m, n = D, A \) indicate the dissipative and amplifying dielectric layers, respectively. This force is attractive when both layers are dissipative (DD). When one of the layers is dissipative and the other is amplifying (DA), at short distances the force is repulsive. With increasing \(H \), the force becomes attractive, it reaches a minimum, and then it grows. For a DA slab the system has a mechanical equilibrium state with the equilibrium distance \(H_{\text{DA,eqil}} \). When both layers of the slab are amplifying (AA) the equilibrium point is shifted to larger distances and \(H_{\text{AA,eqil}} \) \(> H_{\text{DA,eqil}} \). The inset represents the normalized force, \(\frac{E_{CC}}{S}/|F_{CC}| \), as a function of \(H \). Again, when approximately \(H_2 > (a + b)/8 \), the force scales as \(H^{-4} \).

B. Conductor-permeable

To observe how much the characteristics of the bounding plates can affect the Casimir interaction, we consider a system composed of a single dielectric slab or a double-layer dielectric slab between a flat ideal conductor on the left side and a flat ideal permeable plate on the right side of the system, depicted in Figs. 4(a) and 4(b), respectively. As Boyer showed in 1974 [41], a flat conductor and a flat permeable plate, immersed in a quantum vacuum and facing each other at a distance \(H \) in the absence of a dielectric slab, experience a repulsive force \(F_B = -\frac{1}{\hbar c} F_{CC} \) [12,42,43]. Here, our aim is to investigate the effect of the dissipative and amplifying slabs on the Boyer repulsive force, \(F_B \). Using either path-integral technique [13–15,34] or the transfer matrix formalism [38–40], the Casimir interaction energy per unit area for a system composed of a single dielectric slab between an ideal conductor and an ideal permeable plate [see Eq. (4)] reads as

\[\frac{E_{CP}}{S} = \hbar c \int \frac{d^3q}{(2\pi)^3} \ln \left[1 + \frac{\mathcal{D}_{mn}^{TM}}{\mathcal{B}_{mn}^{TM}} \right] + \left[(\text{TM}) \rightarrow (\text{TE}) \right], \]

(21)

and for a system composed of a double-layer dielectric slab between an ideal conductor and an ideal permeable plate [see
and amplifying (dashed-dotted and dashed-dotted-dotted red curves) slab thicknesses in the presence of a single dielectric slab between the bounding conductors, for two values of the dissipative (solid and dashed black curves) and amplifying (dashed-dotted and dashed-dotted-dotted red curves) slab thicknesses of 100 and 125 nm. Inset: A log-log plot of \(F_{CC} / F_{CP} \) as a function of \(H \).

(b) Force per unit area, \(F_{CC} / F_{CP} \), as a function of the distance between the bounding conductors, \(H = H_1 + H_2 + a + b \), with \(H_1 = H_2 \), in the presence of a double-layer dielectric slab between the bounding conductors, for two values of the dissipative and amplifying dielectric layer thicknesses, \(a = b = 40 \) and 50 nm. Inset: Normalized force \(F_{CC} / F_{CP} \) as a function of \(H \). Here, \(m,n = D \) and \(A \) indicate the dissipative and amplifying dielectrics, respectively.

Fig. 4(b)] it reads as

\[
\frac{E_{CP}}{S} = \hbar c \int \frac{d^3q}{(2\pi)^3} \ln \left[1 + \frac{\mathcal{J}_{mn}^{(TE)}}{\mathcal{J}_{mn}^{(TM)}} \right] + \left[(TM) \rightarrow (TE) \right], \tag{22}
\]

where, again, the indices \(m,n = D \) and \(A \) stand for a dissipative and an amplifying slab, respectively, \(\mathcal{J}_{mn}^{(TE)} \) and \(\mathcal{J}_{mn}^{(TM)} \) are functions of \(H_1, H_2, b, \varepsilon_1, \varepsilon_2, \varepsilon_m, \mu_1, \mu_2, \mu_m, \varepsilon_1, \varepsilon_2, \varepsilon_m \), and \(c, \) and \(\mathcal{J}_{mn}^{(TM)} \) and \(\mathcal{J}_{mn}^{(TE)} \) are functions of the above parameters in addition to \(a \) and \(H_n \). The explicit forms of \(\mathcal{J}_{mn}^{(TM)}, \mathcal{J}_{mn}^{(TE)} \), \(\mathcal{J}_{mn}^{(TM)}, \mathcal{J}_{mn}^{(TE)} \), and \(\mathcal{J}_{mn}^{(TE)} \) are presented in Appendix D.

