Golze, Dorothea; Wilhelm, Jan; Van Setten, Michiel J.; Rinke, Patrick

Core-Level Binding Energies from GW

Published in:
Journal of Chemical Theory and Computation

DOI:
10.1021/acs.jctc.8b00458

Published: 11/09/2018

Document Version
Peer reviewed version

Please cite the original version:
Core-level binding energies from GW: An efficient full-frequency approach within a localized basis

Dorothea Golze,†,* Jan Wilhelm,¶§ Michiel van Setten,∥⊥ and Patrick Rinke†

†Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
‡Department of Electrical Engineering and Automation, Aalto University, PO Box 13500, 00076 Aalto, Finland
¶Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
§Present address: BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen am Rhein, Germany
∥Nanoscopic Physics, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
⊥Present address: IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

E-mail: dorothea.golze@aalto.fi

Abstract

The GW method is routinely used to predict charged valence excitations in molecules and solids. However, the numerical techniques employed in the most efficient GW algorithms break down when computing core excitations as measured by X-ray photoelectron spectroscopy (XPS). We present a full-frequency approach on the real axis using a localized basis to enable the treatment of core levels in GW. Our scheme is based on the contour deformation technique and allows for a precise and efficient calculation of the self-energy, which has a complicated pole structure for core states. The accuracy of our method is validated by comparing to a fully-analytic GW algorithm. Furthermore, we report the obtained core-level binding energies and their deviations from experiment for a set of small molecules and large polycyclic hydrocarbons. The core-level excitations computed with our GW approach deviate by less than 0.5 eV from the experimental reference. For comparison, we also report core-level binding energies calculated by density functional theory-based approaches such as the popular Delta Self-Consistent Field (ΔSCF) method. Our implementation is optimized for massively parallel execution enabling the computation of systems up to 100 atoms.

1 Introduction

Core-level spectroscopy is a powerful tool to study adsorption processes at surfaces and to investigate the chemical structure of complex materials, molecules or liquids.1,2 Atomic core-levels are sensitive to the atomic environment, such as covalent bonding, hybridization or the oxidation state.3–5 The binding energies of the core electrons can be measured by X-ray photoelectron spectroscopy (XPS). Since the energetic differences (chemical shifts) between atomic core-levels of the same type are often smaller than the experimental resolution, a fitting procedure is required to resolve hidden and overlapping peaks.6,7 Peak fitting is an increasingly sophisticated and error-prone task for large molecules.8 Accurate simulation tools to reproduce XPS spectra are thus important to support the interpretation of experimental results. To distinguish 1s excitations of second-row elements in different chemical environments, the accuracy needs to be generally better than 0.5 eV. For carbon 1s, in particular, an accuracy of the order of 0.1 eV is often required, see for example Refs. 9–11 for typical chemical shifts in organic molecules.

Currently, computational XP core-level spectroscopy is based almost exclusively on Kohn-Sham density functional theory (KS-DFT).12,13 Although computationally efficient, DFT-based approaches are often not accurate or consistent enough to resolve XPS spectra. The workhorse of electronic
structure simulations, KS-DFT, fails to reproduce spectroscopic properties of solids14–16 and molecules.17,18 For the highest occupied molecular orbital (HOMO), the first ionization potential (IP) can be rigorously assigned to the negative of the KS orbital energy.19,20 This is not the case for the other KS states. However, it is common practice due to their conceptual similarity21,22 to their Hartree-Fock (HF) counterparts that fulfill Koopmans’ theorem.23 The observed deviations of the KS eigenvalues from experiment are in the range of several eV for the valence states,24 but increase to 10–30 eV for core excitations.25

Relating the IPs directly to the orbital energies neglects orbital relaxation effects upon removal of an electron. These orbital readjustments can be included by means of the Delta Self-Consistent Field (ΔSCF) approach,26 which is the state-of-the-art method for core excitations.27 In ΔSCF, the excitation energy is calculated as the energy difference between the neutral and the ionized system. Generally, the predicted relative core-level binding energies (BEs), i.e. the shifts of the BEs with respect to a reference molecule, agree well with experiment. The deviations from the experimental shifts are of the order of 0.2 – 0.3 eV for small molecules28 which is well within or close to the chemical resolution required to resolve most XPS spectra. The computed relative BEs show also little variation with respect to the exchange-correlation (XC) potential.28 However, absolute core-level BEs computed with the ΔSCF approach depend considerably on the choice of the XC functional and can deviate from experiment by up to 2 eV.29 The accurate calculation of absolute core excitations is important to support the alignment of complex spectra of large molecules, where peak fitting procedures become fairly biased and are based on a multitude of assumptions, such as the total number of fitted peaks.

To describe core excitations in ΔSCF, the core hole has to be constrained in a particular state, which can be difficult,30–33 in particular when relativistic effects become important, e.g. for p-electrons.34 In addition, the ΔSCF method has several conceptual problems limiting its applicability. One of them is how to treat systems with periodic boundary conditions, such as molecules on surfaces, where retaining a zero net charge in the calculation is a necessity. In this case, the ΔSCF approach can only be applied in an approximate manner, e.g. by introducing a compensating background charge or employing pseudopotential-based approaches.35–37 For systems with localized charges, the ΔSCF approach cannot be applied at all. An example are organic salts such as ionic liquids. When generating a core hole at the cation, the negative charge at the anion would be displaced during the SCF and neutralize the core hole at the now doubly charged cation.

A promising method to improve upon the shortcomings of ΔSCF is the GW approximation to many-body perturbation theory.38 The central object of the GW method is the Green’s function G, where the poles of G correspond to the quasiparticle (QP) excitation energies as measured in photoemission experiments. GW is based on a perturbative expansion in the screened Coulomb interaction W as formulated by Hedin in the 1960s39 and accounts for non-local frequency-dependent screening between the electrons. Green’s function theory in the GW approximation has become the method of choice for the computation of addition and removal energies of valence electrons in solids40–51 and is now increasingly being applied to valence excitations of molecules.24,52–59 For the latter, average deviations of less than 0.2 eV from the coupled cluster singles, doubles and perturbative triples [CCSD(T)] reference values have been reported.50,64 Mean absolute errors for the first IP are even below 0.1 eV when comparing vibrationally resolved GW spectra to experiment.62 For core excitations, we are only aware of two exploratory GW studies for solids which report partly promising agreement with experiment.63,64 However, a recent investigation using the established GW procedures for valences states found large deviations up to 10 eV for molecular core-levels.25

This motivated us to advance the GW method for molecular core excitations within first-order perturbation G_0W_0. The requirements for a core-level implementation are twofold. (1) The core electrons have to be described explicitly. Localized basis sets are the best choice for this task since they can be tailored to model the rapid oscillations of the wave function in the vicinity of the atomic nuclei. Many GW implementations,46,65–67 however, employ plane wave expansions of the electronic density in combination with frozen core approximations prohibiting assessment of core excitations by design. (2) The self-energy, which describes the electron-electron interactions in GW, has a more complicated structure in the core than in the valence region, which we will demonstrate in this work. It is therefore crucial to compute the self-energy in a numerically stable manner. In this work, we account for both requirements (1) and (2) by an efficient and accurate full-frequency implementation on the real frequency axis using atom-centered basis functions.

