ABSTRACT

Emotional stimuli processing during childhood helps us to detect salient cues in our environment and prepares us for our social life. In early childhood, the emotional valences of auditory and visual input are salient and relevant cues of social aspects of the environment, and it is of special interest to understand how exactly the processing of emotional stimuli develops. Near-infrared spectroscopy (NIRS) is a non-invasive neuroimaging tool that has proven valuable in studying emotional processing in children. After conducting a systematic search of PubMed, Web of Science, and Embase databases, we examined 50 NIRS studies performed to study emotional stimuli processing in children in the first 2 years of age. We found that the majority of these studies are done in infants, and the most commonly used stimuli are visual and auditory. Many of the reviewed studies suggest the involvement of bilateral temporal areas in emotional processing of visual and auditory stimuli. It is unclear which neural activation patterns reflect maturation and at what age the emotional encoding reaches those typically seen in adults. Our review provides an overview of the database on emotional processing in children up to 2 years of age. Furthermore, it demonstrates the need to include the less-studied age range of 1 to 2 years, and suggests the use of combined audio-visual stimuli and longitudinal studies for future research on emotional processing in children. Thus, NIRS might be a vital tool to study the associations between the early pattern of neural responses and socioemotional development later in life.

Keywords: NIRS, Near-infrared spectroscopy, emotion, brain.

Introduction

Emotions direct our attention and motivate behavior and can be activated by internal or external stimuli. In addition to the primary sensory areas such as the occipital cortex and the auditory cortex, key brain areas involved in processing of emotional stimuli in adults include bilateral cortical structures, such as the orbitofrontal cortex, cingulate cortex, inferior parietal cortex, temporal cortex, amygdala and (para) hippocampus, and the prefrontal cortex. Additionally, key subcortical structures involved in the processing of emotional stimuli include the thalamus, hypothalamus, fornix, mammillary bodies, olfactory bulbs, hypothalamus, and basal ganglia. Emotional processing thus engages wide brain circuits in the adult brain but how they emerge during development is far from established.

Brain volume increases rapidly during the early years of life, reaching almost 75% of adult brain volume during the first 2 years of age. This process is coupled with rapid white matter development, mainly observed first through tissue growth and the progression of myelination that continues throughout childhood. The core of emotional brain circuits are likely formed during the early years of life, and this time of neuronal growth enables the crucial first steps of neural development that prepare an individual for social life. These processes are influenced by prenatal development and genetic factors as well as the postnatal environment. The emotion processing network is crucial in determining the significance of external stimuli and providing cues on how to respond in social situations, which has far-reaching implications for later development and health.

Emotional processing has been studied with various functional neuroimaging modalities such as electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and near-infrared spectroscopy (NIRS). NIRS is an imaging method that uses the absorption of red and near-infrared light (630 to 950 nm) by specific chromophores to measure the hemodynamics of a tissue of interest. The measurements done with NIRS are based on neurovascular coupling. In response to a local increase in

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2018 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging
neuronal activation, a temporally and spatially coincident increase in oxygen metabolism is thought to exist, causing an initial decrease in oxygenated hemoglobin (HbO$_2$) and an increase in deoxygenated hemoglobin (HbR). Following this, arterial dilation ensues as well as a local increase in cerebral blood flow (CBF) and cerebral blood volume (CBV). As oxygen-rich arterial blood flows into the region, total hemoglobin (HbT) and HbO$_2$ concentrations typically increase and HbR decreases within several seconds. Changes in the concentration of HbO$_2$ and HbR result in changes in the intensity of the reflected NIR light. Thus, HbO$_2$, HbR, and HbT are the most often used NIRS metrics (Fig 1).

At the practical level, during an NIRS measurement, the light is projected into the scalp at the source position, after which the photons migrate through the tissue in random trajectories due to multiple scattering and photons change their direction of propagation as a result of interacting with tissues. During absorption, the energy of a photon is absorbed by the tissue and converted into a small amount of thermal energy. After interacting with the tissue components in the vicinity of the NIR light source, the photons that are not absorbed in the process exit the tissue. Light detectors that are at a distance of a few centimeters from the source position detect part of this light. The surface of the scalp that is not directly under sources or detectors should be covered by black absorptive material to avoid influence from external light and to prevent direct transmission of light between source and detector.

NIRS does not require restriction of movements of the child and the mother can hold the child during the measurement (Fig 2), which is advantageous in pediatric neuroimaging. NIRS has a relatively good temporal resolution and most systems can measure several samples per second, which makes it possible to observe changes in the time course of the hemodynamic response as well as differences in response latency between brain regions (Fig 3). However, a few of the disadvantages of NIRS include a temporal delay in hemodynamic response, limited depth resolution, and interference from hair (that is more pronounced with participants having dark hair color). Table 1 provides a comparison of NIRS with fMRI, EEG, and MEG for studies in children.

In this paper, we report a critical review of current literature on emotional processing studies using NIRS in infants and children up to 2 years of age. We discuss the implications of these studies, methodological limitations, and future prospects of research on emotional processing using NIRS.

