Autti, Samuli; Heikkinen, Pekka; Volovik, Grigory; Zavyalov, Vladislav; Eltsov, Vladimir

Propagation of self-localized Q-ball solitons in the 3He universe

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.97.014518

Published: 22/01/2018

Please cite the original version:
Propagation of self-localized Q-ball solitons in the 3He universe

S. Autti, P. J. Heikkinen, G. E. Volovik, V. V. Zavjalov, and V. B. Eltsov

1Low Temperature Laboratory, Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
2Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia

(Received 31 August 2017; published 22 January 2018)

In relativistic quantum field theories, compact objects of interacting bosons can become stable owing to conservation of an additive quantum number Q. Discovering such Q balls propagating in the universe would confirm supersymmetric extensions of the standard model and may shed light on the mysteries of dark matter, but no unambiguous experimental evidence exists. We have created long-lived Q-ball solitons in superfluid 3He, where the role of the Q ball is played by a Bose-Einstein condensate of magnon quasiparticles. The principal qualitative attribute of a Q ball is observed experimentally: its propagation in space together with the self-created potential trap. Additionally, we show that this system allows for a quantitatively accurate representation of the Q-ball Hamiltonian. Our Q ball belongs to the class of the Friedberg-Lee-Sirlin Q balls with an additional neutral field ζ, which is provided by the orbital part of the Nambu-Goldstone mode. Multiple Q balls can be created in the experiment, and we have observed collisions between them. This set of features makes the magnon condensates in superfluid 3He a versatile platform for studies of Q-ball dynamics and interactions in three spatial dimensions.

DOI: 10.1103/PhysRevB.97.014518

1. INTRODUCTION

All self-bound macroscopic objects encountered in everyday life or observed experimentally are made from fermionic matter, while bosons mediate interactions between fermionic particles. Compact objects made purely from interacting bosons may, however, be stabilized in relativistic quantum field theory by conservation of an additive quantum number Q [1–3]. Observing such Q balls traveling in the universe would have striking consequences: Their discovery would support supersymmetric extensions of the standard model [4,5]; Q balls could have participated in baryogenesis [6] and formation of boson stars [7], and the dark matter [5,8–10] and supermassive compact objects in galaxy centers [11] may consist of Q balls. Nevertheless, unambiguous experimental evidence of Q balls has so far not been found in cosmology or in high-energy physics. In condensed-matter systems some analogs of Q balls have been theoretically suggested [12,13], while experimentally, properties of bright solitons in one-dimensional atomic Bose-Einstein condensates (BECs) [14] as well as those of Pekar polarons in ionic crystals [15] bear similarities to Q balls.

Here we present a laboratory realization, where the Q-ball Hamiltonian is accurately reproduced, unlike previously discussed qualitative analogs. Q balls are represented by Bose-Einstein condensates of magnon quasiparticles in superfluid 3He, with the number of magnons N_λ in the condensate playing the role of the charge Q and the frequency of precession of magnetization corresponding to the frequency of oscillation of the relativistic field within the Q ball. We experimentally demonstrate all essential features of a Q ball, including self-collection of bosons into a spontaneously formed trap, long lifetime, and propagation as a compact object in space.

Bose-Einstein condensation of quasiparticles, such as magnons [16,17], exciton-polaritons [18], and even photons [19], keeps extending the limits of known macroscopic coherent phenomena [20]. Quasiparticle condensates form a perspective platform for experimental studies of elusive systems and exotic theoretical models based on the tradition of quantum simulations in atomic BECs [21,22]. One of the most versatile environments is provided by the superfluid phases of 3He, where a number of concepts from high-energy physics and cosmology have already been successfully tested [23–27]. Magnons in 3He-B are quanta of transverse spin waves, accompanied by precessing magnetization of 3He nuclei. Magnon condensation is manifested in the spontaneous phase coherence of the precession [16,28–31]. The lifetime of magnon condensates rapidly increases as temperature decreases below $\approx 3 \times 10^{-4}$ K and reaches minutes [32,33].

