Prozheeva, V.; Hölldobler, R.; Von Wenckstern, H.; Grundmann, M.; Tuomisto, Filip

Effects of alloy composition and Si-doping on vacancy defect formation in (InₓGa₁₋ₓ)₂O₃ thin films

Published in:
Journal of Applied Physics

DOI:
10.1063/1.5022245

Published: 28/03/2018

Please cite the original version:
Effects of alloy composition and Si-doping on vacancy defect formation in \(\text{(In}_x\text{Ga}_{1-x})_2\text{O}_3\) thin films

V. Prozheeva, R. Höldobler, H. von Wenckstern, M. Grundmann, and F. Tuomisto

Citation: Journal of Applied Physics 123, 125705 (2018); doi: 10.1063/1.5022245
View online: https://doi.org/10.1063/1.5022245
View Table of Contents: http://aip.scitation.org/toc/jap/123/12
Published by the American Institute of Physics

Articles you may be interested in
A review of \text{Ga}_2\text{O}_3\ materials, processing, and devices
Applied Physics Reviews 5, 011301 (2018); 10.1063/1.5006941

Guest Editorial: The dawn of gallium oxide microelectronics

Iron and intrinsic deep level states in \text{Ga}_2\text{O}_3\nApplied Physics Letters 112, 042104 (2018); 10.1063/1.5020134

On the feasibility of p-type \text{Ga}_2\text{O}_3\nApplied Physics Letters 112, 032108 (2018); 10.1063/1.5009423

High breakdown voltage quasi-two-dimensional \(\beta\)-\text{Ga}_2\text{O}_3\ field-effect transistors with a boron nitride field plate

Compensation and persistent photocapacitance in homoepitaxial Sn-doped \(\beta\)-\text{Ga}_2\text{O}_3
Journal of Applied Physics 123, 115702 (2018); 10.1063/1.5025916
Effects of alloy composition and Si-doping on vacancy defect formation in (In$_x$Ga$_{1-x}$)$_2$O$_3$ thin films

V. Prozheeva, R. Hölldobler, H. von Wenckstern, M. Grundmann, and F. Tuomisto

1Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
2Fakultät für Physik und Geowissenschaften, Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik, Linnéstrasse 5, 04103 Leipzig, Germany

(Received 12 January 2018; accepted 8 March 2018; published online 29 March 2018)

Various nominally undoped and Si-doped (In$_x$Ga$_{1-x}$)$_2$O$_3$ thin films were grown by pulsed laser deposition in a continuous composition spread mode on c-plane sapphire and (100)-oriented MgO substrates. Positron annihilation spectroscopy in the Doppler broadening mode was used as the primary characterisation technique in order to investigate the effect of alloy composition and dopant atoms on the formation of vacancy-type defects. In the undoped samples, we observe a Ga$_2$O$_3$-like trend for low indium concentrations changing to In$_2$O$_3$-like behaviour along with the increase in the indium fraction. Increasing indium concentration is found to suppress defect formation in the undoped samples at [In] > 70 at. %. Si doping leads to positron saturation trapping in In$_2$O$_3$-like defects, suggesting a vacancy concentration of at least mid-1018 cm$^{-3}$ independent of the indium content. Published by AIP Publishing. https://doi.org/10.1063/1.5022245

I. INTRODUCTION

Major research interest in transparent semiconducting oxides (TSOs) so far has been mostly devoted to binaries. Among them, ZnO remains the indisputable leader of the oxide charts, while In$_2$O$_3$, Ga$_2$O$_3$, and SnO$_2$ are still intriguing for the researchers. Similar to III-nitrides, alloying of (In$_x$Ga$_{1-x}$)$_2$O$_3$ as a function of indium content. 11–13 In this paper, we present the results obtained by positron annihilation spectroscopy in thin film (In$_x$Ga$_{1-x}$)$_2$O$_3$ with 30 and 40 at. % In, corresponding to the Si-doped thin films with a fixed In content. A complementary CCS-PLD (In$_x$Ga$_{1-x}$)$_2$O$_3$ thin film was deposited on (100)-plane MgO in order to investigate potential changes related to a different substrate. Further, another undoped sample has been grown at an oxygen background pressure of $p_{O_2} = 3 \times 10^{-4}$ mbar using a two-segmented In$_2$O$_3$/Ga$_2$O$_3$ PLD-target. An overview of the basic sample properties is provided in Table I. The details of the growth method and structural characterisation of the undoped samples can be found in Refs. 11, 12, and 15. The thickness of the films was determined using transmission measurements with a Perkin-Elmer Lambda 40 spectrometer and standard spectroscopic ellipsometry applying the Cauchy model. Energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used for structural characterisation of the thin films.