To compare the effects of a dissipative versus an amplifying slab between two ideal flat plates, one conductive and the other permeable, on the Casimir interaction, the force per unit area that the permeable plate on the right side experiences can be calculated at fixed \(H_1 \) and at fixed \(b \) as

\[
\frac{F_{CP}}{S} = -\frac{\partial E_{CP}}{\partial H_2}, \tag{23}
\]

where \(E_{CP} \) is evaluated at \(H_1, a, b \).

A similar procedure can be performed to calculate the Casimir force on the right-side permeable plate in the presence of a double-layer dielectric slab in between, for fixed values of \(H_1, b, \) and \(a \), as

\[
\frac{F_{CP}}{S} = -\frac{\partial E_{CP}}{\partial H_2} |_{H_1, a, b}. \tag{24}
\]

In Fig. 5(a), the force per unit area, \(F_{CP} \), is plotted as a function of the distance between the bounding conductor and the permeable plate, \(H = H_1 + H_2 + b \), with \(H_1 = H_2 \), in the presence of a single dielectric slab, for two values of the dissipative (solid and dashed black curves) and amplifying (dashed-dotted and dashed-dotted-dotted red curves) slab thicknesses, \(b = 100 \) and 125 nm. The inset shows a log-log plot of \(F_{CP} \) as a function of \(H \). The overall behaviors of the forces due to the presence of the dissipative slab and due to the presence of the amplifying slab are similar to each other. At very small distances the bounding plates attract each other. By increasing the distance, the force increases and it reaches its 0 value at the distance \(H_{D(A),\text{equil}} \), where \(H_{D(A),\text{equil}} < H_{A(A),\text{equil}} \).

To show the effect of the asymmetry in the system, due to the presence of conducting and permeable plates, on the Casimir force in the presence of a double-layer dielectric slab, the slab is located at the middle of the cavity by setting \(H_1 = H_2 \), and we choose \(b = a \). The Casimir force is then calculated for the following geometries: (i) conductor–vacuum–dissipative dielectric layer–amplifying dielectric layer–vacuum–permeable plate (DA) and (ii) conductor–vacuum–amplifying dielectric layer–dissipative dielectric layer–vacuum–permeable plate (AD). Quite interestingly, the force is different for geometries i and ii. To present this interesting phenomenon, in Fig. 5(b), the force per unit area, \(F_{CP} \), is plotted as a function of the distance between the bounding plates, \(H = H_1 + H_2 + a + b \), for DA and AD geometries, for two values of the dissipative...
and amplifying slab thicknesses, \(a = b = 40 \) and 50 nm. The force is purely repulsive for AD geometry, while for DA the crossover from attractive to repulsive force occurs when \(H \) increases. Upon increasing the thickness of the double-layer slab for DA geometry, the location of the equilibrium point is shifted to larger distances. It should be mentioned that in both Fig. 5(a) and Fig. 5(b), the equilibrium states for the position of the right ideal plate are unstable. The inset presents the normalized force, \(F_{\text{CP}} / F_B \), as a function of \(H \).

IV. CORRUGATED BOUNDARIES: CONDUCTOR-CONDUCTOR

A. Normal interaction between a flat and a corrugated conductor

To investigate the effect of corrugation on the normal Casimir interaction between two conductors in the presence of a dissipative or an amplifying slab, we set the deformation fields on the conductors \(h_1(x) = 0 \) and \(h_2(x) = a \cos[2\pi x_1 / \lambda] \) (see Fig. 1). Then the Casimir energy due to the corrugation on one of the conductors, labeled 2, is obtained as

\[
E_{\text{CF}} = \frac{\hbar c}{4L} \sum_\gamma \left[\ln Z_{\gamma,2}(H) - \ln Z_{\gamma,2}(H \to \infty) \right] |_{h_1(x)=0}.
\]

(25)

where the index CF stands for corrugated-flat, and the sum is over \(\gamma = \text{TM} \) and TE. This energy can then be cast as

\[
E_{\text{CF}} = -\pi^2 a^2 \frac{\hbar c}{240H^2} \left[K_{\text{TM}}^{+\text{reg}} \left(\frac{H}{\lambda} \right) + K_{\text{TE}}^{+\text{reg}} \left(\frac{H}{\lambda} \right) \right].
\]