Magnons, carrying spin $-\hbar$, can be trapped within the sample volume using an appropriate profile of external magnetic field. An additional contribution to the trapping potential of magnon BEC originates from the spin-orbit interaction owing to the spatial distribution of the orbital anisotropy axis $\mathbf{l}(\mathbf{r})$ of the superfluid 3He-B order parameter. Unlike the common case of trapped atomic condensates, the magnon BEC is able to modify the underlying $\mathbf{l}(\mathbf{r})$ profile and hence the confining potential [34,35]. It was proposed in Ref. [34] that this self-modification of the trap is an important prerequisite for the formation of a true, propagating Q ball. In earlier experiments, however, only condensates locked to preexisting traps with various degrees of self-modification were identified. Distinct from those, in our experiments the Q ball is formed when magnons, initially pumped by a radio-frequency pulse across the whole sample, collect on the periphery of the sample.
functions are calculated for magnons. The pinch coil position defines by the magnetic energy alone. Green arrows illustrate the spatial distribution of vector \(\hat{l} \) soliton solutions \([3]\), which our experiment realizes, the complex field \(\Phi \), breaks the axial symmetry of the container-imposed container in a self-created trap. This process spontaneously breaks the axial symmetry of the container-contained \(\hat{l}(r) \) profile and of the applied magnetic field. Afterwards, the \(Q \) ball drifts towards the axis of the sample, as favored by the externally imposed fields, and the trap conforms to this movement. This propagation unambiguously demonstrates the nontrivial soliton nature of a true, long-lived \(Q \) ball. Moreover, we have created a second stationary \(Q \) ball at the sample axis and have observed how the propagating \(Q \) ball collides with the stationary one at the end of its track. We thereby show that the magnon BEC in \(^3\)He-B allows for the most accurate condensed-matter representation of the nontopological \(Q \)-ball solitons in three dimensions.

II. MAGNON BEC AS \(Q \) BALL

The essential component of a \(Q \) ball is the relativistic complex field \(\Phi \) of self-localized charge \([1]\). In the class of soliton solutions \([3]\), which our experiment realizes, the \(\Phi \) field interacts with the neutral scalar field \(\xi \), which provides a confining potential. The \(Q \) balls in theories with only one scalar field \(\Phi \) and the \(Q \) balls in theories with additional neutral field \(\xi \) are usually referred to as \(Q \) balls of the Coleman and Friedberg-Lee-Sirlin types, respectively. For a magnon \(Q \) ball in superfluid \(^3\)He the field \(\Phi \) is the transverse component of the coherently precessing spin, \(\Phi \propto S_z + i S_y \). A quasiconserved number of magnons, \(N_M = \int dV(S_z - S_y) / \hbar \), becomes the \(Q \) charge. The \(\Phi \) field in a \(Q \) ball obeys a relativistic Klein-Gordon equation \([1,3]\). In Appendix A we derive this equation for our magnon representation of \(\Phi \) starting from the Leggett equations of spin dynamics in \(^3\)He-\(B \) [Eq. (A8)]. We show that in the long-wavelength limit realized in the experiments it transforms to a Schrödinger equation

\[
-i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi + U(r)\psi,
\]

where \(m \) is the magnon mass and \(|\psi|^2 \propto |\Phi|^2 \). The trapping potential \(U(r) \) is formed by the magnetic field \(\| \mathbf{H} (r) \| = \frac{\gamma}{\hbar} v_L(r) \) and the neutral field \(\xi \) of the Friedberg-Lee-Sirlin type:

\[
U(r) = U_H + U_{\text{ext}} = \hbar v_L(r) + \frac{1}{2\pi \gamma v_L} \xi^2(r).
\]