Hall measurements in van der Pauw geometry have demonstrated a high free carrier concentration in the range of $n = 3 \times 10^{19}$–1 $\times 10^{20}$ cm$^{-3}$ and $n = 1 \times 10^{19}$–2 $\times 10^{19}$ cm$^{-3}$ for samples S-40-Si and S-30-Si, respectively. Both doped
samples were found to have a very low mobility of charge carriers of \(1-4 \text{ cm}^2/\text{V s} \), as typically reported for heteroepitaxial \(\text{Ga}_2\text{O}_3 \) thin films.\(^{14}\) The undoped sample \(\text{S-low-p} \) was highly resistive, except for the region with \([\text{In}] > 25 \text{ at. } \% \), where the free carrier concentration increased up to \(n = 1 \times 10^{17} - 1 \times 10^{18} \text{ cm}^{-3} \).

A. EDX

The spatial variation of the chemical composition of thin films was investigated by EDX using a field-emission scanning electron microscope FEI NovaLab 200 equipped with an Ametek EDAX detector. The shape of the EDX line scan for the undoped sample \(\text{S-low-p} \) is discussed in detail in Ref. 12. The undoped samples S and M have linear or slightly S-shaped variation of the In content along the compositional gradient, as shown in Fig. 1. The In content of both Si-doped samples is essentially constant all over the thin films: 29–30 at. % for \(\text{S-30-Si} \) and 39–40 at. % for \(\text{S-40-Si} \).

The incorporation of indium is strongly dependent on the oxygen background pressure. For the sample grown at low \(p_{\text{O}_2} \), the indium incorporation is clearly below expectations from Monte-Carlo (MC) simulations.\(^{15}\) For samples grown at high \(p_{\text{O}_2} \), the incorporation of indium corresponds to the results of the MC simulations. This is likely due to the higher bonding strength of the Ga-O bond with respect to In-O and is similar to the results reported for group-III nitrides.\(^{17,18}\)

![Line scan of In content along compositional gradient](image)

FIG. 1. Line scans of the In content along the compositional gradient in selected samples as determined by EDX measurements.

B. XRD

Spatially resolved XRD measurements were conducted on a PANalytical X’pert PRO MRD diffractometer and a PIXcel3D detector in the 1D scanning mode. The example XRD patterns for the Si-doped thin film and for the undoped sample with a linear In gradient are presented in Fig. 2. In each case, 55 \(2\theta - \omega \) scans were recorded with a 1 mm step along the compositional gradient.

Both Si-doped samples were found to crystallise in hexagonal \(\text{InGaO}_3 \) II, irrespective of the dopant content. In sample S, the (222) bcc-\(\text{In}_2\text{O}_3 \) reflection is clearly observed at \([\text{In}] > 70 \text{ at. } \% \), followed by a side phase seen at lower angles between 30 and 70 at. % In, which might be attributed to the (004)-plane of the hexagonal \(\text{InGaO}_3 \) II phase. At the low indium content, \([\text{In}] < 30 \text{ at. } \% \), a shift in the peak position towards higher angles is observed. An overview of the crystallographic phases present in the studied samples is presented in Table II.

III. POSITRON ANNIHILATION SPECTROSCOPY

A. Experimental details

The evolution of vacancy-type defects as a function of the alloy and dopant compositions was monitored using positron annihilation spectroscopy in the Doppler broadening mode. The Doppler broadening of the 511 keV annihilation line is mostly caused by the momentum of the annihilating electrons. The lineshape of the annihilation peak is wider when a positron is in a delocalized state and narrower when it is trapped in a vacancy-type defect due to the reduced overlap of the positron wavefunction with core electron wavefunctions. The atoms surrounding the annihilation site also have an impact on the obtained signal.\(^{19}\)

