Sarjonen, R.; Törmä, Päivi

Topological States with Broken Translational and Time-Reversal Symmetries in a Honeycomb-Triangular Lattice

Published in:
Physical Review A

DOI:
10.1103/PhysRevA.91.063605

Published: 01/06/2015

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Topological states with broken translational and time-reversal symmetries in a honeycomb-triangular lattice

R. Sarjonen and P. Törmä*

COMP Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland

(Received 23 September 2014; revised manuscript received 15 January 2015; published 5 June 2015)

We study fermions in a lattice, with on-site and nearest neighbor attractive interactions between two spin species. We consider two geometries: (1) both spins in a triangular lattice and (2) a mixed geometry with up spins in honeycomb and down spins in triangular lattices. We focus on the interplay between spin-population imbalance, on-site and valence bond pairing, and order parameter symmetry. The mixed geometry leads to a rich phase diagram of topologically nontrivial phases. In both geometries, we predict order parameters with simultaneous time-reversal and translational symmetry breaking.

DOI: 10.1103/PhysRevA.91.063605

PACS number(s): 67.85.—d, 71.10.Fd, 74.20.—z

I. INTRODUCTION

In the Bardeen, Cooper, and Schrieffer (BCS) theory [1], which describes well many low-temperature superconductors, the transition to the superconducting state is characterized by the breaking of gauge symmetry only. However, the hallmark of unconventional superconductivity is the breaking of additional symmetries. For example, the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state has broken translational symmetry: The order parameter has a nontrivial spatial dependence [2–5]. On the other hand, chiral superconductors break time-reversal symmetry (TRS) because they feature gap parameters that wind in phase around the Fermi surface in multiples of 2π. Chiral superconductors also exhibit many other fascinating properties that are highly sought after for nanoscience applications [6–10], and broken TRS is a prerequisite for the quantum Hall effects (excluding the spin Hall effect) [11,12]. Moreover, in MgB$_2$ and iron pnictides [13–16] TRS may be broken due to interband couplings [17–19]. In this paper, we propose and theoretically study a system in which exotic superfluids with translational and TRS breaking can compete and even coexist.

Simultaneous breaking of multiple symmetries is an intriguing phenomenon; an example of a sought-after state is the supersolid which breaks translational and U(1) symmetries by coexisting crystal structure and superfluidity [20]. As another example, it was recently predicted for spinless fermions in a triangular lattice that density orders with several broken symmetries may coexist [21]. Each broken symmetry typically generates characteristic modes, the coexistence of which leads to rich physics and potential applications. Achieving such states is, however, nontrivial since the system must be susceptible to different types of order. The translational and TRS-breaking superfluids that we predict here are of conceptual interest as a type of state with simultaneous breaking of several symmetries, all reflected in the superfluid order parameter. Importantly, the very ingredients that are essential for creating such states, namely a combination of long-range interactions, special lattice geometries, and spin-density imbalance, are an emerging experimental reality in ultracold gas systems.

*Corresponding author: paivi.torma@aalto.fi

II. MODEL

We consider two different lattice systems, namely a honeycomb-triangular and a triangular lattice loaded with spin-1/2 fermions. In the former system, the honeycomb lattice comprises two triangular sublattices A and B, as shown in Fig. 1 (a). The sublattices are spin selective in such a way that \uparrow-spin atoms can occupy the whole honeycomb lattice, but \downarrow-spin atoms are confined to the triangular sublattice A. Consequently, we denote the honeycomb lattice by \mathcal{L}_{\uparrow} and the triangular sublattice A by \mathcal{L}_{\downarrow}.