Here \(v_L \) is the Larmor frequency, and \(\gamma \) is the gyromagnetic ratio of \(^3\)He. The neutral field \(\xi(r) \) is provided by the Nambu-Goldstone mode of the orbital degrees of freedom, the texture of the \(\hat{l} \) vector, and is expressed in terms of \(\beta_L \), the deflection angle of \(\hat{l} \) measured from \(\mathbf{H} \parallel \hat{z} \) [see Eq. (A25)]:

\[
\xi^2(r) \propto \sin^2(\beta_L(r)/2).
\]

The condensate wave function \(\psi \) is normalized to the number of magnons \(N_M \) and can be expressed in terms of the tipping angle \(\beta_M \) of the precessing magnetization [see Eq. (A25)]:

\[
\psi \propto \sin(\beta_M(r)/2)e^{i\alpha}. \tag{4}
\]

The frequency of the coherent precession \(\omega = 2\pi \nu \) plays the role of the chemical potential of the magnon BEC. In relativistic theories it corresponds to the frequency of oscillation of the \(\Phi \) field within the \(Q \) ball. For a detailed derivation of the above quantities, see Appendix A.

In the absence of magnons the spatial distribution of \(\hat{l} \) in our cylindrical container results from competing effects of the magnetic field and the container walls (see Fig 1): The orientation changes smoothly from parallel to the field at the container axis to perpendicular to the wall at the periphery.

FIG. 1. Experimental setup: top part of the sample container, magnon condensate with precessing magnetization \(\mathbf{M} \) (red blob) in a potential trap (thick solid lines), and corresponding wave functions for a small number of magnons (red dash-dotted lines). In the radial direction the potential minimum is formed by a combination of magnetic and textural energies, \(U_H \) and \(U_{\text{ext}} \). In the axial direction the minimum is formed by the magnetic energy alone. Green arrows illustrate the spatial distribution of vector \(\hat{l} \), which is uniform in the \(\hat{z} \) direction in the absence of magnons. The pinch coil position defines \(z = 0 \), which corresponds also to the common axis of the NMR pickup coils. The potentials and wave functions are calculated for \(T = 0.15T_\ast \), \(p = 0.5 \) bar, and pinch coil current of 3 A.
Together with the magnetic potential, the profile of \(\hat I \) leads to a nearly harmonic three-dimensional potential [35]. We put the origin of our coordinate system at the bottom of this trap and choose \(U(r = 0, z = 0) = 0 \). Therefore the condensate energy is conveniently measured as the shift \(\Delta \nu \) of the precession frequency of the magnetization from the Larmor frequency at the origin: \(\nu = \nu_L(r = 0, z = 0) + \Delta \nu \). All magnon states in this harmonic trap, including the ground state, have the frequency shift \(\Delta \nu > 0 \). Relevant parts of the sample container, an example of the trapping potential, and the corresponding condensate wave function are shown in Fig. 1.

The \(Q \)-ball Hamiltonian in general contains a repulsive interaction between the charged and neutral fields. Here it arises from the spin-orbit interaction, which increases free energy by \(F_{so} = |\Phi(r)|^2 z^2 \). As the number of magnons increases, \(\hat I \) within the condensate reorients along \(\hat z \), reducing \(U_{\text{ext}}(r) \) and the energy eigenstate in the trap. Experimentally, this is observed as a decrease in the condensate precession frequency \(\nu \) with increasing signal amplitude. At large \(N_M \) the effect becomes so strong that \(U_{\text{ext}}(r) \) forms a box [35] with a flat bottom and steep walls. This box is a bosonic analog of a hadron in the MIT bag model [36], as elaborated in Appendix B, and an essential prerequisite for formation of a \(Q \) ball.