(26)

where, according to Eq. (25), the regular part of the TM and TE kernels is defined as \(K_{\text{TM(TE)}}^{+\text{reg}} = K_{\text{TM(TE)}} - \lim_{H \to \infty} K_{\text{TM(TE)}}^+ \). In Eq. (26), \(K_{\text{TM(TE)}}^{+}(q) \) is the Fourier transformation of \(K_{\text{TM(TE)}}^+(x) \) at \(q = (0, \lambda^2 x_1, 0) \). The explicit forms of \(K_{\text{TM}}^+(\frac{H}{\lambda}) \) and \(K_{\text{TE}}^+(\frac{H}{\lambda}) \) are presented in Appendixes A and B. In Fig. 6(a) the normalized contribution of the corrugation to the Casimir energy, \(\frac{E_{\text{CF}}}{E_{\text{CF}(H/2)}} \), is plotted as a function of \(H = H_1 + H_2 + a + b \) with \(H_1 = H_2 \) and \(\lambda = 1 \ \mu m \) in the presence of a dissipative (D; black curves) or an amplifying (A; red curves) single dielectric slab of thickness \(b = 0, 100, 150, \) and 200 nm. The solid black curve shows the normalized energy in the absence of a dielectric slab. Quite interestingly, the presence of an amplifying slab enhances the Casimir interaction due to the roughness, while the interaction is weakened by the presence of an absorptive slab. This effect is more pronounced upon increasing the slab thickness. The dielectric functions of the amplifying and dissipative slabs are the same as those of Eqs. (15) and (16), respectively.

The superscript PFA in \(E_{\text{CF}}^{\text{PFA}} \) stands for proximity force approximation. The PFA is used when \(a \), which is the corrugation amplitude, is much smaller than the other length scales in the system such as \(H \) and \(\lambda \). In the PFA, the surface elements of a curved surface around each point are simply replaced by surface elements parallel to the plane of \((x_1, x_2)\) at the same point [44,45]. The Casimir energy in a system composed of a corrugated and a flat conductor in the PFA is

\[
E_{\text{CF}}^{\text{PFA}} = -\frac{\pi^2 a^2 \hbar c}{240H^2} \left[K_{\text{TM}}^{+\text{reg}} \left(\frac{H}{\lambda} \right) + K_{\text{TE}}^{+\text{reg}} \left(\frac{H}{\lambda} \right) \right].
\]

To study the effect of the location of the dielectric slab on the Casimir interaction between the bounding plates, in Fig. 6(b) the normalized Casimir energy, \(\frac{E_{\text{CF}}}{E_{\text{CF}(H/2)}} \), is shown as a function of \(H_1 + b/2 \), which is the distance between the left conductor and the middle of the dissipative slab (black curves) or the middle of the amplifying slab (red curves), for fixed values of \(\lambda = H = 1 \ \mu m \) and the same values of \(b \) as in Fig. 6(a). Here, \(E_{\text{CF}}(H/2) \) is the value of \(E_{\text{CF}} \) when the center of the slab is located at a distance \(H/2 \) from each conductor. As shown, when the amplifying slab is closer to the rough conductor on the right side, this effect is more pronounced.
FIG. 6. (a) Normalized Casimir energy, E_{CF}/E_{PFA}, as a function of $H = H_1 + H_2 + b$ with $H_1 = H_2$ and $\lambda = 1 \mu m$ in the presence of a dissipative (D; black curves) or an amplifying (A; red curves) dielectric slab for various values of the slab thicknesses $b = 0, 100, 150,$ and 200 nm. The solid black curve shows the normalized energy in the absence of a dielectric slab. (b) The normalized Casimir energy, $E_{CF}/E_{CF(H/2)}$, as a function of $H_1 + b/2$, which is the distance between the left conductor and the middle of the absorptive (black curves) and amplifying slabs (red curves), for fixed values of $\lambda = H = 1 \mu m$ and different values of b, the same as those in (a). Here, $E_{CF}(H/2)$ is the value of E_{CF} when the center of the slab is located at the distance $H/2$ from each conductor, i.e., $H_1 = H_2$.

B. Lateral force between two corrugated conductors

Two corrugated conductors, immersed in a quantum vacuum, can experience a lateral Casimir force due to the translational symmetry breaking [10,11,16] in addition to the normal Casimir force. In this section, we compare the effect of the presence of absorptive or amplifying dielectric slabs on the lateral Casimir force between the bounding corrugated conductors depicted in Fig. 1. The lateral Casimir force is calculated as $F_l = -\partial E/\partial l$, where E is the Casimir energy in Eq. (14). Setting the corrugation fields on the rough conductors depicted in Fig. 1 as $h_1(x) = a \cos[2\pi x_1/\lambda]$ and $h_2(x) = a \cos[2\pi (x_1 + l)/\lambda]$, the lateral Casimir force is then obtained as

$$F_l = \frac{2\pi \hbar c a^2}{\lambda H^3} \sin\left(\frac{2\pi l}{\lambda}\right)\left[K_{TM}^-(H/\lambda) + K_{TE}^-(H/\lambda)\right].$$

where $K_{TM}^-(q)$ and $K_{TE}^-(q)$ are the Fourier transformations of $K_{TM}^-(x)$ and $K_{TE}^-(x)$ at $\vec{q} = (0, \frac{2\pi}{\lambda}, 0)$, respectively, and their explicit forms are reported in Appendices A and B.