We assume that \uparrow-spin and \downarrow-spin atoms can tunnel only between neighboring sites of \mathcal{L}_{\uparrow} and \mathcal{L}_{\downarrow}, respectively. We denote the tunneling amplitudes of \uparrow-spin and \downarrow-spin atoms by t_{\uparrow} and t_{\downarrow}, respectively. Subsequently, the Hamiltonian that takes into account tunneling and possible on-site energy modulations can be written as

$$
\mathcal{H}_0 = -t_{\uparrow} \sum_{\langle i,j \rangle \in \mathcal{L}_{\uparrow}} (\hat{a}_{i\uparrow}^{\dagger} \hat{b}_{j\uparrow} + \text{H.c.}) - \mu_{\uparrow} \sum_i (\hat{n}^a_{i\uparrow} + \hat{n}^b_{i\uparrow}) - t_{\downarrow} \sum_{\langle i,j \rangle \in \mathcal{L}_{\downarrow}} (\hat{a}_{i\downarrow}^{\dagger} \hat{b}_{j\downarrow} + \text{H.c.}) - (\mu_{\downarrow} - \epsilon_d^\text{a}) \sum_i \hat{n}^a_{i\downarrow},
$$

where \hat{a}^{\dagger} (\hat{b}) are fermionic creation (annihilation) operators in sublattices A and B, respectively, and \hat{n}^a and \hat{n}^b are the corresponding density operators. Parameters μ_{\uparrow} and μ_{\downarrow} are chemical potentials for \uparrow-spin and \downarrow-spin particles, respectively. In order to make our results comparable with the
ones in Ref. [44], we choose $\epsilon^\downarrow = -3$, and set $t_1 = t_2 = t = 1$ in all our calculations.

Here we focus on pairing and types of superfluidity that arise from attractive interactions. In experiments, there are many ways to tune the interparticle interactions from attractive to repulsive, such as Feshbach resonances [45]. Moreover, there are ways to tune the on-site and nearest-neighbor (NN) interactions independently of each other [46,47]. Thus, we choose to consider attractive on-site and nearest-neighbor interactions. The on-site interaction takes place at sites A, and we denote the interaction strength by $-U$ where $U \geq 0$.

The corresponding Hamiltonian reads

$$H_{\text{os}} = -U \sum_j \hat{a}^\dagger_j \hat{a}^\dagger_j \hat{a}_j \hat{a}^\dagger_j. \tag{2}$$

In conventional superconductivity, electrons form superconducting Cooper pairs in a spin-singlet state [48]. However, spin-singlet bonding between neighboring A and B sites is impossible because \downarrow spin particles cannot occupy B sites. Therefore we assume that the nearest neighbor interaction takes place between adjacent A sites and represent it with the Hamiltonian

$$H_{\text{nn}} = -V \sum_{(m,n) \in \mathbb{L}} \hat{\mathbf{h}}_{mn}^\dagger \hat{\mathbf{h}}_{mn}, \tag{3}$$

where $\hat{\mathbf{h}}_{mn}^\dagger = (\hat{a}^\dagger_{m\uparrow} \hat{a}^\dagger_{n\downarrow} - \hat{a}^\dagger_{m\downarrow} \hat{a}^\dagger_{n\uparrow})/\sqrt{2}$ is a spin-singlet creation operator. The parameter $V > 0$ represents an energy gain when two atoms form a spin-singlet bond, because $\hat{\mathbf{h}}_{mn}^\dagger \hat{\mathbf{h}}_{mn}$ is the number operator for singlet bonds [49]. We note that the spin-singlet states between neighboring sites are essentially resonating-valence-bond states proposed by Anderson [50].

The full Hamiltonian for the honeycomb-triangular lattice is

$$H = H_0 + H_{\text{os}} + H_{\text{nn}}. \tag{4}$$

We treat the interaction terms H_{os} and H_{nn} in the mean-field (MF) approximation. As we employ fermionic anticommutation relations and ignore the Hartree shifts, we obtain the MF Hamiltonians

$$H_{\text{os}}^{\text{MF}} = -U \sum_j (\hat{a}_{j\downarrow} \hat{a}_{j\uparrow} \hat{a}^\dagger_{j\uparrow} \hat{a}^\dagger_{j\downarrow} + \text{H.c.}) - |(\hat{a}_{j\downarrow} \hat{a}^\dagger_{j\uparrow})|^2, \tag{5}$$

$$H_{\text{nn}}^{\text{MF}} = -V \sum_{(m,n) \in \mathbb{L}} (\hat{\mathbf{h}}_{mn}^\dagger \hat{\mathbf{h}}_{mn} + \text{H.c.}) - |\hat{\mathbf{h}}_{mn}|^2. \tag{6}$$