III. OBSERVING \(Q \) BALLS IN EXPERIMENTS

In our experiments the superfluid \(^3\)He sample, contained in a long, cylindrical quartz tube (diameter of 5.8 mm, length of 150 mm), is cooled down using a nuclear demagnetization refrigerator to \((0.13–0.20) \text{ mK} \). The experiments were carried out at \(p = 0.5 \text{ bar} \) (if not specified otherwise). The superfluid transition temperature \(T_c \) at \(p = 0.5 \text{ bar} \) is 1 mK. Temperature is measured using a quartz tuning fork sensitive to the thermal quasiparticle density in the sample [37,38]. The fork is located near the bottom of the container above the sintered connection to the nuclear demagnetization cooling stage. The applied magnetic field is 25.4 mT, and the corresponding nuclear magnetic resonance (NMR) frequency \(\nu_L = \text{MHz} \). In addition to the homogeneous axial field used for NMR, we use a pinch coil to create a field minimum along the sample container axis centered at \(z = 0 \). The pinch coil produces also a small field maximum in the magnetic potential \(U_{\text{H}} \).

To monitor the formation and propagation of \(Q \) balls we use NMR techniques. They have proved powerful in probing various phenomena in \(^3\)He close to zero temperature [33,40]. Magnons are pumped to the system with a radio-frequency pulse at a frequency above the ground-state frequency. The pumped magnons then quickly condense to the ground state, forming the BEC [16]. The coherently precessing magnetization of the condensate induces signal in the NMR pickup coils with amplitude \(A \propto \int |\Phi|^2 dV \). The frequency and amplitude of the recorded signal are extracted as a function of time by tracing the peak in a windowed Fourier transformation of the signal. For a fixed geometry of the condensate \(A \propto N_M^{1/2} \), but the proportionality coefficient depends strongly on the spatial distribution of the BEC wave function. This allows us to track the location of the \(Q \) ball in the measurements.

IV. PROPAGATING \(Q \) BALL

After the exciting pulse is turned off at time \(t = 0 \), \(N_M(t) \) decays slowly due to nonhydrodynamic spin diffusion and radiation damping [33], the former being the dominant contribution. If \(t = 0 \), the magnon number \(N_M(0) \) is relatively small, the signal amplitude decays exponentially, \(A(t) \propto \text{exp}(-t/\tau) \), and the change in the frequency shift \(\Delta \nu(t) \) during the decay is small [33,35]. With high \(N_M(0) > N_M^* \approx 10^{12} \), we observe reproducible decay signals with nonmonotonous \(A(t) \) and \(\Delta \nu(t) \). That is, \(\nu \) is below the minimum of the original trapping potential (Fig. 2). The relaxation process is well defined: The relaxation follows a sequence of states which is independent of the relaxation rate, controlled by temperature, as demonstrated in Fig. 3(a). Decays started from different \(N_M(t) \) are identical after the common signal amplitude is reached [see Fig. 3(b)].

We explain these observations via formation of a peripheral magnon \(Q \) ball in a trap of spontaneously broken symmetry: Our self-consistent numerical simulation (details below) shows that with a sufficiently large \(Q \equiv N_M \) the textural potential \(U_{\text{ext}} \) is suppressed due to the above-mentioned box effect. The radial maximum in the magnetic potential \(U_{\text{H}} \) allows the \(Q \) ball to self-localize in the periphery. Remarkably, the axial
In the simulations, the insufficiency in the model's orbital texture, which keeps and hence its frequency is lower. This is probably due to being closer to the sample container wall than in the experiments, the simulation is compared with the experiment in Fig. 2 and interpreted in Fig. 4.

The soliton nature of the propagating Q ball is manifested during the decay: The Q ball decays while staying at the periphery until it reaches the critical charge \(Q_c = N_{\text{M}} \), after which it quickly propagates to the center and simultaneously changes shape. This is an experimental realization of the threshold \(Q_c \) discussed in Ref. [3]. Thereafter the exponential decay continues roughly at a three times slower rate. The central \(Q \) ball is strongly localized, that is, compressed in both azimuthal and axial directions due to the pressure of the surrounding texture. The central \(Q \) ball spreads wider [see Fig. 4(e)] and therefore produces a larger signal for a given number of magnons. On top of the relatively slow decay of \(N_{\text{M}} \), the fast propagation is therefore seen as a sudden increase in the signal amplitude. The change in the wave function also explains the different relaxation rates of the peripheral and central \(Q \) balls: The relaxation is mainly due to spin transfer over the thermal quasiparticles in \(^3\)He-B, which increases with gradients of the wave function [33]. Those are larger for the compressed peripheral state.