In Fig. 7(a), we have plotted the normalized amplitude of the lateral Casimir force, $|F_l|/|F_{PFA}|$, between two rough metallic plates depicted in Fig. 1 as a function of H (the mean separation distance between corrugated conductors) for a fixed corrugation wavelength, $\lambda = 1 \mu m$, and various values of the

FIG. 7. (a) Normalized amplitude of the lateral Casimir force, $|F_l|/|F_{PFA}|$, between rough metallic plates (depicted in Fig. 1) as a function of the mean distance between corrugated conductors, $H = H_1 + H_2 + b$, for fixed corrugation wavelength $\lambda = 1 \mu m$ and various values of dissipative slab thicknesses, $b = 0, 50, 100,$ and 150 nm (black curves; from top to bottom) and amplifying slab thicknesses (red curves; from bottom to top), $b = 0, 50, 100,$ and 150 nm. Here, the center of the slab is fixed at the middle distance between the bounding ideal conductors. (b) Normalized amplitude of the lateral Casimir force, $|F_l|/|F_{l(H/2)}|$, as a function of $H_1 + b/2$, which is the distance between the left conductor and the middle of the dissipative (black curves) or amplifying (red curves) slab, for fixed values of $\lambda = H = 1 \mu m$ and different values of the dielectric slab thicknesses, $b = 0, 20, 50,$ and 100 nm. Here, $|F_{l(H/2)}|$ is the amplitude of the lateral force when the center of the slab is located at the distance $H/2$ from each conductor.
absorptive (black curves) and amplifying (red curves) slab thicknesses, \(b = 0.50, 1.00, \) and 1.50 nm. Here, the center of the slab is fixed at the middle distance between plates. \(|F_{\text{PFA}}| \) is the magnitude of the lateral Casimir force for the same geometry in the PFA [44,45], which is \(|F_{\text{PFA}}| = \frac{\pi^2}{\lambda^2} \frac{\partial F_c}{\partial H} \). Comparing the value of the normalized lateral Casimir force in the presence of dissipative and amplifying slabs yields that, at small distances, the lateral Casimir force in the presence of an amplifying slab is stronger than that in the presence of an absorptive dielectric slab of the same thickness, whereas with increasing distance, in both cases the values of the normalized force approach the values of the force in the absence of a dielectric slab. Moreover, increasing the thickness of an amplifying slab increases the lateral Casimir force, whereas the opposite is true for an absorptive slab.

We have also considered the effect of the location of the center of the dissipative or amplifying slabs, \(H_1 + b/2 \), on the lateral Casimir force. To this end, in Fig. 7(b), the normalized amplitude of the lateral Casimir force, \(|F_1|/F(H/b) \), is shown as a function of \(H_1 + b/2 \), which is the mean distance between the left conductor and the middle of the dissipative (black curves) or amplifying (red curves) slab, for fixed values of \(\lambda = H = 1 \mu \text{m} \) and different values of \(b \), i.e., 0, 20, 50, and 100 nm. \(|F_1(H/b)| \) is the amplitude of the lateral force when the center of the slab is fixed at the middle of the cavity. The dielectric functions of the amplifying and absorptive slabs are chosen the same as in Eqs. (15) and (16), respectively. The sinusoidal behavior of the force does not alter upon changing \(H_1 \), while its amplitude is altered. Moreover, if the amplifying slab comes closer to each conductor, the amplitude of the lateral Casimir force increases. In contrast to the amplifying slab, the amplitude of the lateral Casimir force decreases when the dissipative dielectrics comes closer to one of the bounding conductors. With increasing thickness of the slab, this effect is more pronounced.