The thin films were studied using a variable energy positron beam. By controlling the implantation energy and, consequently, the kinetic energy of positrons, the probing depth is varied from the surface up to 2 \(\mu \text{m} \). After implantation, the positron thermalizes in the sample within a few picoseconds and diffuses for 100–250 ps (100–200 nm depending on the material and the crystalline quality) before annihilating with an electron. The resolution of the HPGe detector used for measuring the Doppler broadening of the annihilation line was 1.2 keV at 511 keV. The peak lineshape was analysed using conventional low momentum parameter \(S \) corresponding to longitudinal electron momenta at \([-0.4 \text{--} 0.4] \text{ a.u.} \), and the \(\pm [1.6 \text{--} 4.0] \text{ a.u.} \) window was applied for the high momentum \(W \) parameter. The \(S \) parameter reflects the open volume of a vacancy, and the \(W \) parameter is sensitive to the immediate surroundings of the vacancy being representative of positron annihilations with core electrons. For further details on the measurement technique, see Ref. 19. The Doppler broadening parameters were measured as a function of positron implantation energy and, hence, the probing depth, along the compositional gradient in CCS thin films with a step of 2–10 mm depending on the sample. Reference measurements were performed in earlier-characterised single crystal bulk \(\text{In}_2\text{O}_3 \) (Ref. 20), giving \(S_{\text{ref}} = 0.44(6) \) and \(W_{\text{ref}} \)
0.048(5), and homoepitaxial thin film Ga₂O₃ (Ref. 21), giving \(S_{\text{ref}} = 0.43(5) \) and \(W_{\text{ref}} = 0.053(6) \).

B. Results and analysis

Figure 3 shows the \(S \) parameter measured as a function of positron implantation energy (implantation depth) for selected alloy compositions in the undoped and Si-doped samples both grown at \(p_{\text{O}_2} = 8 \times 10^{-2} \) mbar on \(c \)-sapphire. The data at low energies (< 3 keV) are dominated by annihilations at the surface due to the diffusion of thermalized positrons back to the surface. The layer of interest is observed between 3 and 9 keV depending on the measurement point.

The \(S(E) \) curve for the sample with a non-linear indium gradient \(S\text{-low}-p \) in Fig. 4 (left) reveals a similar behaviour. However, the layer-specific \(S \) parameter of sample \(S\text{-low}-p \) is observed at 3–6 keV for the In-poor side. The thickness of the studied layer slightly increases for the point of 28 at. % In and doubles on the In-rich side, in agreement with structural information provided in Table I and in Ref. 12. At higher energies, positrons start reaching the substrate, and the data for all the samples from the \(S^* \)-series converge to the value typical for the \(c \)-sapphire substrate at implantation energy \(E > 19 \) keV. A fraction of positrons still annihilates in the thicker layer of the In-rich area of sample \(S\text{-low}-p \) even at \(E > 24 \) keV due to the wider positron implantation profile at high implantation energies. The change in the substrate [cf. Fig. 4 (right)] results in the data points converging to a different point at \(E > 20 \) keV. Notably, the \(S \) parameter of the Si-doped samples does not differ from one measurement point to another along the dopant gradient and is higher than that of the undoped samples irrespective of the dopant content. In samples \(S \) and \(M \), the highest \(S \) parameter is observed at the medium In content and decreases on In-rich as well as on Ga-rich sides. This trend is more strongly pronounced in the sample grown on MgO (sample \(M \)). Overall, the \(S \) (\(W \), not shown) parameter of the studied thin films is higher (lower) than that of the reference \(\text{In}_2\text{O}_3 \) and bulk \(\text{Ga}_2\text{O}_3 \), indicating the presence of vacancies in \((\text{In}_{x}\text{Ga}_{1-x})_2\text{O}_3 \) layers.²⁰,²¹

TABLE II. The crystallographic phases present in the studied samples depending on the In content. The structural properties of samples \(S\text{-low}-p \) and \(M \) were defined in Refs. 11 and 12. The regions are referred to as the following: "mcl" stands for monoclinic \(\beta \)-\(\text{Ga}_2\text{O}_3 \) and "bcc" and "hex" are for cubic bixbyite \(\text{In}_2\text{O}_3 \) and hexagonal \(\text{InGaO}_3 \) II, respectively.