In the model of Ref. [44] the possibility of FFLO phase was not considered: There were forbidden areas in the phase diagrams, which usually suggest that the mean-field ansatz has been limited. Here we want to consider also the possibility of symmetry-breaking superfluid phases, and therefore we take into account the possibility that Cooper pairs have nonzero center-of-mass momenta. Consequently, we use an FFLO-type ansatz $U(\hat{a}_{j\downarrow} \hat{a}^\dagger_{j\uparrow}) = \Delta_0 e^{iN \hat{\mathbf{r}}_{j} \cdot \hat{\mathbf{q}}} \hat{\mathbf{q}} [51]$ for the on-site order parameter. Here x_j is the position vector of lattice site j, amplitude $\Delta_0 \geq 0$, and $2q$ is the Cooper pair center-of-mass momentum. On the other hand, there are three different NN bonds on a triangular lattice. We take the three different NN bonds to be along directions a_2, a_1, and $a_1 - a_2$ specified in Figs. 1(a) and 1(b). We consider a simple situation in which the long-range order parameter has the same norm Δ_1 along all bonds, but different phases are allowed for the different bonds [52]. In equation form, the ansatz reads $V(\hat{h}_{mn}) = \Delta_1 e^{i\theta_{mn}} e^{i(\mathbf{k}_r \cdot \mathbf{r}_{mn})}$, where $\Delta_1 \in \mathbb{R}$ and θ_{mn} is the phase that depends on the direction of the bond between sites m and n. We denote the phases corresponding to bonds a_2, a_1, and $a_1 - a_2$ by θ, ϕ, and ψ, respectively.

We define the Fourier transformation as $\tilde{f}_{\mathbf{k}} = M^{-1/2} \sum_{i} e^{-i\mathbf{k} \cdot \mathbf{r}_{ij}}, f_{\sigma},$ where $f \in \{ a, b \}$, $\sigma \in \{ \uparrow, \downarrow \}$, and M is the number of sites in either of the triangular sublattices A and B. With the help of the Fourier transformation and periodic boundary conditions in real space, the mean-field Hamiltonian can be written in momentum space as

$$H_{\text{MF}} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^\dagger \mathcal{H}_{\mathbf{k}} \Psi_{\mathbf{k}} + \frac{3|\Delta_1|^2}{V} + \frac{|\Delta_0|^2}{U} + \xi_{-\mathbf{k}}^3, \tag{7}$$

where

$$\Psi_{\mathbf{k}} = (\psi_{\mathbf{k}}^{(1)}, \psi_{\mathbf{k}}^{(2)}, \psi_{\mathbf{k}}^{(3)}(3))^T \tag{8}$$

and [53]

$$\mathcal{H}_{\mathbf{k}} = \begin{pmatrix} \xi_{\mathbf{k}}^{(1)} & 0 & g_{\mathbf{k}} + G_{\mathbf{k}}^{\uparrow} \\ 0 & \xi_{\mathbf{k}}^{(2)} & g_{\mathbf{k}} + G_{\mathbf{k}}^{\uparrow-\downarrow} \\ \xi_{\mathbf{k}}^{(3)}(3) & g_{\mathbf{k}} + G_{\mathbf{k}}^{\uparrow-\downarrow} & -\xi_{-\mathbf{k}}^{(3)}(3) \end{pmatrix}. \tag{9}$$