V. CONCLUSIONS

Using either the path-integral formalism or the transfer matrix method, we have investigated the normal Casimir interaction between flat ideal plates in the presence of a dissipative or an amplifying slab or a double-layer dielectric slab. The normal force between flat ideal conductors is nonmonotonic due to the presence of the amplifying slab and the system has a stable equilibrium state, while the force is attractive and is weakened by an intervening absorptive dielectric slab in the cavity. By replacing the right flat conductor with an ideal permeable plate, the overall behaviors of the Casimir force in the presence of an absorptive slab and in the presence of an amplifying slab are the same, and for both cases, the force is nonmonotonic and the system has an unstable equilibrium state. Quite interestingly, the Casimir force is nonmonotonic in the presence of a double-layer dielectric slab in the DA geometry, while it is purely repulsive in the AD geometry. Then, employing the path-integral technique, we were able to calculate the correction to the normal Casimir interaction due to the corrugation on one of the bounding conductors, and the lateral Casimir force was also obtained due to the roughness on both bounding conductors in the presence of the absorptive or amplifying slab. While the presence of the amplifying slab enhances both normal and lateral Casimir interactions between the bounding conductors due to the roughness, the presence of the absorptive slab weakens both normal and lateral interactions compared to those of a cavity that contains only a vacuum between the bounding conductors. We also showed that both normal and lateral Casimir interactions depend on the distance of the slab from the bounding conductors. Approaching the amplifying slab to one of the conductors, both normal and lateral Casimir interactions are enhanced compared to the Casimir interactions in a cavity which contains only a vacuum between the bounding conductors. If, instead, the dissipative dielectric slab is brought closer to one of the bounding conductors both normal and lateral Casimir interactions are weakened. The reason for the difference in the behavior of the Casimir interactions can be understood if one looks at the characteristics of the vacuum fluctuations of the EM field near the slab. A dissipative medium decreases the vacuum fluctuations of the EM field, whereas an amplifying medium increases these fluctuations [22,46]. For example, as shown in Fig. 3(a) for an amplifying slab of thickness \(b = 100 \text{ nm} \) (dashed-dotted red curve) the force is repulsive for small distances. Because the fluctuations of the quantum vacuum of the EM field near the amplifying slab are enhanced, the force due to the EM pressure on the left side of the right conductor [see Fig. 2(a)] is larger than the force on the right side. With increasing value of \(H_2 \) [the width of the vacuum slit between the amplifying slab and the right conductor; see Fig. 2(a)], the effect of the enhanced vacuum fluctuations of the EM field near the surface of the amplifying slab on the force due to the EM pressure on the left side of the right conductor is weakened. Therefore, the repulsive Casimir force is diminished and the force changes to an attractive one. At larger distances the presence of the amplifying slab can no longer affect the total Casimir force on the right conductor anymore. The Casimir forces in the presence and in the absence of the amplifying slab are the same for larger distances, i.e., for \(H_2 > b/8 \), as presented in the inset in Fig. 3(a). For an absorptive dielectric slab of thickness \(b = 100 \text{ nm} \) [solid black curve in Fig. 3(a)] the quantum vacuum fluctuations of the EM field near the slab are weakened. Therefore for small distances the force due to the pressure on the left side of the right conductor is weakened too, and this leads to a more attractive force acting on the right conductor. Similar descriptions can be used to explain the behavior of the curves in other figures.

It should be mentioned that the method we used in our calculations [15] and the one based on the Langevin force [29] give similar results. In the method including Langevin force [29] it is possible to separate the contribution of the vacuum fluctuations from the contribution of the Langevin force in the total Casimir force. But in the method we used, both contributions due to the vacuum fluctuations and contributions due to the presence of the dielectric slab are expressed within the Lagrangian density in Eq. (1), and they are mixed in our calculations. It is interesting to see whether it is possible to investigate the Casimir interaction in the presence of an amplifying slab by using the formalism which includes the Langevin force.

The method that we employed in this paper can be used to study the dynamic Casimir effect [11,47], the
Casimir interaction at finite temperature \([40, 43, 48, 49]\), and fluctuation-induced interactions between randomly charged dielectrics \([50–53]\) in the presence of absorptive or amplifying slabs.

ACKNOWLEDGMENTS

J.S. acknowledges support from the Academy of Finland through its Centers of Excellence Program (2012–2017) under Projects No. 251748 and No. 284621.

APPENDIX A: FOURIER TRANSFORMATION OF \(K^{(+)}_{TM}(x)\)

The Fourier transformations of the kernels for TM waves at \((0, \frac{2\pi}{\lambda}, 0)\) are

\[
K^+_{TM}(0, \frac{2\pi}{\lambda}, 0) = \int \frac{d^3q}{(2\pi)^3} \left[F_1(q, H_1, H_1) Q_1^2 G_{TM} \left(\tilde{q} + \frac{2\pi}{\lambda} \hat{i}, H_2 + \frac{b}{2} H_2 + \frac{b}{2} \right) + F_5(q, H_1, H_1) \right] \]

\[
+ \left. F_3(q, H_1, H_1) F_4 \left(\tilde{q} + \frac{2\pi}{\lambda} \hat{i}, H_2 \right) \right] \]

\[
K^-_{TM}(0, \frac{2\pi}{\lambda}, 0) = \int \frac{d^3q}{(2\pi)^3} \left[+ F_2(q, H_1, H_1) Q_1^2 G_{TM} \left(\tilde{q} + \frac{2\pi}{\lambda} \hat{i}, H_2 + \frac{b}{2} H_2 + \frac{b}{2} \right) + F_4(q, H_1, H_1) F_6 \left(\tilde{q} + \frac{2\pi}{\lambda} \hat{i}, H_2 \right) \right] \]

\[
+ \left. F_2(q, H_1, H_1) F_4 \left(\tilde{q} + \frac{2\pi}{\lambda} \hat{i}, H_2 \right) \right] \]