The Systematic Review (Methods)
We conducted a systematic search across the databases PUBMED, WEB of SCIENCE, and EMBASE (from inception
Fig 3. Schematic comparison of the temporal and spatial resolutions and requirement for mobility restriction in major brain imaging methods. NIRS = near-infrared spectroscopy; EEG = electroencephalography; fMRI = functional magnetic resonance imaging; MEG = magnetoencephalography.

through January 8, 2018) to identify all the NIRS studies using emotional stimuli as external sensory stimuli in infants and children up to 2 years of age. The search strategy combined the following medical subject headings (MeSH) terms and keywords: (NIRS OR fNIRS) AND (infants OR newborns OR children) AND (brain OR neuroimaging). This resulted in 708 articles in PUBMED, 699 articles in the WEB of SCIENCE, and 1,099 articles in EMBASE.

After screening for duplicates, the remaining studies (n = 836) were filtered by reading the titles and abstracts to search for the studies that addressed emotional processing using emotionally relevant sensory stimuli. The exclusion criteria were: (1) written in languages other than English; (2) carried out in nonhuman species; (3) subjects were adults or children older than 2 years of age; and (4) did not address emotional processing. This resulted in the exclusion of 758 articles. Additionally, we included articles that were identified from reference lists of the relevant articles (n = 22).

Next, we went through the full text of the 100 articles and specifically included only those publications that addressed emotional processing by using emotionally relevant sensory stimuli, as emotional responses can be induced by external sensory stimuli.16 Publications were excluded if they did not include original data (eg, reviews, commentaries) or if they were not published as a full-length article in a peer-reviewed journal (eg, abstracts for presentations, case reports). This resulted in 50 articles for this review. The selected articles were then reviewed in detail, and the relevant data were extracted, and the main findings were reported. Figure 4 shows the preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram for summarizing this review process.

We did not focus on experimental design considerations in between the studies, which has been covered elsewhere.17 After conducting the review, we planned to carry out a meta-analysis on each of the topics, but we found out that it was not plausible
due to the differences in the equipment used, measurement areas, and experimental design.

Overview of NIRS Studies on Emotional Processing in Children up to 2 Years of Age

Emotionally Relevant Visual Stimuli

Infants likely start to recognize the identity of a face, irrespective of its orientation, at a developmental period between 5 and 8 months of age. The right temporal cortex has been implicated in face detection during infancy. Left temporal cortical activation has also been reported for processing of face-like objects in 7- to 8-month-old infants. Kobayashi et al additionally reported a neural adaptation effect (observed by attenuation in brain responses) for the repeated measurement of the same face as compared to different faces in infancy. Furthermore, there appears to be an increased sensitivity toward adult faces in infancy. Right temporal areas are seen to be activated in infants in response to adult faces (and not infant faces).

The caretaker’s face is one of the most frequently occurring visual stimuli during infancy and thus most likely carries early social and emotional valence. Right frontotemporal cortex activation has been observed in 6-9-month-old infants in response to their mothers’ faces as compared to unknown faces. Their mothers’ faces (in contrast to unfamiliar faces) have been determined to cause left temporal activation in 7- to 8-month-old infants. Right frontal (most likely orbitofrontal cortex) activation has been noted in 7-month-old infants in response to smiling soundless videos of their mothers (as compared to neutral expression). Infants can discriminate between the smiles of their own mothers and the smiles of unfamiliar mothers. Medial prefrontal activation (around the anterior orbitofrontal cortex) has been observed in 9-13-month-old infants on viewing movies of their own mothers’ smiles (as compared to viewing unfamiliar mothers’ smiles). Thus, the frontal cortex likely plays a significant role in the recognition of social positive affect in infancy.

Happy faces are seen to cause activation in the left temporal areas (as compared to baseline), while angry faces seem to activate right temporal areas in 7- to 8-month-old infants. Bilateral temporal cortices have been implicated in the processing of social dynamic stimuli (as compared to nonsocial dynamic stimuli) in infants. Additionally, infant temperament traits appear to
modulate how infants respond to emotional visual stimuli. The right posterior temporal region activation has been reported by Kant et al in response to social compared to the nonsocial dynamic stimuli in 5-month-old infants. Furthermore, this differential activation was smaller in infants who show higher negative affect. These results suggest that decreased cortical sensitivity to social stimuli in infants showing high negative affect may be an early biomarker for later difficulties in social interaction. Increased left prefrontal cortex activation has been reported in response to happy faces in 7-month-old infants with low negative emotionality temperament (as compared to infants with high negative emotionality temperament). As temperament is one of the earliest observable features of personality and among the major determinants of interaction between the children and their caretakers, early brain responses to emotional cues in the environment may be interesting biomarkers for later development, which makes studies combining these metrics especially valuable.

Thus, bilateral temporal cortices and the frontal cortex are implicated in processing emotional visual stimuli in children up to 2 years of age. However, the probe position limits the brain region that can be studied, and the neural circuits of visual recognition are still developing in infancy. It is evident that the developmental pathways and possible shifts in lateralization patterns can only be delineated in future longitudinal studies. Table 2 provides a detailed summary of the reviewed NIRS studies on visual emotional processing in children up to 2 years of age.