This paper is organized as follows. After briefly introducing the G_0W_0 approach and recalling the basic equations for computing G_0 and W_0, we summarize the equations for the resolution-of-the-identity (RI) approach in Section 3. We then apply the RI approach in Section 4 and derive the working expressions used in our implementation and introduce the spectral function in Section 5. Implementation and computational details are described in Sections 6 and 7. We discuss self-energy structures and spectral functions and the accuracy
of our implementation for small and medium-sized molecular structures in Section 8. After reporting the computational efficiency we finally draw conclusions in Section 9.

2 Quasiparticle Energies from G_0W_0

Introducing GW by analogy to DFT, the XC potential ψ^{xc} of DFT is replaced by a self-energy Σ. The KS equations then transform into a set of self-consistent quasiparticle equations which can be solved iteratively. In practice, GW calculations are often performed on top of an underlying DFT or HF calculation. Such single-shot perturbation calculations are referred to as G_0W_0. The corrections to the KS-DFT orbital energies ϵ_n of a molecular orbital (MO) ψ_n are then given by

$$\epsilon_n^{G_0W_0} = \epsilon_n + \text{Re} \sum_i \left(\epsilon_i^{G_0W_0} - \epsilon_i^{xc} \right),$$

(1)

where we introduced the (n,n)-diagonal matrix elements of the exchange-correlation potential, $\epsilon_i^{xc} = \langle \psi_i^{}\mid \psi_{i}^{xc} | \psi_i^{\rangle}$, and the self-energy,

$$\Sigma_n(\omega) = \langle \psi_i^{\rangle} | \Sigma(\omega) | \psi_n^{\rangle}. \quad \text{(2)}$$

Note that the spin has been omitted for simplicity, but can easily be reintroduced. The self-energy is given by

$$\Sigma(\mathbf{r}, \mathbf{r}', \omega) = \frac{i}{2\pi} \int d\omega' G_0(\mathbf{r}, \mathbf{r}', \omega + \omega') W_0(\mathbf{r}, \mathbf{r}', \omega') e^{i\omega' \eta},$$

(3)

where G_0 is the non-interacting KS Green’s function, W_0 the screened Coulomb interaction and η a positive infinitesimal. The Kohn–Sham Green’s function is given by

$$G_0(\mathbf{r}, \mathbf{r}', \omega) = \sum_m \frac{\psi_m(\mathbf{r})^* \psi_m(\mathbf{r}')}{\omega - \epsilon_m - i\eta \text{sgn}(\epsilon_F - \epsilon_m)},$$

(4)

where ϵ_F denotes the Fermi energy. In Equation (4), the sum includes all occupied and virtual KS orbitals ψ_m with the corresponding KS orbital energies ϵ_m. The screened Coulomb interaction at the random phase approximation (RPA) level is defined as

$$W_0(\mathbf{r}, \mathbf{r}', \omega) = \int d\mathbf{r}'' e^{-i(\mathbf{r}, \mathbf{r}'', \omega)\mathbf{r}''},$$

(5)

with the dielectric function ε and the bare Coulomb interaction $v(\mathbf{r}, \mathbf{r}') = 1/|\mathbf{r} - \mathbf{r}'|$. The dynamical dielectric function

$$\varepsilon(\mathbf{r}, \mathbf{r}', \omega) = \delta(\mathbf{r}, \mathbf{r}') - \int d\mathbf{r}'' v(\mathbf{r}, \mathbf{r}'') \chi_0(\mathbf{r}'', \mathbf{r}', \omega) \quad \text{(6)}$$

where the real space Adler-Wiser representation69,70 of the irreducible polarizability χ_0 reads

$$\chi_0(\mathbf{r}, \mathbf{r}', \omega) = \sum_{i=\text{occ}} \sum_i \psi_{i}(\mathbf{r}')^* \psi_i(\mathbf{r}) \psi_{i}(\mathbf{r})^* \psi_{i}(\mathbf{r}) \left\{ \frac{1}{\omega - (\epsilon_a - \epsilon_i) + i\eta} + \frac{1}{-\omega - (\epsilon_a - \epsilon_i) + i\eta} \right\}. \quad \text{(7)}$$

The index i refers to an occupied MO and a to a virtual one.

The self-energy $\Sigma = \Sigma^c + \Sigma^x$ has a correlation Σ^c and an exchange Σ^x contribution. The latter does not depend on the frequency and is given by

$$\Sigma^x(\mathbf{r}, \mathbf{r}') = -\sum_{i=\text{occ}} \psi_i(\mathbf{r})^* \psi_i(\mathbf{r}') v(\mathbf{r}, \mathbf{r}'). \quad \text{(8)}$$

The QP energies $\epsilon_n^{G_0W_0}$ calculated from G_0W_0 depend on the reference ground state encoded in G_0 and W_0. Different methods to optimize the DFT starting point have been successfully employed to obtain accurate valence excitations.72,73

3 RI Approximation

The four-center electron repulsion integrals (4c-ERIs) are of central importance for the calculation of W_0 and are defined as

$$(nm|kl) = \int d\mathbf{r} d\mathbf{r}' \psi_{nm}(\mathbf{r})^* \psi_{km}(\mathbf{r}) \psi_{kl}(\mathbf{r}) \psi_{lm}(\mathbf{r}'). \quad \text{(9)}$$

The MOs $\{\psi_n\}$ are expanded in localized atom-centered orbitals $\{\phi_{\mu}\}$,

$$\psi_n(\mathbf{r}) = \sum_{\mu} C_{\mu n} \phi_{\mu}(\mathbf{r}), \quad \text{(10)}$$

where $C_{\mu n}$ are the MO coefficients obtained from KS-DFT. We employ the RI approximation with the Coulomb metric74 (RI-V) to refactor the 4c-ERIs in two- and three-center integrals,

$$(nm|kl)^{\text{RI-V}} = \sum_{PQ} (nm|P)^{(\text{IR})} (Q|kl)^{(\text{IR})} \quad \text{(11)}$$

which is exact in the limit of a complete auxiliary basis set $\{\phi_{P}\}$. Note that the auxiliary functions P and Q are also local and atom-centered. The two-center (2c) integrals, or equivalently the Coulomb matrix V_{PQ}, are given by

$$V_{PQ} := (P|Q) = \int d\mathbf{r} d\mathbf{r}' \phi_P(\mathbf{r})^* \phi_Q(\mathbf{r}) v(\mathbf{r}, \mathbf{r}') \quad \text{(12)}$$
and the three-center (3c) integrals are defined as

\[(nm|p) = \sum_{\mu \nu} (\mu \nu|P) \text{C}_{\mu \nu} \text{C}_{\nu m} \]
\[(\mu \nu|P) = \int d\mathbf{r} d\mathbf{r}' \phi_\mu(\mathbf{r}') \phi_\nu(\mathbf{r}) \phi_P(\mathbf{r}, \mathbf{r}'). \] (13) (14)

The integral over the atomic orbitals, \((\mu \nu|P)\), is obtained by analytic or numeric integration depending on the functional form of the basis functions \(\{\phi_\mu\}\).