The noninteracting dispersions are explicitly written as $\xi_{\mathbf{k}}^{(1,2)} = \pm|\mathbf{h}_1(\mathbf{k}) - \mu_1|$, where $\mathbf{h}_1(\mathbf{k}) = -t_1(e^{ik_1/\sqrt{3}} + 2e^{-ik_1/\sqrt{3}} \cos(k_2/2))$ and $\xi_{\mathbf{k}}^{(3)} = -t_1(2\cos k_3 + \cos(k_2 + \sqrt{3}k_1/2) + \cos((k_2 - \sqrt{3}k_1/2) + 3\mu_1)$. The interband coupling due to the on-site interaction is $g_{\mathbf{k}} = -\Delta_0/\sqrt{2}$. Similarly, the interband coupling due to the NN interaction is $G_{\mathbf{k}}^{\uparrow-\downarrow} = -\Delta_1 \sum_\mathbf{\delta} e^{-i(\mathbf{q} - \mathbf{q}) \cdot \delta},$ where $\sum_\mathbf{\delta}$ goes over the nearest neighbors a_2, a_1, and $a_1 - a_2$, and δ is the phase corresponding to δ. As mentioned in the introduction, we also consider a triangular lattice spanned by the primitive vectors a_1 and a_2. We describe tunneling and possible on-site energy modulations.
with the Hamiltonian

$$H_0 = -t_1 \sum_{\langle i,j \rangle} (\hat{a}_i^\dagger \hat{a}_j + \text{H.c.}) - t_2 \sum_{\langle i,j \rangle} (\hat{a}_i^\dagger \hat{a}_j + \text{H.c.})$$

$$- \mu_\uparrow \sum_i \hat{n}_{i\uparrow} - (\mu_\downarrow - \varepsilon_i^0) \sum_i \hat{n}_{i\downarrow}$$

and choose $\varepsilon_i^0 = 0$ in all subsequent calculations. The on-site and nearest neighbor interaction terms for the triangular and honeycomb-triangular lattices are the same. Thus the full Hamiltonian for the triangular lattice is $H = H_0 + H_{\text{on}} + H_{\text{nn}}$. Subsequently, with the help of Fourier transformation we obtain

$$H^{\text{MF}} = \sum_k \tilde{\psi}_k H_k \tilde{\psi}_k + \frac{3|\Delta_1|^2}{V} + \frac{|\Delta_0|^2}{U} + E_k^{(2)}$$

where

$$\tilde{\psi}_k = (\hat{a}_{k\uparrow}, \hat{a}_{2q-k\downarrow})^T$$

and

$$H_k = \left(\begin{array}{cc} E_k^{(1)} & -\Delta_0^\dagger + G_{\text{e}} \Gamma_q -q \nonumber \end{array} \right)$$

The noninteracting energy dispersions are

$$E_k^{(1)} = E_k - \mu_\uparrow,$$ \hspace{1cm} (14)

$$E_k^{(2)} = E_k - \mu_\downarrow,$$ \hspace{1cm} (15)

where

$$E_k = -2 \left[\cos k_x + \cos \left(\frac{k_y + \sqrt{3} k_x}{2} \right) + \cos \left(\frac{k_y - \sqrt{3} k_x}{2} \right) \right].$$

(16)

When interaction strengths and tunneling amplitudes are fixed, the parameters that govern pairing in the system are the chemical potentials μ_\uparrow and μ_\downarrow. The grand potential is defined as $\Omega = (-1/\beta) \ln \text{Tr} e^{-\beta H}$, where $H \in \{H^{\text{MF}}, H^{\text{MF}}\}$ and $\beta = 1/(k_B T)$ with k_B being the Boltzmann constant and T being the temperature. The location of the absolute minimum of the grand potential is $\Omega(\Delta_0, \Delta_1, \mathbf{q})$ determines the values of Δ_0, Δ_1, and \mathbf{q} [44]. Furthermore, the quasiparticle energies $E_\alpha(k)$, $\alpha \in \{1,2,3\}$, are given by the eigenvalues of the matrices H_k and H_{on}.