Emotionally Relevant Auditory Stimuli

Processing of emotional auditory cues seems to be already present at birth. Emotional prosody refers to communicating feelings using different elements of speech such as syllable length, loudness, and voice pitch. Zhang et al reported right temporal cortex (mainly the middle temporal gyrus and superior temporal gyrus) activation in response to emotional, relative to neutral, prosody in neonates as early as 2–8 days after birth. Furthermore, the researchers observed a right parietal area (approximately located in the supramarginal gyrus) that showed a heightened sensitivity to fearful, relative to happy and neutral, prosody.

Native language is usually the predominant way in which caregivers communicate with infants. Sato et al reported left temporal-parietal activation in response to forward maternal language in contrast to backward maternal language or forward speech in a foreign language. Minagawa-Kawai et al observed left-lateralized responses to native speech (as compared to non-native speech) in 4-month-old infants. Furthermore, they observed significant activation in response to emotional voices, i.e., human vocalizations with no linguistic content, either with a positive (eg, admiration and laughing) or negative emotional valence (eg, crying and sigh) in right temporal areas of infants. Human voice (as compared to nonvoice sounds) causes activation in the voice-selective regions of the bilateral temporal cortices in infants between 4 and 7 months of age.

Infant-directed speech (IDS) might be one of the first sounds to elicit emotional responses in infants. Bilateral frontotemporal, frontal, temporal, and temporoparietal regions are seen to be activated by IDS (as compared to reverse speech or silence) in infants. IDSs from infants’ own mothers (rather than from unfamiliar mothers) are seen to cause frontal activation in infants. Dorsal medial prefrontal cortex activation has been observed in 6-month-old infants in response to hearing their own names (as compared to other names), especially when spoken by their mother, as compared to a stranger’s voice. While the infants’ mothers’ voices activated the left frontal area (more than right), their female nurse’s voice activated the right frontal area (more than left). Thus, talker familiarity seems to affect speech processing and activates putative future brain regions of emotional processing in infants.

Emotions differentially modulate voice processing in infants. Grossmann et al reported activation in the bilateral superior temporal cortex in response to human voices as compared to nonvocal sounds in 7-month-old (but not 4-month-old infants), thereby, suggesting that voice-sensitive brain encoding appears between 4 and 7 months of age. Furthermore, hearing emotional prosody words (happy and angry), but not neutral prosody, caused activation in the right temporal cortex, and hearing angry prosody caused more activation in the right temporal cortex than happy prosody. Such a neural mechanism is thought to prioritize threat-related emotional stimuli and act as a protective mechanism. Listening to happy speech (but not angry or neutral) caused activation in the right inferior frontal cortex of 7-month-old infants. Thus, right temporal cortex seems to be involved in processing angry and happy (angry > happy) words, while right inferior frontal cortex is implicated in processing happy words.

Overall, bilateral frontotemporal, frontal, temporal, temporoparietal, and parietal regions have been implicated in processing emotional auditory stimuli in children up to 2 years of age. Table 3 provides a detailed summary of the reviewed NIRS studies on auditory emotional processing in children up to 2 years of age.

Emotionally Relevant Audiovisual Stimuli

Audiovisual emotional stimuli expectedly engage brain regions implicated in studies using either auditory or visual emotional stimuli. Occipital and bilateral temporal activation has been reported by Bortfeld et al in response to audiovisual stimuli (IDS with positive affective tone and animated objects). Whereas occipital activation has been noted in response to visual-only stimuli (animated objects such as spirals, circles, and rectangles) in infants. Using the same stimuli, greater activation was observed in the left temporal cortex (as compared to the right temporal cortex) in response to audiovisual stimuli as compared to visual-only stimuli in infants. Dorosmedial prefrontal cortex activation has been observed in response to the socially interactive game, “peek-a-boo,” in which both visual (direct gaze) and auditory (IDS stimuli) were presented with an adult’s direct gaze compared to an averted gaze. These studies highlight the role of bilateral temporal cortices, prefrontal cortex, and occipital areas in processing audiovisual stimuli in children.

Cortical responses to social cues were reported by Lloyd-Fox et al across participants ranging in age from newborn to toddlerhood. The researchers reported that infants at 0–2 months of age exhibited nonsocial auditory selectivity, an effect that persists until 4–8 months when there is a transition to greater social stimulus selectivity. Thereafter, 9- to 24-months of age infants showed socially selective brain responses to both the visual and auditory stimuli. Fava et al reported that younger infants (3-6-month old) showed a greater overall response to...
Table 2. Summary of NIRS Studies Done in Infants and Children up to the Age of 2 Years to Study Visual Emotional Processing