We introduce the quantity

\[M_{\rho \sigma}^{\mu \nu} = \sum_{R} (\mu \nu|R) V_{R \rho}^{-1/2} \] (15)

and its transformation in the MO basis

\[O_{\rho \sigma}^{mn} = \sum_{\mu \nu} M_{\rho \sigma}^{\mu \nu} C_{\mu m} C_{\nu n} \] (16)

to reformulate the RI expression for the 4c-ERIs in a more compact form

\[(nm|l)_{RI-V} = \sum_{\rho \sigma} O_{\rho \sigma}^{mn} O_{\rho \sigma}^{nl}. \] (17)

The RI-V method is a well-established technique in quantum chemistry due to its accuracy and fast convergence with respect to the number of auxiliary functions and is also commonly used in GW implementations. In RI-V, we minimize the Coulomb repulsion of the residual with respect to the expansion of the basis pairs \(\phi_\rho \phi_\sigma\) in auxiliary functions. Compared to RI with the overlap metric, the error in the residual is quadratic instead of linear.

4 Evaluation of the Self-Energy

In this section we start by briefly reviewing the popular analytic continuation (AC) method. We then derive the equations for calculating the self-energy with the contour deformation (CD) technique, which is the method we will employ to calculate core-level excitations. In the following we refer to \(G_0 W_0\) calculations with the first approach as AC-\(G_0 W_0\) and to the second one as CD-\(G_0 W_0\).

4.1 Analytic Continuation (AC)

On the real-frequency axis, \(\Sigma\) exhibits a complex structure with many poles, whereas it has a smooth form on the imaginary axis. To avoid the complicated behavior for real frequencies, a common approach is to evaluate the self-energy in the imaginary frequency domain, where \(\Sigma\) is given by

\[\Sigma(\mathbf{r}, \mathbf{r}', i\omega) = -\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega' G_0(\mathbf{r}, \mathbf{r}', i\omega + i\omega') W_0(\mathbf{r}, \mathbf{r}', i\omega'). \] (18)

The experimental observables like QP energies and spectral functions are measured for real frequencies. This implies that \(\Sigma(i\omega)\) has to be analytically continued to the real axis to compute these quantities. An analytical form is obtained by fitting the matrix elements \(\Sigma_i(i\omega)\) to a multipole model such as the popular Padé approximant, which is employed in several state-of-the-art GW implementations.

The approximant is given by

\[\Sigma_i(i\omega) \approx \frac{a_0 + a_1(i\omega) + \cdots + a_{(N-1)/2}(i\omega)^{(N-1)/2}}{1 + a_1(i\omega) + \cdots + a_{N/2}(i\omega)^{N/2}}, \] (19)

where \(N\) is the number of Padé parameters. In practice, we calculate the \(N\)-point Padé approximant using Thiele’s reciprocal difference method. There, the unknown complex coefficients \(a_i\) and \(b_j\) are computed recursively from a set of imaginary frequencies \(i\omega\) and the corresponding values \(\Sigma(i\omega)\). We refer to Ref. 87 for details. The self-energy in the real-frequency domain is finally obtained by substituting \((i\omega)\) by \(\omega\) in Equation (19).

It has been demonstrated that the AC reproduces the structure of the self-energy well for valence states, yielding reliable results for the corresponding IPs. In particular, benchmark studies showed that the Padé approximation produces more accurate results than less flexible models such as the “two-pole-fit”.

4.2 Contour Deformation (CD)

An alternative method to compute the self-energy is to calculate the integral along the real-frequency axis in Equation (3) employing the integral along the contour, see Figure 1. Using the CD technique, we obtain the self-energy directly on the real-frequency axis avoiding the fitting procedure described in Section 4.1. At the same time we circumvent the numerical unstable integration on the real-frequency axis, where the poles of \(G_0\) and \(W_0\) are located. Since the integrals along the arcs vanish, Equation (3) transforms into

\[\Sigma(\mathbf{r}, \mathbf{r}', \omega) = \frac{i}{2\pi} \int d\omega' G_0(\mathbf{r}, \mathbf{r}', \omega + \omega') W_0(\mathbf{r}, \mathbf{r}', \omega') \] (20)

\[-\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega' G_0(\mathbf{r}, \mathbf{r}', \omega + i\omega') W_0(\mathbf{r}, \mathbf{r}', i\omega'), \]
following discussion, we introduce the notations:

The integration contours Γ^+ and Γ^- enclose only the poles of G_0, but never the poles of W_0.

where the first term is the whole contour integral and the second term is the integral along the imaginary axis. For the following discussion, we introduce the notations:

$$
R(\omega) := \frac{i}{2\pi} \int d\omega' G_0(\mathbf{r}, \mathbf{r}', \omega + \omega') W_0(\mathbf{r}, \mathbf{r}', \omega') \quad (21)
$$

$$
I(\omega) := \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega' G_0(\mathbf{r}, \mathbf{r}', \omega + i\omega') W_0(\mathbf{r}, \mathbf{r}', i\omega'). \quad (22)
$$

The contour integral $R(\omega)$ is calculated from the residues of the poles enclosed in the contours, i.e. in the subset of the complex planes D_{Γ^+} and D_{Γ^-} encircled by Γ^+ and Γ^-, respectively. The poles of W_0 never fall inside the contour. However, depending on ω some poles of $G_0(\omega + \omega')$ can enter D_{Γ^+} or D_{Γ^-}. Recalling the expression for the Green’s function on the real axis in Equation (4), we directly find that the poles of G_0 are located at the complex frequencies

$$
\omega_m' = \epsilon_m - \omega + i\eta \quad \text{sgn}(\epsilon_F - \epsilon_m). \quad (23)
$$

For ω smaller than ϵ_F, the poles ω_m can only enter D_{Γ^+} as shown in Figure 1. These poles stem from occupied states. For ω larger ϵ_F, the situation is reversed and poles of the unoccupied states can shift into D_{Γ^-}. Employing the residue theorem we obtain for the contour integral defined in Equation (21)

$$
R(\omega) = - \sum_{\omega_m \in D_{\Gamma^+}} \text{Res} \left\{ G_0(\mathbf{r}, \mathbf{r}', \omega + \omega') W_0(\mathbf{r}, \mathbf{r}', \omega'), \omega_m' \right\}
$$

$$
+ \sum_{\omega_m \in D_{\Gamma^-}} \text{Res} \left\{ G_0(\mathbf{r}, \mathbf{r}', \omega + \omega') W_0(\mathbf{r}, \mathbf{r}', \omega'), \omega_m' \right\}. \quad (24)
$$

where the residues are given by

$$
\text{Res} \left\{ G_0(\mathbf{r}, \mathbf{r}', \omega + \omega') W_0(\mathbf{r}, \mathbf{r}', \omega'), \omega_m' \right\} = \lim_{\omega' \to \omega_m} (\omega' - \omega_m') G_0(\mathbf{r}, \mathbf{r}', \omega + \omega') W_0(\mathbf{r}, \mathbf{r}', \omega') \quad (25)
$$

$$
= \psi_m(\mathbf{r}) \psi_m(\mathbf{r}) W_0(\mathbf{r}, \mathbf{r}', \omega_m').
$$

By inserting the third line of Equation (25) in Equation (24) and using Equation (23), we obtain for the diagonal matrix elements of $R(\omega)$

$$
R_n(\omega) := \langle n | R(\omega) | n \rangle = \sum_m f_m W_{nm} \quad (26)
$$

$$
W_{nm} := \langle nm | W_0(\mathbf{r}, \mathbf{r}', \epsilon_m - \omega + i\eta \text{sgn}(\epsilon_F - \epsilon_m)) | mn \rangle, \quad (27)
$$

where the contribution of the residues is determined by f_m

$$
f_m = \begin{cases} +1 & \text{if } \epsilon_F < \epsilon_m < \omega \\ -1 & \text{if } \omega < \epsilon_m < \epsilon_F \\ 0 & \text{else} \end{cases} \quad (28)
$$

From Equation (28) we directly see that the residues do not contribute to the self-energy for $\epsilon_{\text{HOMO}} < \omega < \epsilon_{\text{LUMO}}$, where ϵ_{HOMO} and ϵ_{LUMO} are the KS orbital energies of the HOMO and lowest occupied molecular orbital (LUMO). The residue term is thus zero for frequencies within the band gap.