A particularly promising way to experimentally realize this model would be to employ the widely used rubidium-potassium mixture composed of fermionic ^{40}K prepared in the $|F = 9/2, m_F = \pm 9/2 \rangle$ Zeeman components of the $F = 9/2$ ground-state hyperfine level and bosonic ^{87}Rb atoms in the $|F = 1/2, m_F = \pm 1 \rangle$ ground state. The on-site and NN interactions could be tuned independently [54], and various experimental methods are available to study the nature of the pairing [55]. In particular, the experimental realization of the NN interaction term H_{nn} in ultracold Bose-Fermi mixtures has been discussed in Secs. II, III A, and III C of Ref. [39].

In units of $-(e^2 / h)$, the Hall conductance of a filled band is an integer called the Chern number [12]. If we assume that the pseudospin indices \uparrow and \downarrow are associated with internal angular momenta, as opposed to some other internal states unaffected by time reversal, the Hamiltonian H is not symmetric under time reversal due to the mixed geometry. Despite that, it is easy to show that H^{MF} cannot give rise to phases with a nonzero Chern number if $\theta = \phi = \varphi = 0$ and tunneling amplitudes t_1 and t_2 are real valued (see Appendix A 2). In order to study TRS breaking due to the NN interaction, we hereafter say that the pseudo spin indices \uparrow and \downarrow are not associated with internal angular momenta but by some other internal states unaffected by time reversal. Subsequently, H^{MF} can break TRS only if $(\theta \neq \phi \neq \varphi \neq 0)$.

III. RESULTS

Figure 2 shows phase diagram for honeycomb-triangular lattice with $U = 5$ and $V = 0$. We used the values $\theta = \phi = \varphi = 0$ because we have numerically verified that this choice yields the lowest grand potential for all values of μ_\uparrow and μ_\downarrow. Up-spin density is defined as N_{\uparrow}/M, where N_{\uparrow} and M are the number of \uparrow-spin particles and primitive cells in the honeycomb-triangular lattice, respectively. Polarization is defined as $(N_{\uparrow} - N_{\downarrow})/(N_{\uparrow} + N_{\downarrow})$, where N_{\downarrow} is the number of \downarrow-spin particles. By comparing Fig. 2(b) with Fig. 1(d) of Ref. [44], we see that some of the forbidden regions have vanished because Cooper pairs are now allowed to have

![FIG. 2 (Color online) Zero-temperature phase diagram for the honeycomb-triangular lattice with $U = 5$ and $V = 0$. (a) Zero temperature phase diagram for the honeycomb-triangular lattice as a function of chemical potentials μ_\uparrow and μ_\downarrow. The first two main areas are the normal phase and the FFLO phase, while the rest of the phase diagram is covered by various non-FFLO superfluid phases. (b) Honeycomb-triangular lattice phase diagram as a function of up-spin density and polarization.](image)
nonzero momenta. However, since $\theta = \phi = \varphi = 0$, the phases necessarily have vanishing Chern numbers.

We find that the phase diagrams in Fig. 2 are divided into three main areas. The first two areas are the normal phase and the FFLO superfluid phase, and the third area comprises the rest of the diagram covered by various non-FFLO superfluid phases. The normal phase is simply indicated by vanishing order parameters, i.e., $\Delta_0 = \Delta_1 = 0$. On the other hand, FFLO phase is characterized by $q \neq 0$ and at least one of the order parameters Δ_0 and Δ_1 being nonzero. The FFLO phase is an unconventional superfluid phase where Cooper pairs have nonzero center-of-mass momenta. Finally, non-FFLO superfluid phase has $q = 0$ with at least one of the order parameters Δ_0 and Δ_1 being nonzero. The non-FFLO superfluid phase can be further divided into gapless and gapped phases, and the gapless phase can be characterized by the topological arrangement of the one or two Fermi surfaces (Γ centered or K centered). The notation 1-FS(X) means one Fermi surface centered at high symmetry point X and notation 2-FS(X,Y) means two Fermi surfaces centered at high symmetry points X and Y [44].