<table>
<thead>
<tr>
<th>Year, Author, Journal</th>
<th>Age of Participants</th>
<th>Number of Participants</th>
<th>Stimuli</th>
<th>Comparison/Contrast</th>
<th>Probe Location</th>
<th>Activated Brain Area (Increase in HbO2 and/or HbT) Decrease in HbR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018, Kant et al, Developmental Cognitive Neuroscience</td>
<td>5-8 m</td>
<td>27</td>
<td>Videos displaying either hand and facial movements of female actors (social dynamic condition)</td>
<td>Videos of moving toys and machinery (nonsocial dynamic condition)</td>
<td>Bilateral temporal cortices</td>
<td>Right posterior-temporal region in the social compared to the nonsocial condition. Furthermore, this differential activation was smaller in infants showing higher negative effect</td>
</tr>
<tr>
<td>2017, Powell et al, Developmental Science</td>
<td>3-12 m</td>
<td>16</td>
<td>Face and scene video clips</td>
<td>Scrambled scene video clips</td>
<td>Junction of the temporal, occipital, and parietal lobes in right hemisphere</td>
<td>Cortical regions with preferential responses to faces versus scenes, and to scenes versus faces</td>
</tr>
<tr>
<td>2017, Lloyd-Fox et al, European Journal of Neuroscience</td>
<td>4-6 m</td>
<td>36</td>
<td>Social videos of people (ie, peek-a-boo)</td>
<td>Nonsocial images (vehicles)</td>
<td>Frontal and temporal areas</td>
<td>At 4-6 months, infants who went on to develop autism spectrum disorder at 3 years evidenced-reduced activation to visual social stimuli relative to low-risk infants across inferior frontal and posterior temporal regions</td>
</tr>
<tr>
<td>2016, Kobayashi et al, Developmental Science</td>
<td>3 and 9 m</td>
<td>24 (3 m) and 24 (9 m)</td>
<td>Adult neutral faces</td>
<td>Infant neutral faces</td>
<td>Bilateral temporal areas</td>
<td>Right temporal areas in response to adult faces and not infant faces in 9 m (and not 3 m)</td>
</tr>
<tr>
<td>2015, Ravicz et al, Frontiers in Psychology</td>
<td>7 m</td>
<td>24</td>
<td>Happy, fearful, or angry female faces</td>
<td>Baseline</td>
<td>Prefrontal cortex</td>
<td>Left prefrontal cortex in infants with low negative emotionality temperament</td>
</tr>
<tr>
<td>2014, Kobayashi et al, BMC Neuroscience</td>
<td>5-6 m and 7-8 m</td>
<td>12 (5-6 m) and 12 (7-8 m)</td>
<td>Different neutral faces</td>
<td>Identical neutral faces</td>
<td>Bilateral temporal areas</td>
<td>Bilateral temporal areas in response to different faces only in 7-8 m (and not 5-6 m) Activation over bilateral posterior temporal cortex selective to a dynamic face stimulus, but no activation in response to a moving human arm</td>
</tr>
<tr>
<td>2013, Farroni et al, Scientific Reports</td>
<td>1-5 d</td>
<td>17</td>
<td>Dynamic human action videos</td>
<td>Mechanical action videos</td>
<td>Bilateral temporal areas</td>
<td>1. Right frontal cortex in response to smiling as compared to neutral expression 2. Both frontal and lateral regions in response to mother’s face over stranger’s face across in infants with high risk for autism spectrum disorders</td>
</tr>
<tr>
<td>2013, Fox et al, Frontiers in Human Neuroscience</td>
<td>7 m</td>
<td>10 (High-risk autism) and 10 (Low-risk controls)</td>
<td>Soundless video recordings of infants’ mothers with smiling or neutral expression</td>
<td>Soundless video recordings of strangers with smiling or neutral expression</td>
<td>Frontal and right lateral portions of the head</td>
<td>Left temporal areas in response to upright Arcimboldo images only in 7-8 m (and not 5-6 m) Bilateral temporal areas in response to different faces as compared to same faces</td>
</tr>
<tr>
<td>2012, Kobayashi et al, Journal of Experimental Child Psychology</td>
<td>5-6 m and 7-8 m</td>
<td>24 (5-6 m) and 24 (7-8 m)</td>
<td>Upright Arcimboldo images</td>
<td>Inverted Arcimboldo images</td>
<td>Bilateral temporal areas</td>
<td></td>
</tr>
<tr>
<td>2012, Kobayashi et al, NeuroReport</td>
<td>5-8 m</td>
<td>15</td>
<td>Photographs of five female faces in frontal view with neutral expression</td>
<td>Photos of vegetables</td>
<td>Bilateral temporal areas</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Year, Author, Journal</th>
<th>Age of Participants</th>
<th>Number of Participants</th>
<th>Stimuli</th>
<th>Comparison/Contrast</th>
<th>Probe Location</th>
<th>Activated Brain Area (Increase in (\text{HbO}_2) and/or (\text{HbT}) Decrease in (\text{HbR}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011, Kobayashi et al, Frontiers in Human Neuroscience</td>
<td>5-6 m and 7-8 m</td>
<td>12 (5-6 m) and 12 (7-8 m)</td>
<td>Different faces, Photo images of either infant’s own mother’s face or unfamiliar female faces</td>
<td>Same faces and different objects, Images of vegetables</td>
<td>Bilateral temporal areas, Bilateral temporal cortices</td>
<td>Right temporal areas in response to different neutral faces 1. Right temporal cortex in response to mother’s face and unfamiliar faces (as compared to baseline) 2. Left temporal cortex activation only when the mother’s face was present</td>
</tr>
<tr>
<td>2011, Nakato et al, Early Human Development</td>
<td>7-8 m</td>
<td>15</td>
<td>Faces with happy, angry, and neutral expression, Images of vegetables</td>
<td></td>
<td>Bilateral temporal cortices</td>
<td>Left temporal areas in response to happy faces and right temporal areas in response to angry faces (as compared to baseline)</td>
</tr>
<tr>
<td>2011, Nakato et al, Neuroimage</td>
<td>6-7 m</td>
<td>12</td>
<td>Faces with happy, angry, and neutral expression, Images of vegetables</td>
<td></td>
<td>Bilateral temporal cortices</td>
<td></td>
</tr>
<tr>
<td>2010, Honda et al, Brain Research</td>
<td>7-8 m</td>
<td>13</td>
<td>Canonical, Scrambled faces</td>
<td></td>
<td>Bilateral temporal cortices</td>
<td>Right visual cortex in response to canonical faces (as compared to scrambled faces)</td>
</tr>
<tr>
<td>2009, Nakato et al, Human Brain Mapping</td>
<td>5 and 8 m</td>
<td>10 (5 m) and 10 (8 m)</td>
<td>Female faces with frontal and profile views, Images of vegetables</td>
<td></td>
<td>Bilateral temporal cortices</td>
<td>Right temporal areas in response to faces with frontal view in 5 m, whereas in 8 m right temporal areas in response to faces with both frontal and profile views</td>
</tr>
<tr>
<td>2009, Minagawa-Kawai et al, Cerebral Cortex</td>
<td>11 m</td>
<td>15</td>
<td>Video recordings of infants’ mothers with smiling and neutral expression, Video recordings of unfamiliar mothers with smiling and neutral expression</td>
<td></td>
<td>Prefrontal cortex</td>
<td>Medial prefrontal areas around the anterior orbitofrontal cortex in response to viewing own mothers’ smiles as compared to unfamiliar mothers’ smiles</td>
</tr>
<tr>
<td>2009, Lloyd-Fox et al, Child Development</td>
<td>5 m</td>
<td>36</td>
<td>Life-size social video clips of female actors who either moved their eyes left or right, their mouth in silent vowel movements, or performed hand games, Video clips of machine cogs and pistons and moving mechanical toys</td>
<td></td>
<td>Bilateral temporal lobes</td>
<td>Two posterior temporal sites bilaterally in response to dynamic social stimuli as compared to dynamic nonsocial stimuli</td>
</tr>
<tr>
<td>2008, Nakato et al, Journal of Vision</td>
<td>6-8 m</td>
<td>7</td>
<td>Images of mothers and unfamiliar faces, Images of vegetables</td>
<td></td>
<td>Bilateral temporal cortices</td>
<td>Right temporal areas in response to both mothers’ and unfamiliar faces as compared to vegetables</td>
</tr>
<tr>
<td>2008, Carlsson et al, Acta Paediatrica</td>
<td>6-9 m</td>
<td>19</td>
<td>Mothers’ faces, Unknown faces</td>
<td></td>
<td>Right frontotemporal cortex</td>
<td>Right frontotemporal cortex in response to mothers’ faces as compared to unknown faces</td>
</tr>
<tr>
<td>2007, Otsuka et al, Neuroimage</td>
<td>5-8 m</td>
<td>10</td>
<td>Upright neutral faces, Inverted neutral faces</td>
<td></td>
<td>Bilateral lateral areas</td>
<td>Right lateral areas in response to upright faces as compared to neutral faces</td>
</tr>
</tbody>
</table>