To obtain an expression for W_{nm} in Equation (27), we evaluate the irreducible polarizability χ_0 given in Equation (7) at

$$
\chi_0(\epsilon_m - \omega + i\eta) = \chi_0(\epsilon_m - \omega + i\eta), \quad \omega < \epsilon_m < \epsilon_F
$$

$$
\chi_0(\epsilon_m - \omega - i\eta) = \chi_0(|\epsilon_m - \omega| + i\eta), \quad \omega > \epsilon_m > \epsilon_F \quad (29)
$$

After inserting Equations (5–7), (29) and the RI approximation (17) into Equation (27), we obtain the following expression for the W_{nm} matrix elements

$$
W_{nm} = \sum_{PQ} O_{nm}^{PQ} \left[1 - \Pi(|\epsilon_m - \omega| + i\eta) \right]^{1/2} O_{PQ}^{mn}, \quad (30)
$$
where the representation of the polarizability in the auxiliary basis is given by

$$\Pi_{PQ}(\omega) = \sum_{ia} O_{P a}^i \left[\frac{1}{\omega - (\varepsilon_a - \varepsilon_i) + i\eta} \right. $$

$$+ \left. \frac{1}{-\omega - (\varepsilon_a - \varepsilon_i) + i\eta} \right] O_{Q a}^i. \tag{31}$$

We turn now our attention to the evaluation of the integral along the imaginary axis $I(\omega)$ defined in Equation (22). The expression for G_0 given Equation (4) remains unchanged except that we substitute ω' by $i\omega'$. The same holds for W_0, ε and χ_0 where we replace ω by $i\omega$ in Equations (5–7). Analogously to the derivation of $R_n(\omega)$, we use again the RI approximation as formulated in Equation (17) to obtain the diagonal matrix elements of $I(\omega)$ by using Equations (4–7)

$$I_n(\omega) := \langle n|I(\omega)|n\rangle = \frac{1}{2\pi} \sum_m \int_{-\infty}^{\infty} d\omega' \frac{1}{\omega + i\omega' - \varepsilon_m - i\eta \text{sgn}(\varepsilon_F - \varepsilon_m)}$$

$$\times \sum_{PQ} O_{P}^{mn} [1 - \Pi(i\omega')]_{PQ}^{-1} O_{Q}^{mn}. \tag{32}$$

The self-energy Σ_n is obtained by inserting Equation (30) in Equation (26) and then Equation (26) and (32) in Equation (20). We finally compute the correlation self-energy Σ_n^c by subtracting the exact exchange energy Σ_n^e see Equation (8), from Σ_n. The latter is equivalent to subtracting the bare Coulomb interaction v from the screened interaction W_0. This yields the correlation parts R_n^c and I_n^c of R_n (Equation (26)) and I_n (Equation (32)),

$$R_n^c(\omega) = \sum_m f_n W_{nm}^c(|\varepsilon_m - \omega| + i\eta)) \tag{33}$$

with

$$W_{nm}^c(|\varepsilon_m - \omega| + i\eta)) = \sum_{PQ} O_{P}^{nm} [1 - \Pi(|\varepsilon_m - \omega| + i\eta)]_{PQ}^{-1} - \delta_{PQ} O_{Q}^{mn} \tag{34}$$

and

$$I_n^c(\omega) = \frac{1}{2\pi} \sum_m \int_{-\infty}^{\infty} d\omega' \frac{W_{nm}^c(i\omega')}{\omega + i\omega' - \varepsilon_m - i\eta \text{sgn}(\varepsilon_F - \varepsilon_m)} \tag{35}$$

with

$$W_{nm}^c(i\omega) = \sum_{PQ} O_{P}^{nm} [1 - \Pi(i\omega')]_{PQ}^{-1} O_{Q}^{mn}. \tag{36}$$

Equations (33) and (35) complete the ingredients to compute the (n,n)-diagonal elements of the self-energy

$$\Sigma_n(\omega) = \Sigma_n^e + R_n^c(\omega) - I_n^c(\omega) \tag{37}$$

which is used to compute the $G_0 W_0$ quasiparticle energies from the QP Equation (1). The correlation self-energy $\Sigma_n^c := R_n^c - I_n^c$ is a complex quantity and only its real part is required to solve the QP Equation (1). However, for the computation of other observables such as the spectral function introduced in Section 5 the full complex self-energy is required. It is therefore important to note that in a rigorous derivation of the CD equations, also the frequency integral term I_n^c has a minor contribution to the imaginary part of Σ_n^c. This is discussed in more detail in Section 8.1.

5 Spectral Function

The Green’s function G for interacting electrons has its poles at the QP energies and the imaginary part of G is expected to have peaks at these energies. The spectral information can thus be directly retrieved from G by computing the spectral function or density of states $A(\omega)$

$$A(\omega) = -\frac{1}{\pi} \int d\mathbf{r} \lim_{\mathbf{r} \to \mathbf{r}_0} \text{Im} G(\mathbf{r}, \mathbf{r}', \omega) \text{sgn}(\omega - \varepsilon_F)$$

$$= -\frac{1}{\pi} \text{Tr}[\text{Im} G(\omega) \text{sgn}(\omega - \varepsilon_F)]. \tag{38}$$

Employing the Dyson equation $G = G_0 + G_0 \Sigma G$ with the $G_0 W_0$ self-energy Σ and omitting off-diagonal elements of Σ, we diagonalize G in the basis of KS eigenstates m,

$$G_m(\omega) = \frac{1}{[G_m^0(\omega)]^{-1} - [\Sigma_m(\omega) - \varepsilon_m^F]} \tag{39}$$

Using the eigenvalues G_m of G to compute the trace in Equation (38) and using Equations (4) and (37) yields

$$A(\omega) = -\frac{1}{\pi} \sum_m \text{Im} G_m(\omega) \text{sgn}(\omega - \varepsilon_F)$$

$$= -\frac{1}{\pi} \sum_m \text{Im} [\omega - \varepsilon_m - (\Sigma_m^c(\omega) + \Sigma_m - \varepsilon_m^F)]^{-1} \times \text{sgn}(\omega - \varepsilon_F). \tag{40}$$
Compute $M_{P}^{\mu} = \sum_{R}(\mu|\nu|R)V_{P}^{-1/2}$

Get $\{\epsilon_{n}\}$ and MO coefficients $\{C_{\mu n}\}$ from SCF

Transformation to MO basis: $O_{P}^{\mu m} = \sum_{\nu\mu}M_{P}^{\mu \nu}C_{\mu n}C_{\nu m}$

Loop over all $i\omega$

Calculate $\Pi_{PQ}(i\omega)$ from $O_{P}^{\mu m}$

Calculate $W_{nm}^{\omega}(i\omega)$ from $O_{P}^{m n}$ and $\Pi_{PQ}(i\omega)$

End $i\omega$ loop

Set for state n: $\epsilon'_{n} = \epsilon_{n}$

Start QP cycle for state n

Loop over all residues $\{\epsilon_{m} - \epsilon'_{n}\}$

Set $\omega_{nm} = |\epsilon_{m} - \epsilon'_{n}| + i\eta$

Calculate $\Pi_{PQ}(\omega_{nm})$ from $O_{P}^{\mu m}$

Calculate $W_{nm}^{\omega}(\omega_{nm})$ from $O_{P}^{m n}$ and $\Pi_{PQ}(\omega_{nm})$