Figure 3(a) shows the honeycomb-triangular lattice zero temperature phase diagram as a function of μ_\uparrow and μ_\downarrow for $U = 5$ and $V = 3$. We used the values $\theta = \phi = \varphi = 0$ because we have numerically verified that this choice yields the lowest grand potential everywhere except in a small region in the lower right corner of the phase diagram. In other words, the system exhibits phase winding in a small region within the FFLO phase. Moreover, Fig. 3(b) shows that there is significant amount of pairing between nearest neighbors when $U = 5$ and $V = 3$. This is very different from the mixed geometry study Ref. [44] in which long-range interactions were not considered. In addition, we find a large area of FFLO, which was not included in the ansatz of Ref. [44]. However, since $\theta = \phi = \varphi = 0$, the phases necessarily have vanishing Chern numbers.

Now, it is of interest to ask whether the system breaks TRS for some values of U, V, μ_\uparrow, and μ_\downarrow. To that end, Fig. 4(a) shows the phase angles θ, ϕ, and φ as a function of U and V at the point $(\mu_\uparrow, \mu_\downarrow) = (-1.5, -2.5)$. Temperature was set to zero. At lower values of U the system is in normal phase if V is small and in superfluid phase with $(\theta, \phi, \varphi) = (0, 2\pi/3, 4\pi/3)$ if V is large. At higher values of U the system is in superfluid phase with $(\theta, \phi, \varphi) = (0, 0, 0)$ if V is small and in superfluid phase with $(\theta, \phi, \varphi) = (0, 2\pi/3, 4\pi/3)$ for large values of V. Thus the system spontaneously breaks TRS when V becomes large enough. We also note that the threshold for TRS breaking becomes higher when U is raised. TRS breaking also happens in the triangular lattice [52], but the phase diagram shown in Fig. 4(b) is exceedingly simple compared to the rich phase diagram of Fig. 3(a).

Figure 5 shows the quasiparticle energy bands $E_1(k)$, $E_2(k)$, and $E_3(k)$ along the line $\Gamma - K$ for the point $(\mu_\uparrow, \mu_\downarrow) = (-1.5, -2.5)$ when $U = 0$ and $V = 3$. The system is in a gapped phase because none of the energy bands cross the Fermi level located at $E_F = 0$. In addition, we note that the two higher bands are degenerate at the Dirac points K because the coupling function G_{η} vanishes at the Dirac points.

We have calculated the Chern numbers by using the method from Ref. [56]. In that method, one obtains the Chern number by summing a gauge-independent field strength $F_{ij}(k_i)$ over a set of discrete points k_i covering the entire Brillouin zone. Due to the periodicity of the momentum space Hamiltonian, the Brillouin zone can be regarded as a two-dimensional torus. Remarkably, the field strengths $F_{ij}(k_i)$ can also be directly measured by using time-of-flight imaging [57].
found that the Chern number for the lowest band is \(c_1 = 2 \). However, the two higher bands do not satisfy the gap opening condition \(|E_1 - E_2| \neq 0 \) at the Dirac points \(K \). Therefore we did not calculate the Chern numbers for those bands individually, but for the multiplet \(\psi \) comprising the two bands. The multiplet Chern number \(c_\psi = -2 \). Although we have calculated the Chern numbers using periodic boundary conditions, the nonzero Chern numbers still suggest that a finite system with edges would have propagating edge modes [58,59]. The main challenge in detecting such edge modes has been the separation of the small edge-state signal from the bulk background, but Ref. [60] provides a simple and robust way to measure the edge modes. Moreover, when the Fermi energy lies in a gap, the Hall conductance is given by \(\sigma_{xy} = -(e^2/h) \sum_n c_n \), where \(c_n \) denotes the Chern number of the \(n \)th Bloch band and the sum over \(n \) is restricted to the bands below the Fermi energy [56,61,62]. The lowest energy band in Fig. 5 is fully below the Fermi energy \(E_F = 0 \), whereas the two higher bands are completely above the Fermi energy. Consequently, the Hall conductance is \(-c_3 = -2 \) in units of \(e^2/h \).