<table>
<thead>
<tr>
<th>Sample</th>
<th>In content, at. %</th>
<th>Crystallographic phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S\text{-low}-p)</td>
<td>20–80 mcl bcc hex</td>
<td>mcl, bcc, hex</td>
</tr>
<tr>
<td>(S)</td>
<td>30–70 hex bcc</td>
<td>bcc, hex</td>
</tr>
<tr>
<td>(S\text{-low}-p)</td>
<td>20–80 mcl bcc hex</td>
<td>mcl, bcc, hex</td>
</tr>
<tr>
<td>(S\text{-low}-p)</td>
<td>30–70 hex bcc</td>
<td>bcc</td>
</tr>
<tr>
<td>(S\text{-low}-p)</td>
<td>40 hex</td>
<td>mcl</td>
</tr>
<tr>
<td>(S\text{-low}-p)</td>
<td>40–65 Amorphous region</td>
<td>bcc</td>
</tr>
</tbody>
</table>

FIG. 2. (a) The individual XRD patterns from the wide-angle 2\(\theta \) – \(\omega \) scans for the Si-doped \((\text{In}_0.3\text{Ga}_{0.7})_2\text{O}_3 \) thin film \(S\text{-40}-\text{Si} \) along the wafer. (b) The individual XRD patterns from the wide-angle 2\(\theta \) – \(\omega \) scans for the undoped sample \(S \) along the In gradient. The subscript "c" refers to bcc-\(\text{In}_2\text{O}_3 \). The subscript "hex" refers to the hexagonal \(\text{InGaO}_3 \) II phase. The substrate-related peaks are marked as (006) and (0012).

FIG. 3. The \(S \) parameter as a function of positron implantation energy and mean implantation depth corresponding to the undoped sample \(S \) and the Si-doped samples \(S\text{-30-Si} \) and \(S\text{-40-Si} \), all on \(c \)-plane sapphire. The colour of the legend text indicates the crystal structure: blue stands for cubic bixbyite \(\text{In}_2\text{O}_3 \) and black is for hexagonal \(\text{InGaO}_3 \) II or a mixed phase.
The increase in the S parameter at an In content of 40 at. % follow the Ga2O3 Ga line with a trend toward V\textsubscript{Ga} with the increasing In content. At an intermediate In content of 40–65 at. %, the (S, W) data are clustered close to the same point as for the Si-doped samples. With a further increase in the In content, the data show a trend towards the In\textsubscript{2}O\textsubscript{3} bulk values.

IV. DISCUSSION

A. Alloy composition

We observe a correlation between the cation vacancy content and the increasing In content in the undoped thin films as shown in Fig. 6. Sample S-low-p is reported in Ref. 12 to be monoclinic up to 20 at. % In, and In is fully incorporated into the Ga\textsubscript{2}O\textsubscript{3} lattice. The point measured at 80 at. % In corresponds to a mixed phase including the hexagonal InGaO\textsubscript{3} II phase and the dominant bcc-In\textsubscript{2}O\textsubscript{3} phase. Thus, if we omit the last point as being representative of a different phase, the vacancy concentration on the Ga-rich side of sample S-low-p can be estimated to be on the order of (2–4) × 1016 cm-3, increasing with the higher In content, assuming Ga\textsubscript{2}O\textsubscript{3}-like behaviour and positron trapping in the V\textsubscript{Ga}-type defects.19 In the case of V\textsubscript{Ga}-like behaviour in

\[V_{Ga} \]

art defective and Ga\textsubscript{2}O\textsubscript{3} bulk. The positron signal evolves with the increasing In content: the W parameter decreases and the S parameter increases until the last measured point at 80 at. % In which exhibits a shift to higher S values. The linear dependence between the S and W parameters generally indicates the presence of a single type of vacancy at different concentrations.19 It should be noted that the multicomponent character of systems such as ternary alloys considered here complicates the data analysis and limits the defect identification to the terms of group-III vacancies. Nevertheless, when progressing along the In gradient from the Ga-rich to In-rich region, the data points move in the direction of increasing defect concentration instead of approaching In\textsubscript{2}O\textsubscript{3} bulk values.