Sum up: $R_{n}(\epsilon'_{n}) = R_{n}(\epsilon_{n}) + f_{m}W_{nm}^{\omega}(\omega_{nm})$

End residue loop

Loop over all KS states m

Set for all $i\omega$: $k_{nm}(i\omega) = [\epsilon'_{n} + i\omega - \epsilon_{m} + i\eta]^{-1}$

Sum up: $f_{m}(\epsilon'_{n}) = f_{m}(\epsilon_{n}) + \int i\omega k_{nm}(i\omega)W_{m}^{\omega}(i\omega)\delta_{nm}(\omega_{nm})$

End m loop

Calculate $\Sigma_{n}(\epsilon'_{n}) = \Sigma_{n}^{el} + R_{n}(\epsilon'_{n}) - f_{m}(\epsilon'_{n})$

Calculate QP energy: $\epsilon_{n}^{G_{0}W_{0}} = \epsilon_{n} + \text{Re} \Sigma_{n}(\epsilon'_{n}) - v_{n}^{\text{rel}}$

Set $\epsilon_{n} = \epsilon_{n}^{G_{0}W_{0}}$

If QP energy $\epsilon_{n}^{G_{0}W_{0}}$ converged exit

End QP loop

Figure 2: Pseudocode for the CD-$G_{0}W_{0}$ method. Displayed is the computation of the QP energy $\epsilon_{n}^{G_{0}W_{0}}$ for state n.

Note that we need the full complex correlation self-energy $\Sigma_{n}^{el}(\omega)$ for the evaluation of $A(\omega)$, whereas only its real part is required for solving the QP Equation (1). However, the spectral function yields the full spectral information and shows next to the main peaks, which correspond to the QP excitations, also smaller peaks and satellite structures due to a variety of collective phenomena.

6 Implementation Details

The CD-$G_{0}W_{0}$ approach has been implemented in the all-electron code FHI-aims, which is based on numerically tabulated atom-centered orbitals (NAOs). In FHI-aims, the MOs are expanded in the NAO basis $\{\phi_{\mu}\}$, with basis functions of the form

$$\phi_{\mu}(r) = \frac{u_{\mu}(r)}{r} Y_{lm}(\Omega),$$

(42)

where $u_{\mu}(r)$ are radial functions and $Y_{lm}(\Omega)$ spherical harmonics. The functions u_{μ} are not restricted to any particular shape, but are numerically tabulated on dense grids. Other popular local basis functions, e.g., Gaussian-type orbitals can be considered as special cases of the general form.

The pseudocode for our CD-$G_{0}W_{0}$ implementation is shown in Figure 2. We start by computing the 2c and 3c RI integrals V_{QP} and $(\mu|\nu|P)$. The auxiliary functions P and Q are NAOs which are generated from products of the primary basis functions, see Ref. 79 for details. The 2c integrals are calculated in Fourier space as described by Talman,97,98 employing a logarithmic Bessel transform,99 while the 3c integrals are computed by numerical integration using overlapping atom-centered spherical grids, see Ref. 79 for a comprehensive description. We then get the orbital energies $\{\epsilon_{n}\}$ and the MO coefficients $\{C_{\mu n}\}$ from an electronic structure optimization at the KS-DFT level. The RI integrals are not only used to expand the self-energy in the MO basis, but already in the SCF procedure of the DFT calculation. This is the case for hybrid functionals when an efficient evaluation of the exact HF exchange is required.79

The QP energies are obtained by solving Equation (1) iteratively, see Figure 2. To compute the self-energy, we have to re-evaluate the residue term R_{n} and the integral term I_{n} at each step. The latter is calculated by numerical integration using a modified Gauss-Legendre grid79 with $(i\omega)$ grid points. R_{n} is constructed by integrating over the matrix elements $W_{nm}(i\omega)$. Since these matrix elements do not depend on the QP energies, they can be precomputed once when the QP cycle is initialized. The computational cost for the calculation of R_{n} is for core states significantly higher. The reason is that the matrix elements $W_{nm}(\epsilon_{m} - \omega)$ have to be calculated at each QP cycle step for each pole $(\epsilon_{m} - \omega)$ of G that enters the contour and therefore contributes as residue. The number of residues depends on the KS state n for which the $G_{0}W_{0}$ correction is calculated, see Equation (28). We have typically only one residue for the HOMO. However, for the energetically lowest core state the number of residues increases to $N_{\text{elec}}/2$, where N_{elec} is the number of electrons. The computational complexity for core-level excitations is therefore one order larger than for valence states.

An alternative to the iterative procedure is the graphical solution of Equation (1). For the latter case, the self-energy matrix elements are computed and plotted on a fine grid of real frequencies $(i\omega)$ in the region where the solution is expected. The QP energies are then obtained by graphically finding the point where the self-energy and the straight line $\omega - \epsilon_{n} + v_{n}^{\text{rel}} - \Sigma_{n}$ intersect, see Equation (1). The iterative solution is computationally far more efficient since the self-energy has to be calculated only for a few frequencies, i.e. for one frequency per step. In the following, the graphical solution is thus not used for production calculations of QP excitations, but exclusively for an in-depth discussion of the solution behavior of Equation (1), see Section 8.2.
Figure 3: Molecular structures of (a) coronene, (b) phenanthrene and (c) anthrone. Color code: orange, C; white, H; red, O. The labels indicate chemically non-equivalent carbon atoms.

The CD-G0W0 approach is parallelized using a standard message passing interface (MPI). The matrix elements \(O^a_p \) are distributed over the pairs of occupied and virtual orbitals \(ia \) to compute the polarizability in the auxiliary basis \(\Pi_{PQ}(\omega) \). The latter is then re-distributed over the auxiliary functions \(P \) and \(Q \). The subsequent parallel matrix operations are performed with ScaLAPACK. We have chosen another parallelization strategy for the evaluation of the spectral function \(A(\omega) \). The computation of \(A(\omega) \) with a sufficient spectral resolution is only feasible for small molecules since one frequency point requires the calculation of \(\Sigma^c_n \) for all KS states \(n \). In favor of a high resolution of \(A(\omega) \) we apply the distribution to the frequency points instead of the matrix elements.

7 Computational Details

Core-level calculations are carried out for small isolated molecules and medium-sized polycyclic aromatic hydrocarbons, such as coronene, phenanthrene and anthrone, see Figure 3, which are stable in gas-phase. Core excitations are computed from KS eigenvalues, the \(\Delta \)SCF method and \(G_0W_0 \) QP energies. The KS eigenvalues \(\{ \epsilon^K_i \} \) and QP excitations \(\{ \epsilon^G_0_i \} \) are related to the binding energies (BEs) for state \(i \) by

\[
BE_i^{KS} = -\epsilon_i^{KS} \quad BE_i^{G_0W_0} = -\epsilon_i^{G_0W_0}.
\]

In \(\Delta \)SCF, core-level excitations are computed as difference between the total energy for the neutral system \(E_{tot}(N) \) and ionized system \(E_{tot}(N-1) \),

\[
BE_i^{\Delta \text{SCF}} = E_{tot}(N-1) - E_{tot}(N),
\]

where \(N \) is the number of electrons. For the computation of \(E_{tot}(N-1) \), one electron is removed from state \(i \) and the occupation numbers are constrained accordingly during the SCF cycle.

