Brandner, Kay; Bauer, Michael; Seifert, Udo

Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.119.170602

Published: 25/10/2017

Please cite the original version:
Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response

Kay Brandner,1 Michael Bauer,2 and Udo Seifert2

1Department of Applied Physics, Aalto University, 00076 Aalto, Finland
2II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany

(Received 24 February 2017; revised manuscript received 21 August 2017; published 25 October 2017)

We identify a universal indicator for the impact of coherence on periodically driven quantum devices by dividing their power output into a classical contribution and one stemming solely from superpositions. Specializing to Lindblad dynamics and small driving amplitudes, we derive general upper bounds on both the coherent and the total power of cyclic heat engines. These constraints imply that, for sufficiently slow driving, coherence inevitably leads to power losses in the linear-response regime. We illustrate our theory by working out the experimentally relevant example of a single-qubit engine.

DOI: 10.1103/PhysRevLett.119.170602

Heat engines are devices that convert thermal energy into useful work. A Stirling motor, for example, uses the varying pressure of a periodically heated gas to produce mechanical motion (Fig. 1). Used by macroscopic engines for two centuries, this elementary operation principle has now been implemented on ever-smaller scales. Over the past decade, a series of experiments has shown that the working fluid of Stirling-type engines can be reduced to tiny objects such as a micrometer-sized silicon spring[1] or a single colloidal particle[2–5]. These efforts recently culminated in the realization of a single-atom heat engine[6,7]. Thus, the dimensions of the working fluid were further decreased by 4 orders of magnitude within only a few years. In light of this remarkable development, the challenge of even smaller engines operating on time and energy scales comparable to Planck’s constant appears realistic for future experiments.

Quantum engines have access to a nonclassical mechanism of energy conversion that relies on the creation of coherence in their working fluid[8]; see Fig. 1. How does this additional freedom affect their performance? Having triggered substantial research efforts in recent years, this question constitutes one of the central problems in quantum thermodynamics; see, for example, Refs.[9–18]. However, the results now available are inconclusive. In fact, current evidence suggests that, depending on the specific setup, coherence can be either conducive[8,11,19–28] or detrimental[29–33].

Quantifying the role of coherence for a thermodynamic process requires a benchmark parameter that is sensitive to superpositions between the energy levels of the working medium. For operations involving nonselective measurements, several such figures were recently discussed; see, e.g., Refs.[34,35]. In this Letter, we put forward a universal coherence indicator for cyclic machines operating without external measurements. To this end, we describe the working fluid as a periodically driven N-level system with a time-dependent Hamiltonian H_t, which is embedded in a thermal environment. Provided that this reservoir is large, the system will settle to a periodic state ρ_t after some transient time. The mean generated power per cycle of length T is then given by [31]
Work is extracted through a periodic driving field f^ν_t, which couples linearly to the system degree of freedom G^ν. The Hamiltonian H_t thus assumes the form

$$H_t \equiv H + f^\nu_t G^\nu.$$

For uniqueness, the field f^ν_t is chosen to be dimensionless and with a vanishing average over one period T.

Deriving constraints on the coherent power P^c requires us to further specify the dynamics of the working fluid. To this end, we first consider the equilibrium situation, i.e., $f^\nu_t = f^\nu = 0$. Assuming weak system-reservoir coupling and applying a coarse graining in time to wipe out memory effects and fast oscillating contributions to the state ϱ_t, then yields the Markovian master equation

$$\partial_t \varrho_t = -\frac{i}{\hbar}[H, \varrho_t] + \mathcal{D}_t \varrho_t,$$

where the dissipator

$$\mathcal{D}X \equiv \sum_\sigma \gamma_\sigma \left([V_\sigma X, V_\sigma^\dagger] + [V_\sigma^\dagger X V_\sigma] \right)$$

accounts for the effective influence of the thermal environment [41,42,48–50]. Here, \hbar denotes Planck’s constant, and $\{\gamma_\sigma\}$ is a set of positive rates with corresponding Lindblad operators $\{V_\sigma\}$. Owing to microreversibility, these quantities are constrained by the quantum detailed balance relation, which can be expressed compactly in terms of the formal identity [48,51]

$$\mathcal{D}e^{-\beta H} = e^{-\beta H} \mathcal{D}^\dagger.$$

Here, $\beta \equiv 1/(k_B T)$, where k_B denotes Boltzmann’s constant, and the adjoint dissipator is given by [42]

$$\mathcal{D}^\dagger X \equiv \sum_\sigma \gamma_\sigma \left([V_\sigma^\dagger X, V_\sigma] + [V_\sigma X V_\sigma^\dagger] \right).$$