In the simulations, we treat the decay of the \(Q \) ball as a sequence of quasi-equilibrium states. This assumption is justified by the fact that in the experiments, the observed sequence of states along the \(Q \)-ball decay is relaxation rate independent (Fig. 3). The limitations of this approach are
revealed in the modest overshoot in simulated signal amplitude when the \(Q \) ball moves to the center [Figs. 2(b) and 2(c)]. We solve for the charged field \([\text{Eq. (1)}]\) and the neutral \(I \) field for each \(N_M \), varying \(N_M \) in steps. Self-consistency between \(\psi \) and \(I \) is reached with a fixed-point iteration. Close to \(Q_c \), the fixed-point iteration becomes sensitive to the initial condition. We start the simulation from \(N_M \gg Q_c \) and use the solution at the previous step as the initial condition for the next step. The \(I \) profile is calculated in three dimensions by minimization of appropriate free energy \([41,42]\) including interaction with the magnon condensate in \(\text{Eq. (A26)} \). Solving \(\text{Eq. (1)} \) when \(N_M = 0 \) is described in Ref. \([33]\). The time evolution of the \(Q \) ball in simulations is calculated by solving \(\text{Eq. (7)} \) in Ref. \([33]\) for the relaxation rate of the Zeeman energy. The signal amplitude in simulations is scaled to fit the very tail of the magnon condensate in \(\text{Eq. (A26)} \).

The spatial distribution and rigidity of the neutral field \(\zeta(\mathbf{r}) \) can be controlled by adding an array of quantized vortices by rotating the sample \([40]\). Rotating at 1 rad/s, we are able to create two coexisting spatially separated \(Q \) balls using a rf pulse with a wide enough spectrum (see Fig. 5). That is, in addition to the \(Q \) ball on the periphery of the sample container, there is another \(Q \) ball localized to the container axis. They are stable owing to increased rigidity of the neutral field separating them. Due to the magnetic field profile, the central \(Q \) ball has higher energy than the one on the periphery.

During relaxation the peripheral \(Q \) ball moves towards the sample container axis, and when the energies of the two \(Q \) balls are sufficiently close, they merge, forming a single magnon \(Q \) ball in the central trap. This process is not very regular and depends on, e.g., the phases and the initial amplitudes of the magnon BECs. The coexistence of two magnon \(Q \) balls will allow detailed studies of interactions between them, especially the Josephson effect between two \(Q \) balls in flexible traps \([43]\). In the future this setup can also be used, e.g., for a quantum simulation of the Penrose-type “gravitationally” induced wave function collapse \([44]\).

V. COEXISTENCE OF TWO \(Q \) BALLS

The concept of \(Q \) balls originates from high-energy physics and cosmology, where it has been used for so-far speculative explanations of many important phenomena in the universe, such as dark matter. We presented an experimental confirmation of the \(Q \) ball concept in a three-dimensional quantum simulation using a Bose-Einstein condensate of magnon quasiparticles in superfluid \(^3\text{He-B} \). This realization relies on the long lifetime of the magnons and their interaction with the orbital degrees of freedom of the underlying superfluid system. Both of these phenomena are also important from the point of view of BEC formation and spin superfluidity in general. The \(Q \) ball provides a new manifestation of the spin superfluidity of magnon BEC in \(^3\text{He-B} \), which complements the Josephson effect, quantized vorticity, superfluid spin currents, and the propagating Goldstone mode observed earlier in such condensates \([16,45]\).

In our experiment the \(Q \) ball propagates over a macroscopic distance in the sample container, and the confining potential conforms to that movement. Such movement manifests the soliton nature of a true \(Q \) ball. We further demonstrate how this realization provides the possibility of creating two coexisting \(Q \) balls and observing how they interact and merge. A detailed study of the dynamics and interaction between the \(Q \) balls, such as the ac Josephson effect, remains an interesting task for the future.
acknowledges financial support from the Väisälä Foundation of the Finnish Academy of Science and Letters and from the Finnish Cultural Foundation, and S.A. acknowledges that from the Finnish Cultural Foundation. The work by G.E.V. and V.B.E. was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 694248).