IV. DISCUSSION AND SUMMARY

It is remarkable that simultaneous occurrence of phase winding and FFLO is possible both in honeycomb-triangular and triangular lattices. In a honeycomb-triangular lattice time-reversal and translational symmetries are simultaneously broken, e.g., at \((\mu_1, \mu_2) = (2, -2)\) when \(U = 0 \) and \(V = 4 \), whereas Fig. 4(b) shows the areas where this happens in a triangular lattice for \(U = V = 5 \). Although it is known that TRS can be broken in a triangular lattice due to NN interactions [52], we have shown here that simultaneous breaking of time-reversal and translational symmetries in the superfluid order parameter of a two-component fermion system may happen both in honeycomb-triangular and triangular lattices.

In summary, the extended Fermi-Hubbard model we have considered in a mixed honeycomb-triangular lattice exhibits a rich phase diagram with gapped and gapless paired phases, as well as spontaneous TRS breaking at NN interaction strengths \(V \) higher or equal to the on-site interaction \(U \). The TRS breaking gives rise to topologically nontrivial phases and nonzero Hall conductivity. The connection of our lattice model to various graphene systems [6,63,64] may inspire a search for ways to design mixed geometries on such nanomaterials. Remarkably, we found that TRS breaking happens also in the FFLO state: We thus predict a type of superfluid with simultaneous TRS and translational symmetry breaking. This phase of matter could be realized in the mixed honeycomb-triangular or in the triangular geometry, which are both realizable in ultracold gases, the latter being simpler since it does not require spin-dependent confinement.

ACKNOWLEDGMENTS

We thank D.-H. Kim for useful discussions. This work was supported by the Academy of Finland through its Centres of Excellence Programme (2012–2017) and under Projects No. 263347, No. 251748, and No. 272490 and by the European Research Council (ERC-2013-AdG-340748-CODE). We acknowledge the computational resources provided by Aalto University Science IT project. One of us (R.S.) acknowledges a grant from the University of Oulu.

APPENDIX

1. Geometry of honeycomb-triangular lattice

A mixed-geometry lattice comprising a honeycomb lattice and a triangular lattice has been depicted in Fig. 1(a) and described in detail in the Supplemental Material of Ref. [44]. Following the example of Ref. [44], we take the primitive vectors of the triangular sublattice A to be

\[
\mathbf{a}_1 = \left(\frac{\sqrt{3}}{2}, 1 \right), \quad \mathbf{a}_2 = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2} \right).
\]

The corresponding reciprocal lattice vectors are

\[
\mathbf{b}_1 = \left(\frac{2\pi}{\sqrt{3}}, 2\pi \right), \quad \mathbf{b}_2 = \left(\frac{2\pi}{\sqrt{3}}, -2\pi \right).
\]

The triangular sublattice B is shifted by \((1/\sqrt{3}, 0)\) relative to the sublattice A. Thus the A and B sublattices together form a hexagonal lattice.

We impose Born–von Karman boundary conditions on the direct space wave function. That is, we assume that \(\psi(\mathbf{r} + N\mathbf{a}_i) = \psi(\mathbf{r}) \), where \(N \) is a positive integer and \(i \in \{1,2\} \). Consequently, allowed momentum values are of the form

\[
\mathbf{k} = \frac{m_1\mathbf{b}_1}{N} + \frac{m_2\mathbf{b}_2}{N}, \quad m_1, m_2 \in \mathbb{Z} [65].
\]

Thus summations \(\sum_k \) run over over such \(\mathbf{k} \) points that are of the form (A5) and belong to the first Brillouin zone. In each calculation, we used a \(400 \times 400 \) or a \(200 \times 200 \) k-point mesh, depending on the amount of computational work. We solved the eigenvalues of \(3 \times 3 \) matrices by using the method from Ref. [66].
2. Chern number