In the adiabatic regime, where the driving is slow compared to the coarse-graining time scale used in the derivation of Eq. (7), finite driving can be included in this framework by allowing the rates and the Lindblad operators to be time dependent and replacing H and T with H_t and T_t, respectively, in Eqs. (7)–(10) [41]. Solving the resulting master equation with time-dependent generator by treating f^ν_t and f^ν as first-order perturbations then yields the explicit expressions [52]

$$P^d \equiv -\frac{1}{T} \int_0^T dt \int_0^\infty d\tau \left(\dot{C}^{\text{cd}} f^\nu_{t-\tau} + C^{\text{cd}} f^\nu_t \right),$$

$$P^c \equiv -\frac{1}{T} \int_0^T dt \int_0^\infty d\tau \left(\dot{C}^{\text{cc}} f^\nu_{t-\tau} + C^{\text{cc}} f^\nu_t \right)$$

for the classical and the coherent power, respectively [53], in the following notation. We abbreviate with C^{cb}_t the Kubo correlation function [54]
where \(t \geq 0 \) and each of the indices \(a \) and \(b \) can assume the values \(d, \ c, \ q \). Hats indicate Heisenberg-picture operators satisfying the adjoint master equation [42]

\[
L_c = \frac{i}{\hbar} [H, \hat{X}_t] + D^\dagger \hat{X}_t, \quad \text{with} \quad \hat{X}_0 = X.
\]

Angular brackets denote the thermal average throughout, i.e., \(\langle X \rangle = \text{tr}\{X e^{-\beta H}\}/\text{tr}\{e^{-\beta H}\} \). Finally, we have defined the operator \(G^d \equiv -H/T \) and split \(G^w \) into a diagonal and a coherent part,

\[
G^d = \sum_n \langle n | G^w | n \rangle |n\rangle \quad \text{and} \quad G^c = G^w - G^d.
\]

where the vectors \(|n\rangle\) correspond to the eigenstates of the unperturbed Hamiltonian \(H \).

As a first key observation, we note that the expression (11) for \(P^* \) is independent of the temperature profile \(f^q_w \). Thus, under linear-response and adiabatic-driving conditions, it is impossible to convert thermal energy provided by the heat source into positive power output via quantum coherence; rather, coherent power can be injected into the system only through mechanical driving. This constraint is captured quantitatively by the bound

\[
P^c \leq -\frac{L_q^c F^q}{4(1 + \psi_\Omega)}, \quad \text{with} \quad \psi_\Omega \equiv \frac{(L_1^c/L_1^q) \Omega^2}{\Omega^2 + L_1^c/L_1^q} \geq 0,
\]

which is proven in the Supplemental Material [55].

The coefficients (16) vanish if and only if \(G^c = 0 \), which means that the control variable \(G^w \) commutes with the unperturbed Hamiltonian \(H \). Thus, according to Eq. (15), any nonclassical driving will inevitably reduce the net output \(P = P^d + P^c \) of the engine. In fact, \(P \) is subject to the upper bound

\[
P \leq L_q^d F^d/4.
\]

This bound can be saturated if and only if

\[
G^w = -\mu H/T \quad \text{and} \quad D^\dagger H = -\lambda (H - \langle H \rangle)
\]

for some real scalars \(\mu \) and \(\lambda > 0 \) [55]. Thus, the field \(f^q_w \) has to couple to the free Hamiltonian \(H \), and the energy correlations must decay exponentially with rate \(\lambda \), i.e.,

\[
\langle \hat{H}_t, \hat{H}_0 \rangle = e^{-\lambda t} \langle \hat{H}_0, \hat{H}_0 \rangle.
\]