APPENDIX A: DERIVATION OF Q-BALL REPRESENTATION BY MAGNON BEC

1. Magnons as relativistic particles

In what follows we derive the components of a magnon Q ball in detail. For further discussion of these topics, see Refs. [34,46].

Let us start from the spectrum of transverse spin-wave modes in 3He-B in magnetic field,

$$\omega_{\pm}(k) = \pm \frac{\omega_L}{2} + \sqrt{\frac{\omega_L^2}{4} + k^2c^2},$$

(A1)

where $\omega_L = \gamma H$ and c is the spin-wave velocity, which here is assumed to be isotropic for simplicity. The spectrum (A1) can be considered a spectrum of a relativistic particle with spin $S_z = \pm \hbar$ in an effective magnetic field:

$$E(S_z,k) = \sqrt{E_0^2 + k^2c^2} - \gamma \tilde{H} S_z.$$

(A2)

Here the rest energy E_0 of a particle is defined through its mass m as

$$E_0 = mc^2 = \frac{\hbar \omega_L}{2},$$

(A3)

and the effective magnetic field is

$$\gamma \tilde{H} = \frac{\omega_L}{2}.$$

(A4)

At small k when $ck \ll \omega$, the spectrum transforms to that of the Galilean limit of a massive particle,

$$E(S_z = -\hbar, k) = \hbar \omega_L + \frac{\hbar^2k^2}{2m},$$

(A5)

$$E(S_z = +\hbar, k) = \frac{\hbar^2k^2}{2m}.$$

(A6)

The mode with $S_z = -\hbar$ corresponds to optical magnons relevant to this work. They are called simply magnons throughout the text. Each magnon reduces the projection of spin on axis z by \hbar. The other branch $(S_z = \hbar)$ is known as acoustic magnons [27].

The effective magnetic field can be removed by transformation to the spin reference frame rotating with angular velocity $\omega_L/2$. In this frame the spectrum of spin waves becomes

$$\tilde{E}(k) = \sqrt{E_0^2 + k^2c^2}.$$

(A7)

The relativistic spectrum of the spin waves suggests that magnons can be seen as quanta of a “relativistic” quantum field. Below we show that the field is a scalar field and magnons therefore play the role of the Φ field, which appears in high-energy physics as the core component of the Q-ball soliton. In what follows we set $\gamma = \hbar = 1$. Where relevant, these quantities are, however, expressed explicitly.

2. Deriving the relativistic spectrum

Let us write the linearized Leggett equations for spin dynamics in terms of the small spin-rotation angle $\theta, |\theta| \ll 1$, which is related to the deviation of spin density S from its equilibrium value χH [47]:

$$\dot{S} - \chi H = \chi \dot{\theta}.$$

(A8)

Here χ is the spin susceptibility.

The Lagrangian for the θ field contains a linear term in the time derivative because the magnetic field violates time-reversal symmetry:

$$L = \frac{\chi}{2} \left[-(\partial_t \theta)^2 - (\theta \times \partial_t \cdot \theta) \cdot H + c^2 \nabla_\theta \nabla_\theta \theta \right] + F_{so}(\theta).$$

(A9)

The term $F_{so}(\theta)$ is spin-orbit interaction. It originates from dipole-dipole interaction between spins of the particles forming a Cooper pair and violates spin-rotation symmetry. The Lagrangian (A9) can be rewritten in the following way:

$$L = \frac{\chi}{2} \left[-(\partial_t \theta + \frac{1}{2} \omega_L \times \theta)^2 + E_0^2 \theta^2 + c^2 \nabla_\theta \nabla_\theta \theta \right] + F_{so}(\theta).$$

(A10)

If one ignores the spin-orbit coupling, this Lagrangian describes relativistic massive particles that interact with a $SU(2)$ gauge field, whose time component is $a_0 = \frac{1}{2} \omega_L$ [48,49].