Except for \(\Delta \)SCF, all calculations are performed with the FHI-aims program package.\(^{79,96,100}\) We have obtained the \(\Delta \)SCF results from the CP2K\(^ {101,102}\) software suite, where the all-electron KS equations are solved in the Gaussian and augmented plane waves (GAPW)\(^ {103–105}\) scheme. Both codes expand the molecular orbitals in local basis functions. In GAPW, however, Gaussian-type orbitals instead of NAOs are employed.

All molecular structures have been optimized at the DFT level using NAOs of tier 2 quality\(^ {96}\) to represent core and valence electrons. The Perdew-Burke-Ernzerhof (PBE)\(^ {106}\) functional is used to model the XC potential and dispersion interactions are accounted for by employing the Tkatchenko-Scheffler van der Waals correction\(^ {107}\).

BEs, self-energy matrix elements \(\Sigma(\omega) \) and spectral functions \(A(\omega) \) have been evaluated using the def2 quadruple-\(\zeta \) valence plus polarization (def2-QZVP)\(^ {108}\) basis sets. The def2-QZVP basis sets are all-electron basis sets of contracted Gaussian orbitals, which are treated numerically in FHI-aims to be compliant with the NAO scheme. For comparison to experiment, BEs obtained from \(G_0W_0 \) have been extrapolated to the complete basis set limit to account for the slow convergence with respect to basis set size previously reported in literature.\(^ {52,53,109–111}\) Following the procedure in Refs. 25 and 52, the extrapolated results are computed from the def2-TZVP and def2-QZVP results by a linear regression against the inverse of the total number of basis functions. def2-TZVP denotes here a Gaussian basis set of triple-\(\zeta \) quality.\(^ {108}\) BEs from KS eigenvalues and \(\Delta \)SCF are calculated using the PBE0\(^ {112,113}\) hybrid functional. For \(G_0W_0 \), we utilize the PBE-based hybrid (PBEh)\(^ {114}\) functionals with an adjustable fraction \(\alpha \) of HF exchange for the underlying DFT calculation. In PBEh(\(\alpha \)), the XC energy \(E_{xc} \) is given by

\[
E_{xc} = \alpha E_{x}^{HF} + (1 - \alpha) E_{xc}^{PBE} + E_{xc}^{PBE}, \quad \alpha \in [0, 1],
\]

where \(E_{x}^{HF} \) denotes the HF exchange energy. \(E_{xc}^{PBE} \) and \(E_{xc}^{PBE} \) are the PBE exchange and correlation energy, respectively. For the evaluation of \(\{ BE_i^{G_0W_0} \} \), we set \(\alpha = 0.5 \), which is discussed in Section 8.3.

We calculate \(\{ BE_i^{G_0W_0} \} \) and the spectral functions \(A(\omega) \) with our CD approach. We perform AC-G0W0 and CD-G0W0 cal-
Results and Discussion

8.1 Broadening Parameter η

The CD-G_0W_0 method contains the convergence parameter η, see Equations (33–37). The self-energy is broadened with increasing η, which eventually affects the QP solutions. This is demonstrated in Figure 4(a), where the convergence of the BE of the O1s state of H$_2$O with respect to η is displayed. Errors larger than 3 eV are observed for $\eta > 0.5$ a.u. However, the BE converges quickly with η. For $\eta = 0.001$ a.u., the error is smaller than 10^{-4} eV. We set this value as default for the computation of BEs to ensure numerical stability.

The complex parameter $i\eta$ enters the residue term R_n^c in Equation (34) and gives rise to a non-zero imaginary part of the self-energy $\text{Im} \Sigma_n$ for $\eta \neq 0$. The main contribution to $\text{Im} \Sigma_n$ stems from R_n^c. However, $i\eta$ is also present in the integral term I_n^c, i.e., in the denominator of Equation (35) and in $\Pi(i\omega)$, see Equation (31). A minor contribution to $\text{Im} \Sigma_n$ is thus also expected from I_n^c which has been omitted in previous descriptions of the CD method. This is a fair approximation if only $\text{Re} \Sigma_n^c$ is needed, but neglecting $i\eta$ in I_n^c results in a physical incorrect behavior of the imaginary part. We can easily rationalized this by considering the situation for frequencies ω within the band gap, where $\epsilon_{\text{HOMO}} < \omega < \epsilon_{\text{LUMO}}$. In the band gap, no poles enter the contour and the residue term vanishes. If I_n^c has only a real part, $\text{Im} \Sigma_n^c$ would be zero. A sudden discontinuity or ‘step’ in $\text{Im} \Sigma_n^c$ occurs then for $\omega = \epsilon_{\text{HOMO}}$ and $\omega = \epsilon_{\text{LUMO}}$. In fact, such unphysical discontinuities are expected for all frequencies $\omega \neq \epsilon_n$. This is demonstrated in Figure 4(b), where the matrix elements $\text{Im} \Sigma_n^{1s}$ are presented for frequencies in the core region. A discontinuity is observed at $\omega = -510.35$ eV, which corresponds to the first KS eigenvalue ϵ_1. The imaginary part of Σ_n becomes smooth when taking the imaginary part of I_n^c into account. This can be explained as follows. Both terms R_n^c and I_n^c have a discontinuity at ϵ_1, which exactly cancels when subtracting I_n^c from R_n^c, such that $\Sigma_n^c = R_n^c - I_n^c$ is smooth, see Figure S1 in the Supporting Information (SI).

If the imaginary part of I_n^c is neglected, the discontinuities in $\text{Im} \Sigma_n^c$ propagate to the spectral function, see Figure S2 (SI). These ‘steps’ are hardly visible for small η values, but become very distinct with increasing η. Including $i\eta$ in I_n^c is important when analyzing the spectral function, e.g., integrating the QP peaks. However, it has no measurable effect on the real part $\text{Re} \Sigma_n$. We found that a larger grid is required for the numerical integration of the complex integrand. Since the computation of $W_n^c(i\omega)$ is a time-consuming step, we do not include $i\eta$ in I_n^c if only BEs are calculated.
The precise calculation of the self-energy is essential to obtain correct QP energies. In Figure 5, we compare the real self-energy matrix elements $\text{Re} \Sigma_c(\omega) = \langle n | \text{Re} \Sigma(\omega) | n \rangle$ for the (a) HOMO and (b) oxygen 1s orbital comparing CD and AC. For the latter, the Padé model with 128 parameters has been used. The Padé approximant with 1024 parameters represents the self-energy even worse. The error of the corresponding QP solution increases to 20 eV. We can thus conclude that the fitting procedure employed in the AC approach is extremely unstable and unreliable for core states.