\(\text{HbO}_2\) = oxygenated hemoglobin; \(\text{HbR}\) = deoxygenated hemoglobin; \(\text{HbT}\) = total hemoglobin; m = months; d = days.
<table>
<thead>
<tr>
<th>Author, Year, Journal</th>
<th>Age of Participants</th>
<th>Number of Participants</th>
<th>Stimuli</th>
<th>Comparison / Contrast</th>
<th>Probe Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017, Zhang et al, Neuroscience Letters</td>
<td>Neonates (2-6 d)</td>
<td>18</td>
<td>Pseudosentences of fearful, angry, and happy prosodies</td>
<td>Neutral prosodies</td>
<td>Bilateral frontal and temporal cortices</td>
</tr>
<tr>
<td>2014, Imafuku et al, Neuroimage</td>
<td>6 m infants and their mothers</td>
<td>17 (6 m)</td>
<td>Audio recordings of the infants' first names and other names spoken by their mothers</td>
<td>Audio recordings of the infants' first names and other names spoken by strangers</td>
<td>Frontal cortical areas</td>
</tr>
<tr>
<td>2012, Naoi et al, Neuroimage</td>
<td>4-13 m</td>
<td>48</td>
<td>Infant-directed speech from own mothers</td>
<td>Infant-directed speech from unfamiliar mothers</td>
<td>Bilateral frontal and temporal areas</td>
</tr>
<tr>
<td>2012, Sato et al, Human Brain Mapping</td>
<td>Newborns</td>
<td>17</td>
<td>Forward speech in maternal language</td>
<td>Backward speech in maternal language and forward speech in foreign language</td>
<td>Whole-head</td>
</tr>
<tr>
<td>2011, Minagawa-Kawai et al, Cerebral Cortex</td>
<td>4 m</td>
<td>12</td>
<td>Native and nonnative speech sentences</td>
<td>Emotional voices, monkey calls, phase scrambled sounds</td>
<td>Bilateral temporal cortices</td>
</tr>
<tr>
<td>2010, Grossmann et al, Neuron</td>
<td>4 and 7 m (4 m) and 16 (7 m)</td>
<td>16</td>
<td>Human voices and words spoken with neutral, happy, or angry prosody</td>
<td>Nonvocal sounds</td>
<td>Bilateral temporal and inferior frontal cortices</td>
</tr>
<tr>
<td>2009, Saito et al, Early Human Development</td>
<td>Premature infants in the age from 18 to 81 days</td>
<td>26</td>
<td>Mother’s voice and female nurse’s voice</td>
<td>Computer-generated white noise</td>
<td>Bilateral frontal areas</td>
</tr>
<tr>
<td>2007, Saito et al, Archives of Disease in Childhood, Fetal and Neonatal Edition</td>
<td>2-9 d</td>
<td>20</td>
<td>Infant-directed speech (IDS)</td>
<td>Adult-directed speech (ADS)</td>
<td>Left and right sides of forehead over the eyebrows</td>
</tr>
</tbody>
</table>