Let us consider transverse NMR, where only the components $\theta_\perp \perp H$ are relevant (the static magnetic field is along the z axis). The gauge field is curvature free and can be eliminated, like above, by time-dependent rotation in spin space, which corresponds to the transformation to the spin reference frame rotating with angular velocity $\omega_L/2$. In this frame, both optical and acoustic modes are precessing with frequency $\omega_L/2$ in opposite directions and thus have the same energy \tilde{E} in Eq. (A7).

The two-component real field $(\theta_\sigma, \theta_\tau)$ can be rewritten in terms of the scalar complex field Φ,

$$\Phi = (\sqrt{\chi})^{1/2} (\theta_\sigma + i \theta_\tau).$$

(A11)

The Lagrangian (A10) becomes the Lagrangian for a scalar field interacting with a $U(1)$ gauge field, whose time component is $A_0 = \omega_L/2$:

$$L = -i \partial_t \Phi + i A_0 \Phi) (\partial_\theta \Phi^\dagger - i A_0 \Phi^\dagger)$$

$$+ E_0^2 |\Phi|^2 + 2 |\nabla \Phi|^2 + F_{so}(\Phi, \Phi^\dagger).$$

(A12)

In a constant magnetic field, the $U(1)$ gauge is removed by introducing the time-dependent phase rotation, $\tilde{\Phi}(t) = \Phi(t) \exp[i Mt], \tilde{\Phi}$, and one obtains the Klein-Gordon Lagrangian for the complex relativistic scalar field used for the description of Q balls in high-energy physics:

$$L = -i \partial_t \tilde{\Phi} + E_0^2 |\tilde{\Phi}|^2 + 2 |\nabla \tilde{\Phi}|^2 + F_{so}(\tilde{\Phi}, \tilde{\Phi}^*) \equiv L_{Q_B}.$$

(A13)

In transverse NMR, where transverse components of spins precess with the Larmor frequency ω_L, the field $\tilde{\Phi}$ has the
The charge of spin-orbit interaction has a conserved quantity, the U(1) global charge
\[Q = i \int d^3x (\hat{\Phi}^* \partial_t \hat{\Phi} - \hat{\Phi} \partial_t \hat{\Phi}^*) \]
which corresponds to the spin wave spectrum in Eq. (A2). The branch with the minus sign gives the spectrum of optical magnons: \(E(S_z = -1, k) = |\omega_-(k)| \).

The Lagrangian (A12) for the complex field in the absence of spin-orbit interaction has a conserved quantity, the U(1) charge \(Q \):
\[Q = i \int d^3x (\Phi^* \partial_t \Phi - \Phi \partial_t \Phi^*) \]
which satisfies \(|\psi|^2 = \alpha_M |\Phi|^2 \), and is normalized to the number of magnons:
\[Q = i \int dV|\psi|^2 = N_M. \]
The Schrödinger wave function can be expressed in terms of the observables, phase \(\alpha_M \) and tipping angle \(\beta_M \) of the precessing magnetization:
\[\psi = \sqrt{\frac{2 \chi_H}{\gamma h}} \sin(\beta_M/2) \exp(i\alpha_M). \]
The nonrelativistic limit in Eq. (A6) of spectrum in Eq. (A2) is obtained solving Eq. (A20) for a free particle, assuming the frequency of precession is close to the Larmor frequency, \(|\omega - \omega_L| \ll \omega_L \).