To validate the accuracy of the CD approach, we compare our self-energy matrix elements to results from the fully-analytic method implemented in Turbomole. The fully-analytic method is based on the spectral representation of the reducible response function $\chi(\mathbf{r}, \mathbf{r}', \omega)$, which is explicitly calculated. The screened Coulomb interaction W is then constructed from $\chi(\mathbf{r}, \mathbf{r}', \omega)$ and the self-energy is computed by analytically integrating over G and W. The fully-analytic method is also a real-frequency approach, which is numerically stable for any frequency ω of $\Sigma(\omega)$ and contains except for the broadening η and the basis set no further parameters. Figure 5(d) shows that the CD and fully-analytic approach yield exactly the same self-energy for the O1s state. The accuracy of our implementation is further confirmed by Figure S3 (SI), where the N1s matrix elements of acetonitrile are displayed. Also in this case we find a perfect agreement. This demonstrates that the CD parameters, e.g. for the numerical integration of $I_{n''}$, are very well under control.

Considering the breakdown of AC-G_0W_0 in the core region, we also expect plasmon-pole models, which represent W by a few poles, to face similar numerical problems. Even though accurate core-level BEs have been obtained for silicon and diamond with a plasmon-pole approximation, the reported deviation from experiment is significantly larger for SiC. This might indicate that numerically precise methods to calculate the self-energy are also required for solid state systems.
8.3 Identification of the QP Energy

The graphical solution of the QP equation in Figures 5(b) and (c) shows many intersections with the self-energy. Each of these intersections is a valid solution and the identification of the QP solution is thus not straightforward for core states. When using PBE orbital energies and MOs as starting point, the iterative solution of the QP equation does not converge for any of the systems we studied. The convergence can be enforced by strongly broadening the self-energy. However, this leads to errors of several eV as discussed in Section 8.1. Circumventing the convergence problem by linearizing the QP equations is not a good strategy either. For the HOMO levels, the linearized version yields very similar QP energies. However, we found deviations of more than 5 eV from the accurate solution for core-levels. The large deviations of GW core-levels from experimental XPS data reported in Ref. 25 must be partly attributed to the linearization of the QP equation, but also to the choice of the starting point discussed below.

A unique QP solution can be obtained by increasing the amount of exact exchange in the DFT functional. Previous studies for valence excitations showed that PBEh functionals with exact exchange fractions of $\alpha = 0.35^{115}$ or $\alpha = 0.40^{73}$ are optimal starting points for the perturbative G_0W_0 approach. We employ the same strategy for core states. Using a hybrid functional as starting point, the complicated structure of the self-energy remains, but the pole structure is shifted to deeper energies and is better separated from the region, where the QP equations are solved. Indeed, for PBEh($\alpha = 0.5$) we obtain a clear solution which is confirmed by the distinct QP peak in the spectral function at -539.30 eV, see Figure 6. This is also reflected in the iterative QP solution, which now converges quickly within 10-15 steps. The number of electrons under the QP peak integrates to 1.43, which adds up to the expected number of 2 when integrating also the satellite spectrum at higher frequencies.

Increasing the amount of exact exchange in the underlying DFT calculation shifts the QP peak to more negative frequencies. These shifts are for core states in the range of a few eV when increasing the α value in PBEh from 0 to 1. A careful optimization of the starting point is thus necessary. For valence states, the α values have been successfully optimized by minimizing of the deviation from the straight-line error (DSLE), i.e. the spurious non-linearity of the total energy as function of fractional particle numbers. This procedure can not be transferred to core states because minimizing the DSLE requires a G_0W_0 calculation of the $N-1$ system. Such a calculation is well-defined when removing an electron from the HOMO, but not for core holes. This is evident from Equation (7). The irreducible polarizability $\chi_0(r, r', \omega)$ contains separate sums over occupied and virtual states, which are no longer defined when the ordering of occupied and virtual states is not consecutive. The strategy for optimizing the starting point for core states requires a detailed assessment of the specific physics at deep energies. This will be presented elsewhere including a discussion of the satellite spectrum visible in Figure 6. Our first, exploratory study revealed that α values around 0.5 are optimal for core excitations and we use this value in the following.

8.4 Core-Level Binding Energies

Core-level BEs for small molecules of less than 10 atoms are presented in the upper part of Table 1. We focus in the present work on C1s, N1s and O1s excitations, for which relativistic effects can be neglected. The molecules have been chosen such that different functional groups are included to represent different chemical environments. Note that absolute core-level BEs are discussed in the following.

The BEs obtained from the KS eigenvalues deviate drastically from experiment by up to 17 eV. Large deviations are observed for all three excitation types C1s, N1s and O1s, which is due to a wrong description of initial and the neglect of final state effects as discussed in length in literature.3, 25, 29 The absolute BEs obtained from ΔSCF compare much better to experiment with deviations of 0.5-1.0 eV. The ΔSCF values depend significantly on the chosen functional. The PBE0 functional employed in this study is among the functionals that yield the best results in comparison to experiment.29 However, the error is still too large to properly support the absolute peak assignments in experiment. We obtain the best results with our CD-G_0W_0 method. The deviations
Table 1: Core-level BEs as obtained from KS eigenvalues, \(\Delta\text{SCF}\) and \(\text{CD-G}_0\text{W}_0\) in eV and deviation from experiment \(\Delta_{\text{exp}} = |\text{BE}_{\text{theory}} - \text{BE}_{\text{exp}}|\). The KS and \(\Delta\text{SCF}\) values have been computed at the PBE0 level. For \(\text{CD-G}_0\text{W}_0\), PBEh(\(\alpha = 0.5\)) is used as starting point and the BEs have been extrapolated as described in Section 7. The labels for coronene and phenanthrene are given in Figure 3.

<table>
<thead>
<tr>
<th>core-level</th>
<th>molecule</th>
<th>(\text{KS})</th>
<th>(\Delta\text{SCF})</th>
<th>(\text{CD-G}_0\text{W}_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BE (eV)</td>
<td>(\Delta_{\text{exp}})</td>
<td>BE (eV)</td>
</tr>
<tr>
<td>C1s</td>
<td>CH(_4)</td>
<td>277.69</td>
<td>13.16</td>
<td>290.29</td>
</tr>
<tr>
<td></td>
<td>(CH(_3))(_2)O</td>
<td>279.32</td>
<td>12.85</td>
<td>291.64</td>
</tr>
<tr>
<td></td>
<td>HCN</td>
<td>279.83</td>
<td>13.7</td>
<td>292.99</td>
</tr>
<tr>
<td>N1s</td>
<td>NH(_3)</td>
<td>390.82</td>
<td>14.70</td>
<td>404.90</td>
</tr>
<tr>
<td></td>
<td>HCN</td>
<td>392.20</td>
<td>14.6</td>
<td>406.12</td>
</tr>
<tr>
<td>O1s</td>
<td>H(_2)O</td>
<td>522.74</td>
<td>17.0</td>
<td>538.84</td>
</tr>
<tr>
<td></td>
<td>CH(_2)OH</td>
<td>522.70</td>
<td>16.18</td>
<td>538.06</td>
</tr>
<tr>
<td></td>
<td>(CH(_3))(_2)O</td>
<td>522.82</td>
<td>15.54</td>
<td>537.59</td>
</tr>
</tbody>
</table>

are smaller than 0.3 eV for C1s and N1s excitations. Promising results are also found for O1s with deviations smaller than 0.6 eV.

The BEs of large polycyclic molecules with up to 36 atoms are shown in the lower part of Table 1. It is to note that the \(\Delta\text{SCF}\) values for the molecules with large delocalized \(\pi\)-systems are difficult to compute. The \(N = 1\) calculations are prone to variational collapses and converging the SCF is a cumbersome task. In addition, the deviation from experiment (1.4 eV) is significantly larger than for the small molecules. \(\text{CD-G}_0\text{W}_0\) yields also in this case results that agree favorably with experiment with deviations of less than 0.5 eV.