where

\[
F_1(q, H_1, H_1) = \frac{G_{TM}(\tilde{q}, -H_1 \frac{b}{2}, H_2 + \frac{b}{2})}{N(q, H_1, H_2)} \]

\[
F_2(q, H_1, H_1) = \frac{G_{TM}(\tilde{q}, -H_1 - \frac{b}{2}, H_2 + \frac{b}{2})}{N(q, H_1, H_2)} \]

\[
F_3(q, H_1, H_2) = \frac{G_{TM}(\tilde{q}, -H_1 - \frac{b}{2}, H_2 + \frac{b}{2})}{N(q, H_1, H_2)} \]

\[
F_4(q, H_1, H_2) = \frac{G_{TM}(\tilde{q}, -H_1 - \frac{b}{2}, H_2 + \frac{b}{2})}{N(q, H_1, H_2)} \]

\[
F_5(q, H_1, H_2) = \frac{G_{TM}(\tilde{q}, -H_1 - \frac{b}{2}, H_2 + \frac{b}{2})}{N(q, H_1, H_2)} \]

\[
F_6(q, H_1, H_2) = \frac{G_{TM}(\tilde{q}, -H_1 - \frac{b}{2}, H_2 + \frac{b}{2})}{N(q, H_1, H_2)} \]

and

\[
N(q, H_1, H_2) = G_{TM}(\tilde{q}, -H_1 - \frac{b}{2}, H_2 + \frac{b}{2}) G_{TM}(\tilde{q}, H_2 + \frac{b}{2}, H_2 + \frac{b}{2}) - G_{TM}^2(\tilde{q}, -H_1 - \frac{b}{2}, H_2 + \frac{b}{2}) \]

APPENDIX B: FOURIER TRANSFORMATION OF \(K^{(+)}_{TE}(x)\)

The Fourier transformations of the kernels for TE waves at \((0, \frac{2\pi}{\lambda}, 0)\) are

\[
K^+_{TE}(0, \frac{2\pi}{\lambda}, 0) = \int \frac{d^3q}{(2\pi)^3} \left[F_1(q, H_1, H_1) Q_1^2 \delta \left(\tilde{q} + \frac{2\pi}{\lambda} \hat{i}, H_2, H_2 \right) + F_4(q, H_1, H_1) \right] \]

\[
+ \left. F_3(q, H_1, H_1) \right] \]

\[
+ \left. F_5(q, H_1, H_1) \right] \]

\[
+ \left. F_6(q, H_1, H_1) \right] \]

\[
+ \left. \frac{2\pi}{\lambda} \right] \]

\[
F_7(q, H_1, H_1) \]

\[
+ \left. F_8(q, H_1, H_1) \right] \]

\[
+ \left. F_9(q, H_1, H_1) \right] \]

\[
+ \left. F_10(q, H_1, H_1) \right] \]

\[
+ \left. F_{11}(q, H_1, H_1) \right] \]
\[
K_{\text{TE}}^{-}(0, \frac{2\pi}{\lambda}, 0) = \int \frac{d^3 \vec{q}}{(2\pi)^3} \left\{ F_4(\vec{q}, H_1, H_2) Q_{\text{TE}}^2 \left(\vec{q} + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) + F_4(\vec{q}, H_1, H_2) F_6 \left(\vec{q} + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right. \\
+ \left. F_2(\vec{q}, H_1, H_1) F_2 \left(\vec{q} + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right. \left(\frac{2\pi}{\lambda} \right)^2 F_4(\vec{q}, H_1, H_2) \left(q_1 + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right. \\
+ \left. F_2(\vec{q}, H_1, H_2) \left(q_1 + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right. \left(\frac{2\pi}{\lambda} \right)^2 F_4(\vec{q}, H_1, H_2) \left(q_1 + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right] \\
+ \left. F_2(\vec{q}, H_1, H_1) \left(q_1 + \frac{2\pi}{\lambda} \right) F_10 \left(\vec{q} + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right] \right\},
\]

where

\[
F_1(\vec{q}, H_1, H_1) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)},
\]

\[
F_2(\vec{q}, H_1, H_1) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_3(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_2)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_4(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_2)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_5(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_6(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
\begin{align*}
F_7(\vec{q}, H_1, H_2) & = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)) \left(\vec{q} - \frac{2\pi}{\lambda} \hat{i}, H_1 - b \frac{2}{H_2} + b \frac{2}{2} \right) \frac{2\pi}{\lambda} \hat{i}, H_1, H_2) \left(q_1 + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right] \\
+ \left. F_2(\vec{q}, H_1, H_1) \left(q_1 + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right] \right\},
\]