(Continued)

Table 3. Continued

<table>
<thead>
<tr>
<th>Author, Year, Journal</th>
<th>Age of Participants</th>
<th>Number of Participants</th>
<th>Stimuli</th>
<th>Comparison / Contrast</th>
<th>Probe Location</th>
<th>Activated Brain Area (Increase in HbO₂ and/or HbT/Decrease in HbR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003, Peña et al. Proceedings of the National Academy of Sciences of the United States of America</td>
<td>2-5 d</td>
<td>12</td>
<td>Normal IDS</td>
<td>Reverse speech and silence</td>
<td>Bilateral temporal areas</td>
<td>Left temporal areas in response to normal speech than reverse speech or silence</td>
</tr>
</tbody>
</table>

HbO₂ = oxygenated hemoglobin; HbR: deoxygenated hemoglobin; HbT: total hemoglobin; m = months; d = days.

audiovisual infant-directed style speech in nonnative as compared to native speech in right anterior areas as compared to older infants (7-10-month old and 11-14-month old). This is possibly because they focus more on the spectral components of the talking face (prosodic components and emotional information) that typically engage right hemispheric processing.55

Right superior temporal sulcus—temporoparietal junction (STS-TPJ) activation has been reported in 12-14-month-old infants in response to live social stimuli (adults reading a picture book vs. singing nursery rhymes with gestures) as compared to baseline (adults showing infants a toy without eye contact or speech).56

Thus, it seems that STS-TPJ area is already specialized in children older than 1 year of age for processing social cues from the environment. Table 4 provides a detailed summary of the reviewed NIRS studies on emotional processing using audiovisual stimuli in children up to 2 years of age.

Emotionally Relevant Olfactory, Tactile, and Noxious Stimuli

Maternal breast milk odor has been noted to cause activation in the orbitofrontal cortex and left prefrontal cortex in newborns.57-60 Jönsson et al reported that touch with emotional valence (affective touch) causes temporal cortex and insular cortex activation as compared to nonaffective touch in 2-month-old infants.61 Affective touch is seen to cause activation in the bilateral anterior prefrontal cortices in 10-month-old infants, but not in 3- or 6-month-old infants.62 Interestingly, Miguel et al observed somatosensory activation to both affective and discriminative touch, but no activation to these stimuli in temporal regions/pSTS in 7-month-old infants. Therefore, the authors suggest that 7-month-old infants do not yet recruit socioemotional brain areas in response to affective touch.63

Somatosensory cortices activation has been noted in response to painful stimuli such as venipuncture or heel lance in infants.64-66 Although, some studies report no significant differences in cortical responses during painful stimuli in neonates by prior breastfeeding and sucrose administration.67,68 However, recent studies show that skin-to-skin contact with their mothers reduces contralateral somatosensory activation during venipuncture in premature infants. This implies that skin-to-skin contact is an easy method by which parents can also get more involved in their infants' care and pain management.69

Recent studies link aberrant emotional processing has been linked to developmental disorders with impairments in social interaction and communication such as autism spectrum disorder (ASD).70-72 Table 4 provides a detailed summary of the reviewed NIRS studies using the olfactory, tactile, and noxious stimuli for investigating emotional processing in children up to 2 years of age.

Methodological Considerations and Limitations

Most of the NIRS studies on emotional processing in children have been done in infants, and visual and auditory stimuli are the most commonly used stimuli. However, there are few studies done in children 1 to 2 years of age. This challenging age group can provide an interesting window to study how emotional circuits are formed in the early years of life and enable us to be social entities later on. Thus, there is a need for further studies on emotional processing in toddlers, and NIRS can prove to be an important tool in this pursuit. Future studies should consider the possibility of combining auditory and visual stimuli and the inclusion of the less-studied stimuli (such as touch, pain, and olfactory). This might prove fruitful because, in the real world, we are usually exposed to stimuli from two or more sensory modalities simultaneously.