The positron signal changes for the samples grown at high \(P_{O2} \). The (S, W) points for sample S [see Fig. 6(b)] are found close to the \(V_{In} \) defect line. Both samples S-30-Si and S-40-Si have higher S and lower W parameters than the corresponding reference points at 20–44 at. % In in the undoped sample S irrespective of the Si-doping level, indicating an increase in the cation vacancy concentration. Figure 6(c) shows the (S, W) values for selected (In, Ga) compositions in sample M. The points for [In] < 40 at. % follow the Ga\textsubscript{2}O\textsubscript{3} – \(V_{Ga} \) line with a trend toward \(V_{Ga} \) with the increasing In content. At a intermediate In content of 40–65 at. %, the (S, W) data are clustered close to the same point as for the Si-doped samples. With a further increase in the In content, the data show a trend towards the In\textsubscript{2}O\textsubscript{3} bulk values.

\[V_{Ga} \]

art defective and Ga\textsubscript{2}O\textsubscript{3} bulk. The positron signal evolves with the increasing In content: the W parameter decreases and the S parameter increases until the last measured point at 80 at. % In which exhibits a shift to higher S values. The linear dependence between the S and W parameters generally indicates the presence of a single type of vacancy at different concentrations.19 It should be noted that the multicomponent character of systems such as ternary alloys considered here complicates the data analysis and limits the defect identification to the terms of group-III vacancies. Nevertheless, when progressing along the In gradient from the Ga-rich to In-rich region, the data points move in the direction of increasing defect concentration instead of approaching In\textsubscript{2}O\textsubscript{3} bulk values.

The positron signal changes for the samples grown at high \(P_{O2} \). The (S, W) points for sample S [see Fig. 6(b)] are found close to the \(V_{In} \) defect line. Both samples S-30-Si and S-40-Si have higher S and lower W parameters than the corresponding reference points at 20–44 at. % In in the undoped sample S irrespective of the Si-doping level, indicating an increase in the cation vacancy concentration. Figure 6(c) shows the (S, W) values for selected (In, Ga) compositions in sample M. The points for [In] < 40 at. % follow the Ga\textsubscript{2}O\textsubscript{3} – \(V_{Ga} \) line with a trend toward \(V_{Ga} \) with the increasing In content. At a intermediate In content of 40–65 at. %, the (S, W) data are clustered close to the same point as for the Si-doped samples. With a further increase in the In content, the data show a trend towards the In\textsubscript{2}O\textsubscript{3} bulk values.

\[V_{Ga} \]

art defective and Ga\textsubscript{2}O\textsubscript{3} bulk. The positron signal evolves with the increasing In content: the W parameter decreases and the S parameter increases until the last measured point at 80 at. % In which exhibits a shift to higher S values. The linear dependence between the S and W parameters generally indicates the presence of a single type of vacancy at different concentrations.19 It should be noted that the multicomponent character of systems such as ternary alloys considered here complicates the data analysis and limits the defect identification to the terms of group-III vacancies. Nevertheless, when progressing along the In gradient from the Ga-rich to In-rich region, the data points move in the direction of increasing defect concentration instead of approaching In\textsubscript{2}O\textsubscript{3} bulk values.

The positron signal changes for the samples grown at high \(P_{O2} \). The (S, W) points for sample S [see Fig. 6(b)] are found close to the \(V_{In} \) defect line. Both samples S-30-Si and S-40-Si have higher S and lower W parameters than the corresponding reference points at 20–44 at. % In in the undoped sample S irrespective of the Si-doping level, indicating an increase in the cation vacancy concentration. Figure 6(c) shows the (S, W) values for selected (In, Ga) compositions in sample M. The points for [In] < 40 at. % follow the Ga\textsubscript{2}O\textsubscript{3} – \(V_{Ga} \) line with a trend toward \(V_{Ga} \) with the increasing In content. At a intermediate In content of 40–65 at. %, the (S, W) data are clustered close to the same point as for the Si-doped samples. With a further increase in the In content, the data show a trend towards the In\textsubscript{2}O\textsubscript{3} bulk values.

\[V_{Ga} \]

art defective and Ga\textsubscript{2}O\textsubscript{3} bulk. The positron signal evolves with the increasing In content: the W parameter decreases and the S parameter increases until the last measured point at 80 at. % In which exhibits a shift to higher S values. The linear dependence between the S and W parameters generally indicates the presence of a single type of vacancy at different concentrations.19 It should be noted that the multicomponent character of systems such as ternary alloys considered here complicates the data analysis and limits the defect identification to the terms of group-III vacancies. Nevertheless, when progressing along the In gradient from the Ga-rich to In-rich region, the data points move in the direction of increasing defect concentration instead of approaching In\textsubscript{2}O\textsubscript{3} bulk values.