where

\[
F_1(\vec{q}, H_1, H_1) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_2(\vec{q}, H_1, H_1) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_3(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_2)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_4(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_2)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_5(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_6(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_7(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)) \left(\vec{q} - \frac{2\pi}{\lambda} \hat{i}, H_1 - b \frac{2}{H_2} + b \frac{2}{2} \right) \frac{2\pi}{\lambda} \hat{i}, H_1, H_2) \left(q_1 + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right] \\
+ \left. F_2(\vec{q}, H_1, H_1) \left(q_1 + \frac{2\pi}{\lambda} \hat{i}, H_1, H_2 \right) \right] \right\},
\]

\[
F_9(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_{10}(\vec{q}, H_1, H_1) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_{11}(\vec{q}, H_1, H_1) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
F_{12}(\vec{q}, H_1, H_2) = \frac{g(\vec{q}, H_1, H_1)}{N(\vec{q}, H_1, H_2)} Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
g(\vec{q}, H_1, H_2) = Q_{\text{TE}}^2(g(\vec{q}, H_1, H_2)),
\]

\[
N(\vec{q}, H_1, H_2) = g(\vec{q}, H_1, H_1) g(\vec{q}, H_1, H_2) - g^2(\vec{q}, H_1, H_2).
\]

APPENDIX C: CONDUCTOR-CONDUCTOR

The definitions of B_{m}^{TM}, B_{m}^{TE}, D_{m}^{TM}, and D_{m}^{TE} are

\[
B_{\text{m}}^{\text{TM}} = -\Delta_{\text{m}}^{\text{TM}} e^{-2Q_1 H_1} + \Delta_{\text{m}}^{\text{TM}} e^{-2Q_2 H_1} - \Delta_{\text{m}}^{\text{TM}} D_{\text{m}}^{\text{TM}} e^{-2Q_1 H_1 + Q_2 H_2} - \Delta_{\text{m}}^{\text{TM}} e^{-2Q_1 H_1 + Q_2 b} + \Delta_{\text{m}}^{\text{TM}} e^{-2Q_2 H_1 + Q_2 b}
\]

\[
- e^{-2Q_1 H_1 + Q_2 H_2 + Q_2 b},
\]

\[
D_{\text{m}}^{\text{TM(TE)}} = 1 + \Delta_{\text{m}}^{\text{TM(TE)}} D_{\text{m}}^{\text{TM(TE)}} e^{-2Q_2 b}.
\]
\[B_{mn}^{TE} = +\frac{\Delta m_1^{TE}e^{-2Q_1H_1} - \Delta m_2^{TM}e^{-2Q_2H_2}}{\Delta m_1^{TE}} + \frac{\Delta m_2^{TM}e^{-2Q_1H_1 + Q_2H_2} + \Delta m_1^{TE}e^{-2Q_2H_2 - Q_1H_2}}{\Delta m_2^{TM}} e^{-2Q_1H_1 + Q_2H_2} \]

where

\[\Delta m_1^{TM} = \varepsilon_{ij}(i q_0)Q_j(i q_0) - \varepsilon_{ij}(q_0)Q_i(i q_0), \]

\[\Delta m_2^{TM} = \mu_{ij}(i q_0)Q_j(i q_0) - \mu_{ij}(i q_0)Q_i(i q_0). \]

with the layer labeled \(j \) located on the left-hand side of the layer labeled \(i \). \(Q_j^2 = q_j^2 + e/(\varepsilon q_0 m_j)^2 \), \(q_j^2 = q_j^2 + q_j^2 \), and \(e \) is the speed of light in the vacuum. The functions \(B_{mn}^{TM}, B_{mn}^{TE}, D_{mn}^{TM}, \) and \(D_{mn}^{TE} \) are

\[B_{mn}^{TM} = +\frac{\Delta m_1^{TM}e^{-2Q_1H_1} + \Delta m_2^{TM}e^{-2Q_2H_2}}{\Delta m_1^{TM}} + \frac{\Delta m_2^{TM}e^{-2Q_1H_1 + Q_2H_2} - \Delta m_1^{TM}e^{-2Q_2H_2 - Q_1H_2}}{\Delta m_2^{TM}} e^{-2Q_1H_1 + Q_2H_2} \]

\[D_{mn}^{TM(TE)} = 1 + \frac{\Delta m_1^{TM(TE)}e^{-2Q_1H_1}}{\Delta m_1^{TM(TE)}} + \frac{\Delta m_2^{TM(TE)}e^{-2Q_2H_2}}{\Delta m_2^{TM(TE)}} e^{-2Q_1H_1 + Q_2H_2} \]

\[B_{mn}^{TE} = +\frac{\Delta m_1^{TE}e^{-2Q_1H_1} - \Delta m_2^{TE}e^{-2Q_2H_2}}{\Delta m_1^{TE}} + \frac{\Delta m_2^{TE}e^{-2Q_1H_1 + Q_2H_2} - \Delta m_1^{TE}e^{-2Q_2H_2 - Q_1H_2}}{\Delta m_2^{TE}} e^{-2Q_1H_1 + Q_2H_2} \]

\[D_{mn}^{TE(TE)} = 1 + \frac{\Delta m_1^{TE(TE)}e^{-2Q_1H_1}}{\Delta m_1^{TE(TE)}} + \frac{\Delta m_2^{TE(TE)}e^{-2Q_2H_2}}{\Delta m_2^{TE(TE)}} e^{-2Q_1H_1 + Q_2H_2} \]