A comprehensive assessment of the accuracy of the \(\text{G}_0\text{W}_0\) method for core-levels is beyond the scope of this work. Benchmark studies with more than 60 core excitations will be presented separately.

8.5 Computational Efficiency of CD-G\(_0\)W\(_0\)

The computational cost, scaling and parallel performance of our \(\text{CD-G}_0\text{W}_0\) implementation is evaluated using acenes with 1-13 and 15 rings as representative benchmark systems. Examples of these linearly fused benzene structures are shown in Figure 7(a). The execution time with respect to system size is reported in Figure 7(b) at the def2-QZVP level including the time spent for the DFT calculation. The computationally most expensive steps are the computation of the 3c integrals (\(\mu\nu|P\)) and the auxiliary polarization matrices \(\Pi(i\omega)\) and \(\Pi(|\epsilon_m - \omega|)\).

The evaluation of \(\mu\nu|P\) over NAOs is the dominating step for small systems up to 42 atoms (\(\approx 2000\) basis functions). The computational cost scales cubically for small systems, but shows an asymptotic quadratic behavior with increasing system size due the sparsity in \(\mu/\nu\). This reflects in a measured exponent of 2.58. The computation of \(\Pi_i(i\omega)\) is the key step for the computation of the integral term \(I_{\nu}^\alpha\) and requires \(N_{\text{occ}}N_{\text{occ}}N_{\text{virt}}N_{\text{aux}}^2\) operations, where \(N_{\text{occ}}\) is the number of grid points for the integration grid, \(N_{\text{occ}}\) is the number of occupied and \(N_{\text{virt}}\) the number of virtual states. \(N_{\text{aux}}\) denotes the number of auxiliary functions. Since the size \(N_{\omega}\) of the integration grid is independent of the system size, this step scales with \(O(N^4)\) which matches the measured exponent. The scaling of \(\Pi_i(i\omega)\) depends on the number of residues \(N_{\text{res}}\) and thus on the excitation type. The number of operations sums up to \(N_{\text{res}}N_{\text{occ}}N_{\text{virt}}N_{\text{aux}}^2\). For the HOMO, \(N_{\text{res}}\) is typically one and independent of the system size. However, for core excitations \(N_{\text{res}}\) equals approximately \(N_{\text{occ}}\). Consequently, the number of operations is \(O(N^4)\) for valence excitations and increases to \(O(N^5)\) for core states, which is one order lower compared to the fully-analytic frequency treatment with \(O(N^6)\) complexity. The predicted \(O(N^5)\) behavior coincides with the measured exponent of 4.96 for the 1s excitation of the deepest core-level. The computation of
Performance of the CD-$G_0 W_0$ implementation using (a) linear acene structures of 1-13 and 15 rings. The largest system corresponds to 96 atoms. (b) Execution times with respect to system size. Dashed lines represent two-parameter least-squares fits of prefactor and exponent. The latter is reported in the legend. (c) Scaling test with respect to number of processes. The gray dashed lines indicate the ideal scaling behavior. Execution times are measured at the def2-QZVP level on a Cray XC40 machine.

Figure 7: Performance of the CD-$G_0 W_0$ implementation using (a) linear acene structures of 1-13 and 15 rings. The largest system corresponds to 96 atoms. (b) Execution times with respect to system size. Dashed lines represent two-parameter least-squares fits of prefactor and exponent. The latter is reported in the legend. (c) Scaling test with respect to number of processes. The gray dashed lines indicate the ideal scaling behavior. Execution times are measured at the def2-QZVP level on a Cray XC40 machine.

$\Pi_{PQ}(\epsilon_m - \omega)$ starts to dominate the calculation for the system with 2250 basis functions (48 atoms).

The parallel performance of our CD-$G_0 W_0$ implementation is assessed for acenes with 1, 3, 7, and 13 rings in Figure 7(c). The largest system scales well up to 1536 processes with a parallel efficiency of approximately 70%. With the current implementation, the core-level calculations are feasible for system sizes up to 4500 basis functions or approximately 100 atoms.

For valence states, the scaling of CD-$G_0 W_0$ with respect to system size is the same as for RI-V based AC-$G_0 W_0$ implementations, albeit with a slightly larger prefactor. This is due to the fact that $\Pi_{PQ}(\epsilon_m - \omega)$ has to be evaluated for one or a few residues at each step of the iterative QP scheme. CD-$G_0 W_0$ is the designated method for core and semi-core states, but might also be routinely applied with little increase in computational cost for valence excitations.

9 Conclusions

An efficient, scalable and numerically accurate $G_0 W_0$ method has been developed for the computation of core excitations. The self-energy Σ is calculated for the full-frequency range on the real axis using the CD technique. Access to the core region is gained by working in a local basis of NAOs in an all-electron set-up. We combine our scheme with the RI-V approximation to enable an efficient calculation of the 4c-ERIs. We have shown that the self-energy has a complicated structure with many poles for molecular 1s core states. Our CD-$G_0 W_0$ method computes the self-energy accurately, which is confirmed by comparing to a fully-analytic approach. Common $G_0 W_0$ implementations that rely on analytical continuation clearly fail to reproduce the correct frequency dependence of the self-energy for core-levels.

Our exploratory studies demonstrate that including a fraction of exact exchange in the underlying DFT calculation is crucial to obtain a distinct QP solution. The PBEh ($\alpha = 0.5$) functional yields a clear QP peak in the spectral function and has been used to study absolute core-level BEs of small gas-phase molecules. The BEs from CD-$G_0 W_0$ compare favorably to experiment with an error of mostly less than 0.5 eV and are -in terms of absolute positions- closer to experiment than the DFT-ΔSCF values. Our method reproduces also core-level BEs of large polycyclic molecules within the same error range. The CD-$G_0 W_0$ algorithm is computationally efficient and well parallelized. The current implementation enables core-level calculations for systems up to approximately 100 atoms.

The accuracy of $G_0 W_0$ for core states will be more thoroughly assessed for a large benchmark set. However, the present study indicates that the GW approach has the potential to become an important computational tool to support the absolute peak assignment in experimental XPS spectra which is already cumbersome for molecules such as phenanthrene and coronene. In addition, it yields interesting insights in the physics and capabilities of GW in the core region. This includes starting point effects as well as a further investigation of the obtained satellite spectrum which might indicate shake-up and shake-down processes. Most importantly, it paves the way for the accurate calculation of core excitations of condensed matter systems, for which ΔSCF approaches cannot
be directly applied. Furthermore, the current implementation is a perfect starting point for embedding schemes or fully periodic implementations.

Acknowledgement We thank the CSC - IT Center for Science for providing computational resources. Calculations were also enabled by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11. This work was supported by the Academy of Finland through its Centre of Excellence Programme under Project No. P2ZHP2 168444, and J. Wilhelm acknowledges financial support by the Swiss National Science Foundation (SNF), Project No. 284621. D. Golze acknowledges financial support by the NCCR MARVEL, funded by the SNF.

Supporting Information Available: Plot of the residue term R_n and the integral term I_n for H$_2$O, Figure S1. Spectral function of H$_2$O with and without $i\eta$ in the integral term I_n, Figure S2. Self-energy matrix elements for acetonitrile comparing FHI-aims and Turbomole, Figure S3. This material is available free of charge via the Internet at http://pubs.acs.org/.

References