However, like any other method, there are several limitations with NIRS as well. The NIRS signal integrates a volume of tissue that is not precisely known, given the uncertainties in the optical properties of the underlying tissue. Other difficulties with functional NIRS studies include the effect of background physiology,73 sleep state,75,76 and artifacts due to motion and hair (especially with dark hair). NIRS outcome is variable due to its sensitivity to movement, limited sensitivity to deeper areas of the brain, and difficulties in dealing with the effects of scalp circulation. Additionally, in terms of studying task-related responses, the background physiology can be considered an artifact, which makes the analysis more complicated. Due to thin scalps and relatively high partial volume of the brain in fNIRS measurements of infants and small children, the proportion of unwanted baseline physiology originating in nonbrain tissue in the signal is smaller than in the adult fNIRS studies.74 Motion artifacts are common in 3-12-month-old infants, but in newborns, the child typically sleeps most of the time and motion artifacts leading to data exclusion are less common.75

When doing task-related hemodynamic studies, the resting state hemodynamics can confound the results, and a few precautions are needed to get accurate task-related responses. First, the timing of the stimulus presentation should be randomized to avoid the subject anticipating the stimulus and to avoid possible phase-locking of the resting state hemodynamics to the stimulus presentation. Second, the number of repetitions of the stimulus should be large enough to obtain statistical significance for the difference between stimulus conditions.
Table 4. Summary of NIRS Studies Done in Infants and Children UP TO THE Age of 2 Years to Audiovisual, Tactile, Olfactory, and Noxious Processing

<table>
<thead>
<tr>
<th>Type of Stimuli</th>
<th>Author, Year, Journal</th>
<th>Age of Participants</th>
<th>Number of Participants</th>
<th>Stimuli</th>
<th>Comparison/Contrast</th>
<th>Probe Location</th>
<th>Activated Brain area (Increase in HbO₂ and/or HbT/Decrease in HbR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audiovisual</td>
<td>2018, Hakuno et al, Neurophotonics</td>
<td>12-14 m</td>
<td>30</td>
<td>Two social scenarios (i.e., reading a picture book vs. singing nursery rhymes with gestures)</td>
<td>Baseline (i.e., showing infants a toy without eye contact or speech)</td>
<td>Right temporal lobe</td>
<td>Right superior temporal sulcus-temporoparietal junction (STS-TPJ) in response to live social stimuli as compared to baseline</td>
</tr>
<tr>
<td></td>
<td>2017, Lloyd-Fox et al, Developmental Cognitive Neuroscience</td>
<td>0-2 m, 4-8 m, 9-13 m, 12-16 m, and 18-24 m</td>
<td>18 (0-2 m), 24 (4-8 m), 25 (9-13 m), 19 (12-16 m), 16 (18-24 m)</td>
<td>Social visual and auditory stimuli</td>
<td>Nonsocial visual and auditory stimuli</td>
<td>Right hemisphere</td>
<td>0-2 months of age infants exhibit nonsocial auditory selectivity, an effect that persists until 4-8 months when there is a transition to greater social stimulus selectivity. Socially selective brain responses from 9 to 24 months of life to both the visual and auditory stimuli</td>
</tr>
<tr>
<td></td>
<td>2015, Urakawa et al, Brain Topography</td>
<td>7 m</td>
<td>11</td>
<td>Visual (direct gaze) with auditory (recorded infant-directed speech) during social interactive play</td>
<td>Visual (averted gaze) with auditory (recorded infant-directed speech)</td>
<td>Prefrontal cortex</td>
<td>Dorsomedial prefrontal cortex in response to social play with a partner's direct gaze compared to an averted gaze</td>
</tr>
<tr>
<td></td>
<td>2014, Lloyd-Fox et al, Scientific Reports</td>
<td>4-8 m</td>
<td>24</td>
<td>Videos of adults performing social movements. Three conditions: visual-social (silent) auditory vocal and auditory nonvocal</td>
<td>Baseline</td>
<td>Right hemisphere</td>
<td>Posterior superior temporal and inferior frontal cortex to the visual and auditory social stimuli</td>
</tr>
<tr>
<td></td>
<td>2014, Fava et al, Brain Sciences</td>
<td>3-6 m, 7-10 m, and 11-14 m</td>
<td>35</td>
<td>Audiovisual infant-directed style speech in both native and unfamiliar language</td>
<td>Visual-only (animated shapes) and alternate speech type</td>
<td>Bilateral temporal cortices</td>
<td>1. 3-6 m infants produced a greater overall response in right anterior areas (nonnative > native) 2. 7-10 m infants showed significant activation in left posterior area (native > nonnative) 3. 11-14 m infants showed a left lateralized response in both anterior and posterior regions of left hemisphere (native > nonnative)</td>
</tr>
<tr>
<td></td>
<td>2009, Bortfeld et al, Developmental Neuropsychology</td>
<td>6-9 m</td>
<td>21</td>
<td>Speech coupled with visual stimuli (audiovisual condition)</td>
<td>Visual stimuli alone (visual only condition)</td>
<td>Bilateral temporal regions</td>
<td>Left temporal cortex in response to audiovisual as compared to only visual</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Type of Stimuli</th>
<th>Author, Year, Journal</th>
<th>Age of Participants</th>
<th>Number of Participants</th>
<th>Stimuli</th>
<th>Comparison/Contrast</th>
<th>Probe Location</th>
<th>Activated Brain area (Increase in HbO₂ and/or HbT/Decrease in HbR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactile</td>
<td>2018, Jonsson et al, Neuroimage</td>
<td>2 m</td>
<td>16</td>
<td>Slow stroking</td>
<td>Fast stroking</td>
<td>Left Temporal cortex</td>
<td>Left temporal cortex and insular cortex</td>
</tr>
<tr>
<td></td>
<td>2017, Miguel et al, Developmental Cognitive Neuroscience</td>
<td>7 m</td>
<td>35</td>
<td>Slow stroking</td>
<td>Fast stroking</td>
<td>Somatosensory and temporal cortex</td>
<td>Somatosensory cortex</td>
</tr>
<tr>
<td></td>
<td>2013, Kida and Shinohara, Neuroscience Letters</td>
<td>3, 6, and 10 m</td>
<td>32</td>
<td>Velvet touch</td>
<td>Wood</td>
<td>Bilateral prefrontal cortex</td>
<td>Bilateral anterior prefrontal cortex in 10 m (and not 3 and 6 m)</td>
</tr>
<tr>
<td>Olfactory</td>
<td>2017, Frie et al, Cerebral Cortex</td>
<td>Newborns</td>
<td>44</td>
<td>Odor from pure hand cleaner and adhesive remover (and after oral glucose administration)</td>
<td>Odor of water</td>
<td>Olfactory, frontal, and somatosensory cortices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014, Frie et al, Archives of Disease in Childhood</td>
<td>Newborns</td>
<td>14</td>
<td>Maternal breast odor (cotton cloth worn by mother in her bra preceding 12 hours)</td>
<td>Control smell (clean cotton cloth)</td>
<td>Orbitofrontal gyri, prefrontal, and primary somatosensory cortices</td>
<td>Bilateral Orbitofrontal gyri and left prefrontal cortex</td>
</tr>
<tr>
<td></td>
<td>2000, Bartocci et al, Pediatric Research</td>
<td>Neonates</td>
<td>23</td>
<td>Smell of mothers’ colostrum and vanilla</td>
<td>Smell of distilled water</td>
<td>Left anterior orbito-frontal gyri</td>
<td>Left orbitofrontal areas</td>
</tr>
<tr>
<td></td>
<td>2000, Aoyama et al, Early Human Development</td>
<td>Neonates</td>
<td>26</td>
<td>Maternal breast milk</td>
<td>Formula milk odor</td>
<td>Bilateral orbitofrontal regions</td>
<td>Orbitofrontal region in response to breast milk</td>
</tr>
<tr>
<td>Noxious</td>
<td>2016, Verriotis et al, eNeuro</td>
<td>Newborns</td>
<td>30</td>
<td>Heel lance</td>
<td>Innocuous tactile stimulation</td>
<td>Contralateral somatosensory cortex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016, Olsson et al, Acta Paediatrica</td>
<td>Neonates (26-35 weeks of gestation)</td>
<td>10</td>
<td>Venepuncture when infants were in skin-to-skin contact with their mothers</td>
<td>Venepuncture when infants were lying in their incubator or crib and sham procedure</td>
<td>Bilateral somatosensory cortices</td>
<td>Significantly smaller activation in the contralateral somatosensory cortex during venepuncture when the infants were held skin-to-skin with their mothers, compared to when they were laying in their crib or incubator</td>
</tr>
</tbody>
</table>