If these two requirements are fulfilled, the protocol for optimal power extraction is determined by the condition [55]

\[
2\tilde{f}^q = \lambda(f^q - \tilde{f}^q)/\mu - \tilde{f}^q/\mu,
\]
which leads to \(P = L_i^q F_0 / 4 \) for any temperature profile \(f_0^q \) and for sufficiently short operation cycles [57]. Furthermore, using relation (20), the upper bound (18) can be expressed in a physically transparent form,

\[
L_i^q = \frac{\lambda (H^2) - (H)^2}{k_B T^3}.
\]

(22)

Hence, the strength and the decay rate of the energy fluctuations in equilibrium essentially determine the maximum power of a cyclic \(N \)-level engine in the linear-response regime. A similar result was obtained only recently for classical engines [43,45].

We will now explore the quality of our bounds under practical conditions. To this end, we consider a two-level engine with the time-dependent Hamiltonian

\[
H_i = \frac{\hbar \omega}{2} \sigma_z + \frac{\hbar \omega f_0^y}{2} \left(r \sigma_z + (1 - r) \sigma_x \right).
\]

(23)

Here, \(\sigma_{x,y,z} \) are the usual Pauli matrices, and the dimensionless parameter \(0 \leq r \leq 1 \) determines the relative weight of the classical and coherent parts, \(G^d = r (\hbar \omega / 2) \sigma_z \) and \(G^c = (1 - r) (\hbar \omega / 2) \sigma_x \), of the control variable \(G^w \). The corresponding equilibrium dissipator (8) involves two Lindblad operators, \(V_\pm = (\sigma_\pm \pm i \sigma_z) / 2 \), acting at the rates \(\gamma_\pm \equiv \gamma e^{\pm x} \), respectively, where \(\kappa \equiv \hbar \omega / 2 \). This setup lies within the range of forthcoming experiments using a superconducting qubit to realize the system and ultrafast electron thermometers for calorimetric work measurements [58–60]. Its coherent and total power are subject to the bounds

\[
P^c \leq -\frac{\hbar \omega \lambda}{2} r^2 g \psi_\Omega F^w \quad \text{and} \quad P \leq \frac{\hbar \omega \lambda}{8} \frac{g}{1 + \psi_\Omega} F^w,
\]

with \(\psi_\Omega = \frac{(1 - r)^2 \sinh 2 \kappa}{4 \kappa} \frac{\Omega^2}{\Omega^2 + \omega^2 + \lambda^2 / 4} \).

(24)

g \equiv \kappa / \cosh^2 \kappa, \quad \lambda \equiv 2 \gamma \cosh \kappa, \quad \text{which follow from Eqs. (15) and (17) [55].}

To assess the quality of these constraints, we choose a temperature profile \(f_0^q \) that mimics the Stirling cycle illustrated in Fig. 1 and a work protocol satisfying

\[
2 \dot{f}_0^q = -\Omega (f_0^q - \dot{f}_0^q) / T + \dot{f}_0^q / T.
\]

(25)

both of which are shown in Fig. 2. This choice renders the amplitude and shape of \(f_0^q \) independent of the cycle frequency \(\Omega \). In Fig. 2, the resulting coherent power is plotted as a function of \(\Omega / \lambda \) for \(r = 1/2 \). If the level splitting \(\omega \) is significantly smaller than the dissipation rate \(\lambda \), it decays monotonically while closely following its upper bound (24). With an increasing \(\omega \), a resonant dip emerges close to \(\Omega = \omega \). This feature is not reproduced by our bound, which is, however, still saturated in the limit \(\Omega / \lambda \rightarrow 0 \) and, formally, also for \(\Omega / \lambda \rightarrow \infty \). For \(r = 1 \), the coherent power vanishes and the two conditions (19) are fulfilled with \(\mu = -T \). The total power \(P \) plotted in Fig. 2 then reaches its upper bound (24) at \(\Omega = \lambda \), i.e., when the work protocol (25) satisfies the maximum-power condition (21). As \(r \) varies from 1 to 0, the total power decreases more and more due to coherence-induced losses, and the bound (24) lies well above the actual value of \(P \). This result underlines our general conclusion that coherence has a purely detrimental effect on the output of cyclic heat engines operated slowly and in linear response.