It is easy to see that matrix \mathcal{H}_k defined in Eq. (9) is symmetric if t_1 and t_2 are real valued and $\theta = \phi = \varphi = 0$. The eigenvectors $|n(k)\rangle$ of a symmetric matrix can always be chosen real valued. Consequently, the link variable $U_{G}\langle k\rangle$ defined in Eq. (7) of Ref. [56] is equal to unity for all k. Subsequently, the lattice field strength $F_{\vec{l}}(\vec{k})$ defined in Eq. (8) of Ref. [56] vanishes for all \vec{k}. It follows that the lattice Chern number η_φ defined in Eq. (9) of Ref. [56] vanishes if t_1 and t_2 are real valued and $\theta = \phi = \varphi = 0$.

3. Symmetries of $E_\varphi(k)$ and $n_\sigma(k)$

If the FFLO-momentum $q = 0$ and $\theta = \phi = \varphi = 0$, the quasi-Fermi energies $E_\varphi(k)$ and momentum distributions $n_\sigma(k)$ exhibit the symmetries of the underlying triangular lattice. However, if at least one of the phase angles $\theta, \phi,$ and φ is given a nonzero value, $E_\varphi(k)$ and $n_\sigma(k)$ may lose the symmetries of the triangular lattice. Nevertheless, we prove next that $E_\varphi(k)$ and $n_\sigma(k)$ retain the symmetries of the triangular lattice in the case $\Delta_0 = q = 0$ and $(\theta \phi \varphi) = (0 2\pi/3 4\pi/3)$.

Let us say that $\Delta_0 = q = 0$ and $(\theta \phi \varphi) = (0 2\pi/3 4\pi/3)$ and consider how H_k changes when k is rotated anticlockwise by $\pi/3$. The noninteracting dispersions $E_\varphi(k)$ do not change, because they exhibit the symmetries of the underlying triangular lattice. On the other hand, the $\pi/3$ rotation is equivalent to making the cyclic permutation $(\theta \phi \varphi) \rightarrow (\phi \varphi \theta)$. That is,

$$(0 2\pi/3 4\pi/3) \rightarrow (2\pi/3 4\pi/3 2\pi/3),$$

(A6)

where we have also used the fact that the angles are defined modulo 2π. Thus, the $\pi/3$ rotation amounts to changing the total phase of G_k by $2\pi/3$. It is easy to see that changing the total phase of G_k does not affect the eigenvalues of H_k, but the phase of the third eigenvector component changes. However, the momentum distributions $n_\sigma(k)$ depend only on the squared norms of the eigenvector components, and therefore both $E_\varphi(k)$ and $n_\sigma(k)$ remain unchanged.

Reflecting vector k about the x or y axis is equivalent to making the permutation $(\theta \phi \varphi) \rightarrow (\phi \theta \varphi)$. That is,

$$(0 2\pi/3 4\pi/3) \rightarrow (2\pi/3 0 -2\pi/3),$$

(A7)

where we have also used the fact that the angles are defined modulo 2π. Thus, reflecting vector k about the x or y axis is equivalent to making the change $G_k \rightarrow e^i2\pi/3G_k$. It is easy to see that this does not affect the eigenvalues of H_k, but eigenvectors are complex conjugated and the third eigenvector component is also multiplied by $e^i2\pi/3$. However, the momentum distributions $n_\sigma(k)$ depend only on the squared norms of the eigenvector components, and therefore both $E_\varphi(k)$ and $n_\sigma(k)$ remain unchanged.

References

[51] When such an FF ansatz minimizes the energy, the actual ground state may be an LO solution of cosine form where the translational symmetry is broken in the amplitude and not only phase of the order parameter. The LO solutions in known cases have lower energies than the FF, and thus FF ground states can be taken as indicators of more general FFL-FO-type states.

[54] See Sec. IV of Ref. [39] and references therein.