The positron signal changes for the samples grown at high \(P_{O2} \). The (S, W) points for sample S [see Fig. 6(b)] are found close to the \(V_{In} \) defect line. Both samples S-30-Si and S-40-Si have higher S and lower W parameters than the corresponding reference points at 20–44 at. % In in the undoped sample S irrespective of the Si-doping level, indicating an increase in the cation vacancy concentration. Figure 6(c) shows the (S, W) values for selected (In, Ga) compositions in sample M. The points for [In] < 40 at. % follow the Ga\textsubscript{2}O\textsubscript{3} – \(V_{Ga} \) line with a trend toward \(V_{Ga} \) with the increasing In content. At a intermediate In content of 40–65 at. %, the (S, W) data are clustered close to the same point as for the Si-doped samples. With a further increase in the In content, the data show a trend towards the In\textsubscript{2}O\textsubscript{3} bulk values.

\[V_{Ga} \]
In gradient S-low-p is in low- to mid-10^{17} cm^{-3} range. The step-like shift of the data points to the In$_2$O$_3$-V_{In} line in the (S, W) plane implies that the In$_2$O$_3$-like component prevails over the Ga$_2$O$_3$-resembling counterpart in the In-rich region in Figs. 6(a) and 6(c), as expected from the phase change observed in the XRD data. For the sample with a linear In gradient S, Fig. 6(b), the positron signal demonstrates In$_2$O$_3$-like nature for all measured points already at 20 at. % In. This observation is in line with the fact that the monoclinic β-Ga$_2$O$_3$ phase was not observed at all for this sample. Among the undoped samples, the highest S parameter and, subsequently, the highest amount of open volume are observed in samples S and M at a medium indium content corresponding to the mixed phase of decreased crystalline quality including the InGaO$_3$ II phase demonstrated in Sec. II B and in Ref. 12. It should be noted that similar evolution of the positron signature might be induced by adding more oxygen vacancies next to the initial cation vacancies. Positively charged isolated oxygen vacancies V_O are undetectable by positrons and play a role only when cation-anion vacancy complexes are present. However, as the changes are clearly correlated with the phase behaviour of the (In$_{1-x}$Ga$_x$)$_2$O$_3$ alloys, we consider the changes in vacancy complexes to be less likely an explanation for our observations.

The shift towards In$_2$O$_3$ bulk in Figs. 6(a) and 6(c) for the points measured at $|\text{In}| > 70$ at. % indicates suppressed V_{In}-like group-III vacancy formation along with the appearance of the bcc-In$_2$O$_3$ phase [see Fig. 2(b) and Ref. 12]. These findings are in line with the low formation energy of V_{Ga} in Ga$_2$O$_3$ compared to the vacancy formation energy in In$_2$O$_3$ which is too high for V_{In} to emerge in substantial concentrations.

Our earlier experiments in binary oxides also demonstrate that V_{In} is much less abundant in In$_2$O$_3$ than V_{Ga} in Ga$_2$O$_3$.^{20,21}

B. Doping effects

In the undoped samples, adding In to Ga$_2$O$_3$ might be viewed as n-type doping, as In$_2$O$_3$ tends to be highly conducting, while the conductivity of Ga$_2$O$_3$ is typically limited.^{24,25} This appears to enhance the formation of V_{Ga}-like group-III vacancy type defects in the layers for low and sub-medium In contents. Sample M has a lower vacancy concentration than sample S-low-p in the considered region (up to 35 at. % In), probably due to different substrates resulting in higher crystalline quality. We observe V_{Ga} concentrations in the low-10^{16} cm^{-3} range on the Ga-rich side of the undoped sample S-low-p grown by CCS-PLD, while they have been found to fully compensate for n-type doping in Ga$_2$O$_3$ grown by metal-organic chemical vapour deposition.^{21} On the other hand, in the predominantly cubic In-rich CCS-PLD-(In$_{1-x}$Ga$_x$)$_2$O$_3$, the V_{In}-like cation vacancy concentrations are clearly higher ($\sim 10^{17} \text{ cm}^{-3}$), but in In$_2O_3$ grown by molecular beam epitaxy, these defects have been found to be unimportant for electrical compensation.^{20}

Comparing the (S, W) values for the bulk reference In$_2$O$_3$ and the data points in Fig. 6 at medium In concentrations in undoped samples M and S and in both Si-doped samples, the estimated defect parameters are $S_{\text{defect}} \geq 1.03 \times S_{\text{bulk}}$ and