In the nonlinear regime, coherence can indeed be beneficial since strong driving makes it possible to extract work from superpositions before they are destroyed by the thermal reservoir. This mechanism is exploited by continuous quantum engines like the three-level maser [61,62], which produce purely nonclassical power. It also underlies the coherence-induced power enhancement recently observed for stroke engines in the limit of short cycle times [8]. Capturing this effect quantitatively in terms of coherent power would require us to further develop our approach by including higher orders in the driving fields. In a broader perspective, this path could lead to a universal classification of features enabling an increase of power.
through coherence, e.g., squeezed reservoirs [11] or collective behavior [18,27], and features leading to coherence-induced power losses like quantum friction; the last phenomenon was observed earlier in various models describing the working fluid as an interacting spin system [29,30,38,63,64].

We conclude by stressing that our key expressions (3) and (4) are valid for an arbitrary driving strength and speed and for any type of system-reservoir coupling. The coherent power (4) can therefore be used as a universal performance benchmark across various different types of cyclic machines, including rapidly driven [26,65–69] and strongly coupled [70–75] engines. Finally, it might even be possible to extend this concept to thermoelectric nano devices, a second class of quantum engines, which has recently attracted remarkable interest [76–90]. Eventually, our approach could thus lead to a comprehensive understanding of the role of quantum effects for one of the most fundamental thermodynamic operations: the conversion of heat into power.

K. B. acknowledges financial support from the Academy of Finland (Contract No. 296073) and is affiliated with the Centre of Quantum Engineering. K. B. thanks J. P. Pekola, M. Campisi, and R. Fazio for the insightful discussions.

[36] To make these definitions unique, we understand that the time-dependent energy eigenvalues are arranged in increasing order, i.e., $E_0^t \leq E_1^t \leq \cdots \leq E_N^t$ for all cases where $t \in \mathbb{R}$, where we assume that N is finite for simplicity. Furthermore, we note that the expressions (3) and (4) are unaltered if the instantaneous energy eigenstates are multiplied by arbitrary time-dependent phase factors.

[37] H. T. Quan, P. Zhang, and C. P. Sun, Quantum heat engine with multilevel quantum systems, Phys. Rev. E 72, 056110 (2005).

[52] To obtain Eq. (11) from Eqs. (3) and (4), standard linear-response theory is applied. This derivation exploits the fact that, due to the detailed balance relation (9), the space of all system operators commuting with the unperturbed Hamiltonian H is invariant under the action of the superoperators D and D^\dagger; for details, see Ref. [31].

[53] The detailed balance relation (9) implies that the set of Lindblad operators $\{V_\alpha\}$ is self-adjoint; see Ref. [51] and A. Kossakowski, A. Frigerio, V. Gorini, and M. Verri, Quantum detailed balance and KMS condition, Commun. Math. Phys. 57, 97 (1977)]. Additionally, we assume here that this set is irreducible such that $X = 1$ is the only solution of $D^\dagger X = 0$ [H. Spohn, An algebraic condition for the approach to equilibrium of an open N-level system, Lett. Math. Phys. 2, 33 (1977)]. Under this condition, the improper integrals showing up in Eq. (11) are well defined [31].

[56] The Floquet-Lindblad equation can be derived in a similar way as the adiabatic master equation [41] used in this Letter; see, for example, Ref. [50] and R. Aliciki, D. A. Lidar, and P. Zanardi, Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit, Phys. Rev. A 73, 052311 (2006)]. However, in the Floquet-Lindblad approach, the coarse-graining time scale is larger than the period of the external modulation. Thus, by carrying out the coarse graining, the driving is effectively averaged in time. Combining this method with the concept of coherent power would therefore require us to adapt the expressions (3) and (4) to the time coarse-grained picture.

[57] For long cycles, the reduced temperature profile $f^t_{\alpha} = f^0_{\alpha}$ would oscillate slowly and thus be either positive or negative over substantial time ranges. Consequently, integrating Eq. (21) would yield a driving protocol f^t_{α} with a large amplitude, which violates the linear-response condition underlying the derivations leading to Eqs. (18) and (21).