(Continued)
Moreover, several recent studies have shown certain problematic aspects with NIRS measurements, such as systemic artifacts57,59 or the differential pathlength factors (DPFs).80 DPF can be measured using time- or frequency-domain instrumentation, but continuous wave NIRS users have to rely on the literature values for this parameter. On the other hand, the unknown partial volume fraction of the activated tissue causes greater uncertainties in the response magnitude than the DPF, and some researchers choose to report their results in units of \(\mu \text{mm} \) instead of \(\mu \text{M} \). The systemic responses can be estimated if detectors with short source-detector separations are available and regressed out using, eg, superficial signal regression (SSR).81 Alternatively, if diffuse optical tomography (DOT) instrumentation, permitting the recording of a large range of source-detector separations, is used, it is possible to reduce the effects of superficial physiology on brain responses by using 3-dimensional image reconstruction and analyzing the brain voxel data for activations.61 This approach can also extend the field of view (FOV) to most of the cerebral cortex in 0–2 month infants with potentially numerous applications. By using a suitable experimental design, which avoids the subject’s heart rate being elevated due to stress, stimulus-coupled systemic effects can be minimized. Furthermore, HbR concentration changes in infants may not follow the typical pattern and may depend on the subject’s age, the region studied, and sleep and/or sedation state, among other factors.82–85 Reporting all three parameters (HbO\textsubscript{2}, HbT, and HbR) is useful to provide a reference of the response patterns in different situations to aid interpretability and enable later meta-analysis.

Conclusions

Bilateral temporal areas are implicated in most emotional processing studies in children, independent of the stimuli used. Currently, it remains unknown which neural activation patterns reflect maturation and at what age the emotional encoding reaches those typically seen in adults. Longitudinal studies are currently scarce and are clearly needed to answer these questions better. Most NIRS studies on emotional processing in children have been done in infants, while there are limited studies carried out in children 1 to 2 years of age (6/50 studies reviewed). Variance in typical emotional processing may have far-reaching implications for the later development of emotional, social, and cognitive skills in children. In addition to longitudinal repeated measures, functional neuroimaging might prove an important tool to study the associations between the early pattern of neural responses and socio-emotional development later in life.

References