![FIG. 6. The (S, W) parameter plots for (a) undoped sample S-low-p, (b) undoped sample S and Si-doped samples S-30-Si and S-40-Si, all four on c-plane sapphire, and (c) the undoped sample M grown on a-plane MgO. Each measurement point is representative of a layer at the selected In content. The values characteristic of bulk In$_2$O$_3$ are shown for reference. Inset in (b): a closer view to the (S, W) region representing the (In$_{Ga_{1-x}}$)$_2$O$_3$ layers. The colour of the legend text indicates the crystal structure: green for monoclinic β-Ga$_2$O$_3$, blue for cubic bixbyite In$_2$O$_3$, black for hexagonal InGaO$_3$ II or a mixed phase, and orange for the amorphous region. The dashed lines illustrate the expected V_{Ga} and V_{In} trends observed earlier. \(^{20,21}\) The red circles demonstrate the (S, W) span for V_{Ga}-like defects in Ga$_2$O$_3$. The error margins are of the size of the data point markers.

sample M, the vacancy concentration at a low In content can be estimated to be $(1-2) \times 10^{16} \text{ cm}^{-3}$, slightly less than that in the sample S-low-p. This observation suggests improved crystallinity for growth on MgO substrates for the In content up to 30–40 at. %.

The nature of vacancies in sample S-low-p grown on c-sapphire tends to V_{In}-like at 28 at. % In and in sample M grown on the MgO substrate at 40 at. % In. Assuming that at the high In content, the obtained positron signal is comparable to that of V_{In} and the In$_2$O$_3$-like lattice, the cation vacancy defect concentration in the sample with non-linear
$W_{\text{defect}} \leq 0.91 \times W_{\text{bulk}}$. This span agrees well with the experimental values obtained for Mg- and Sn-doped In$_2$O$_3$ and with theoretical calculations for V_{In} in In$_2$O$_3$.20,22 Assuming that the (S,W) values for the Si-doped samples represent the state where all positrons are trapped to vacancies, the saturation trapping conditions imply that the V_{In} concentration in samples S-30-Si and S-40-Si is at least mid-10^{18} cm$^{-3}$ irrespective of the doping level. Doping with Si has been found to substantially increase the vacancy concentration in the binary thin-film Ga$_2$O$_3$ as well.21

V. SUMMARY

The effect of alloy composition and Si doping on vacancy defect formation in CCS-PLD-grown (In$_x$Ga$_{1-x}$)$_2$O$_3$ thin films was investigated by positron annihilation spectroscopy. Considering the undoped samples, alloying Ga$_2$O$_3$ with indium in low-to-moderate concentrations (up to 40–60 at. % In) enhances the formation of cation vacancy-type defects. The positron data evolve first demonstrating Ga$_2$O$_3$-like behaviour to the In$_2$O$_3$-like state at 28 at. % In or at 40 at. % In depending on the substrate. This change is interpreted as reflecting the structural changes such as the formation of hexagonal phase InGaO$_3$ II. At the highest indium content (>70 at. % In), the bcc-In$_2$O$_3$ phase is observed in the XRD measurements, and the suppressed defect formation reported here matches the findings for binary In$_2$O$_3$.20 The data for the Si-doped samples suggest saturation trapping in In$_2$O$_3$-like defects, irrespective of the doping level, meaning a substantial defect concentration of at least mid-10^{19} cm$^{-3}$. Our findings illustrate the delicate balance between phenomena governing the defect formation in thin-film growth.

ACKNOWLEDGMENTS

We would like to thank M. Hahn for preparation of the PLD targets, H. Hochmuth for thin film growth, J. Lenzner for help with XRD measurements, and C. Sturm for the comments on ellipsometry results. This work was supported by the Academy of Finland Grant No. 277193.

6F. Yang, J. Ma, C. Luan, and L. Kong, “Structural and optical properties of Ga$_{20.1}$In$_{79.9}$O$_3$ prepared on α-(AlGa)$_2$O$_3$ (0 0 0 1) by MOCVD,” Appl. Surf. Sci. 255, 4401–4404 (2009).

7P. Vogt and O. Bierwagen, “Kinetics versus thermodynamics of the metal incorporation in molecular beam epitaxy of (In$_x$Ga$_{1-x}$)$_2$O$_3$,” APL Mater. 4, 086112 (2016).