The potential \(U(r) \) for magnons has two contributions: the spatial dependence of the local Larmor frequency \(\omega_L(r) = \gamma H(r) \) and that of the spin-orbit interaction \(F_{SO}(r) \) in Eq. (A12) averaged over spin precession. The latter can be expressed in terms of the field of unit vector \(\hat{1}(r) \), defined as the direction of the orbital angular momentum of Cooper pairs in \(^3\text{He-B} \). The field of the \(\hat{1}(r) \) vector is time independent in the spin-precessing state:
\[F_{SO} = U_{\text{ext}}|\psi|^2. \]
where
\[U_{\text{ext}}(r) = \hbar \frac{2 \Omega_B^2}{5 \omega_L} [1 - \ell_z(r)] \]
\[= \hbar \frac{4 \Omega_B^2}{5 \omega_L} \sin^2[\beta_L(r)/2] = \frac{1}{\omega_L} \xi^2(r). \]
Here \(\Omega_B \ll \omega_L \) is the so-called Leggett frequency which characterizes the magnitude of the spin-orbit interaction [47], and \(\beta_L \) is the polar angle of the \(\hat{1} \) vector. The texture of the polar angle \(\beta_L(r) \) plays the role of the neutral scalar field \(\zeta(r) \) interacting with the complex field \(\Phi(r) \) [or \(\psi(r) \)]. The texture \(\zeta(r) \) is obtained by minimization of the textural energies [41, 42] with the addition of the contribution which comes from the complex field of magnons [35]:
\[F_{SO} = \frac{1}{\omega_L} |\psi(r)|^2 \zeta^2(r) = |\Phi(r)|^2 \zeta^2(r). \]

APPENDIX B: MAGNON Q BALL AND MIT HADRON BAG

The magnon \(Q \) ball in \(^3\text{He-B} \) is formed owing to the interaction between the magnon condensate described by the charged field \(\Phi \) with conserved charge \(Q = N_M \) and the orbital field \(\zeta \), which is an analog of the neutral field [3, 34]. The field \(\zeta(r) \) forms a potential well in which the charge \(Q = N_M \) is condensed. In the process of self-localization the charged field \(\Phi(r) \) locally modifies the neutral field \(\zeta(r) \) via the spin-orbit interaction [Eq. (A26)]. That interaction is repulsive, and if the magnetic part of the trapping potential \(U_H \) is neglected, in the limit of large \(N_M \) a cavity is formed, which is void of neutral field \(\zeta(r) \) and filled with the charge field \(\Phi(r) \) (see Fig. 6). That is, the flexible textural trap \(U_{\text{ext}} \) transforms to a box with walls impenetrable for magnons [35]. The pressure from the field \(\xi \) is compensated by the zero-point pressure of the free

\[\text{PROPAGATION OF SELF-LOCALIZED Q-BALL SOLITONS … PHYSICAL REVIEW B 97, 014518 (2018)} \]
magnons. This is an analog of the MIT bag model of hadrons, where the quarks forming a hadron are confined only within the QCD vacuum field and the quarks can freely move in the false-vacuum void of the QCD field [36]. The confined quarks form a blob of false vacuum, where the external pressure from the QCD vacuum is compensated by the zero-point pressure of the confined quarks.

APPENDIX C: SYMMETRY BREAKING

Let us compare the Q-ball formation with conventional symmetry breaking, such as the symmetry breaking which triggers the Higgs mechanism in the standard model [50]. In the conventional case the potential acquires the shape of a Mexican hat but remains axisymmetric as in the left panel of Fig. 7. In our case the potential $U_{text}(r)$ does not have the Mexican-hat shape (Fig. 7, right panel). The potential shape depends on the density of bosons localized in it. Therefore the axisymmetric Mexican-hat potential itself is unstable towards symmetry breaking in the azimuthal coordinate. Although the generalized Hamiltonian for the combined Φ and \hat{I} fields remains symmetric (degenerate), in the Q-ball picture the potential $U_{text}(r)$ is localized along the bosons. This is a unique experimental example of spontaneous breaking of the rotational SO(2) symmetry on top of formation of the axisymmetric Mexican-hat potential.

[40] V. B. Eltsov, R. de Graaf, M. Krusius, and D. Zmeev, Vortex core contribution to textural energy in 3He-B below $0.4T_c$, J. Low Temp. Phys. 162, 212 (2011).