APPENDIX D: CONDUCTOR-PERMEABLE

The functions \(T_{mn}^{TM}, T_{mn}^{TE}, \varphi_{mn}^{TM}, \varphi_{mn}^{TE}, T_{mn}^{TM(TE)}, T_{mn}^{TE(TE)} \), and \(\varphi_{mn}^{TM(TE)} \) are

\[T_{mn}^{TM} = +\frac{\Delta m_1^{TM}e^{-2Q_1H_1} - \Delta m_2^{TM}e^{-2Q_2H_2}}{\Delta m_1^{TM}} + \frac{\Delta m_2^{TM}e^{-2Q_1H_1 + Q_2H_2} - \Delta m_1^{TM}e^{-2Q_2H_2 - Q_1H_2}}{\Delta m_2^{TM}} e^{-2Q_1H_1 + Q_2H_2} \]

\[\varphi_{mn}^{TM(TE)} = 1 + \frac{\Delta m_1^{TM(TE)}e^{-2Q_1H_1}}{\Delta m_1^{TM(TE)}} + \frac{\Delta m_2^{TM(TE)}e^{-2Q_2H_2}}{\Delta m_2^{TM(TE)}} e^{-2Q_1H_1 + Q_2H_2} \]

\[T_{mn}^{TE} = +\frac{\Delta m_1^{TE}e^{-2Q_1H_1} - \Delta m_2^{TE}e^{-2Q_2H_2}}{\Delta m_1^{TE}} + \frac{\Delta m_2^{TE}e^{-2Q_1H_1 + Q_2H_2} - \Delta m_1^{TE}e^{-2Q_2H_2 - Q_1H_2}}{\Delta m_2^{TE}} e^{-2Q_1H_1 + Q_2H_2} \]

\[\varphi_{mn}^{TE(TE)} = 1 + \frac{\Delta m_1^{TE(TE)}e^{-2Q_1H_1}}{\Delta m_1^{TE(TE)}} + \frac{\Delta m_2^{TE(TE)}e^{-2Q_2H_2}}{\Delta m_2^{TE(TE)}} e^{-2Q_1H_1 + Q_2H_2} \]

\[T_{mn}^{TM(TE)} = +\frac{\Delta m_1^{TM(TE)}e^{-2Q_1H_1} - \Delta m_2^{TM(TE)}e^{-2Q_2H_2}}{\Delta m_1^{TM(TE)}} + \frac{\Delta m_2^{TM(TE)}e^{-2Q_1H_1 + Q_2H_2} - \Delta m_1^{TM(TE)}e^{-2Q_2H_2 - Q_1H_2}}{\Delta m_2^{TM(TE)}} e^{-2Q_1H_1 + Q_2H_2} \]

\[\varphi_{mn}^{TM(TE)} = 1 + \frac{\Delta m_1^{TM(TE)}e^{-2Q_1H_1}}{\Delta m_1^{TM(TE)}} + \frac{\Delta m_2^{TM(TE)}e^{-2Q_2H_2}}{\Delta m_2^{TM(TE)}} e^{-2Q_1H_1 + Q_2H_2} \]

\[T_{mn}^{TE(TE)} = +\frac{\Delta m_1^{TE(TE)}e^{-2Q_1H_1} - \Delta m_2^{TE(TE)}e^{-2Q_2H_2}}{\Delta m_1^{TE(TE)}} + \frac{\Delta m_2^{TE(TE)}e^{-2Q_1H_1 + Q_2H_2} - \Delta m_1^{TE(TE)}e^{-2Q_2H_2 - Q_1H_2}}{\Delta m_2^{TE(TE)}} e^{-2Q_1H_1 + Q_2H_2} \]

\[\varphi_{mn}^{TE(TE)} = 1 + \frac{\Delta m_1^{TE(TE)}e^{-2Q_1H_1}}{\Delta m_1^{TE(TE)}} + \frac{\Delta m_2^{TE(TE)}e^{-2Q_2H_2}}{\Delta m_2^{TE(TE)}} e^{-2Q_1H_1 + Q_2H_2} \]
[34] L. Ryder, Quantum Field Theory (Cambridge University Press, New York, 1996).