Niiranen, Jarkko; Khakalo, Sergei; Balobanov, Viacheslav

Isogeometric finite element analysis of mode I cracks within strain gradient elasticity

Published in:
Rakenteiden mekaniikka

DOI:
10.23998/rm.65124

Published: 01/01/2017

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Isogeometric finite element analysis of mode I cracks within strain gradient elasticity

Jarkko Niiranen, Sergei Khakalo and Viacheslav Balobanov

Summary. A variational formulation within an H^2 Sobolev space setting is formulated for fourth-order plane strain/stress boundary value problems following a widely-used one parameter variant of Mindlin’s strain gradient elasticity theory. A corresponding planar mode I crack problem is solved by isogeometric C^{p-1}-continuous discretizations with NURBS basis functions of order $p \geq 2$. Stress field singularities of the classical elasticity are shown to be removed by the strain gradient formulation.

Key words: strain gradient elasticity, fracture, mode I crack, isogeometric analysis

Introduction

Generalized continuum theories have been developed in order to include length scale information lacking from the classical continuum theories by enriching classical strain energy expressions essentially by either new independent variables of local nature (e.g. micro-rotations in micro-polar theories) or by gradients of the classical variables of global nature (e.g. strain gradients in strain gradient theories). In particular, length scale parameters are introduced by both types of approaches.

Regarding fracture mechanics, unphysical singularities at crack tips realized in the classical elasticity theory have been shown to be removed, or better regularized, within the strain gradient elasticity theory (see, e.g., [1, 13, 6, 7, 4, 3, 12, 9]). Most of the related results in literature have been, however, obtained by analytical or semi-analytical methods and surprisingly few studies with numerical methods exist [4, 3, 12, 5].

In this contribution, isogeometric finite element methods, shown to be appropriate for solving higher-order boundary value problems in the context of strain gradient theories [10, 11], are applied for analyzing a plane mode I crack problem following a one parameter variant of Mindlin’s strain gradient elasticity theory [8]. First, a variational formulation for the adopted strain gradient model is recalled [10], and then some numerical results for the crack problem are presented.

1Corresponding author. jarkko.niiranenr@aalto.fi
Simplified strain gradient elasticity in plane

Let us first consider Mindlin’s strain gradient elasticity theory of Form II [8] giving the virtual work expression over a body \(B \subset \mathbb{R}^3 \) in the form

\[
\delta W_{\text{int}} = \int_{B} \sigma : \varepsilon(\delta u) \, dB + \int_{B} \tau : \gamma(\delta u) \, dB,
\]

where \(: \) and \(\vdash \) denote scalar products for second- and third-order tensors, respectively.

The classical (second-order) Cauchy-like stress tensor \(\sigma : B \rightarrow \mathbb{R}^{3 \times 3} \) is related to its work conjugate, linear strain tensor \(\varepsilon : B \rightarrow \mathbb{R}^{3 \times 3} \), defined as the symmetric (second-order) tensor-valued gradient of the displacement field \(u : B \rightarrow \mathbb{R}^3 \), through the generalized Hooke’s law \(\sigma = 2\mu \varepsilon + \lambda \text{tr} \varepsilon I \), with Lame material parameters \(\mu = \mu(x, y, z) \) and \(\lambda = \lambda(x, y, z) \), and \(I \) denoting an identity tensor. The (third-order) micro-deformation tensor \(\gamma : B \rightarrow \mathbb{R}^{3 \times 3 \times 3} \) is defined by the strain gradient as \(\gamma = \nabla \varepsilon \), where operator \(\nabla \) denotes the (third-order) tensor-valued gradient. The (third-rank) double stress tensor \(\tau : B \rightarrow \mathbb{R}^{3 \times 3 \times 3} \), in turn, is related to its work conjugate by a (sixth-order) constitutive tensor involving, for centrosymmetric isotropic materials, a set of five material parameters \(g_1 = g_1(x, y, z), ..., g_5 = g_5(x, y, z) \) giving the strain energy density in the form ((11.3) in [8])

\[
\mathcal{W} = \frac{1}{2} \lambda \varepsilon_{ii} \varepsilon_{jj} + \mu \varepsilon_{ij} \varepsilon_{ij} + g_1 \gamma_{iik} \gamma_{kjj} + g_2 \gamma_{ijj} \gamma_{iik} + g_3 \gamma_{iik} \gamma_{ijj} + g_4 \gamma_{ijk} \gamma_{ijk} + g_5 \gamma_{iijk} \gamma_{kjj}.
\]

A one-parameter simplified strain gradient elasticity theory, originally proposed by Altan and Aifantis [2], reduces the strain energy density (2) to the form

\[
\mathcal{W} = \frac{1}{2} \lambda \varepsilon_{ii} \varepsilon_{jj} + \mu \varepsilon_{ij} \varepsilon_{ij} + g^2 \left(\frac{1}{2} \lambda \varepsilon_{ii,k} \varepsilon_{jj,k} + \mu \varepsilon_{ij,k} \varepsilon_{ij,k} \right),
\]

where the non-classical material parameter \(g \) describes the length scale of the microstructure of the material \((g_1 = 0, g_2 = 0, g_3 = g^2 \lambda/2, g_4 = g^2 \mu, g_5 = 0)\). With constant Lamé parameters, the double stress tensor then takes the form \(\tau = g^2 \nabla \sigma \). In general, the gradient parameter can be assumed to be non-constant, i.e., \(g = g(x, y, z) \). In what follows, however, \(g \) is assumed to be constant as usual.

For plane problems, with \(u = (u_x(x, y), u_y(x, y)) \) denoting now the in-plane displacement vector, and \(\varepsilon \) and \(\sigma \) standing for the corresponding restrictions of the strain and stress tensors, respectively, and \(\nabla \) now including partial derivatives with respect to \(x \) and \(y \) only, the virtual work expression (1) takes the form

\[
\delta W_{\text{int}} = \int_{\Omega} \sigma : \varepsilon(\delta u) \, d\Omega + \int_{\Omega} g^2 \nabla \sigma : \nabla \varepsilon(\delta u) \, d\Omega,
\]

where the constitutive relation \(\sigma = E \varepsilon \) is now defined by the symmetric and positive definite (fourth-order) in-plane elasticity tensor \(E : \Omega \rightarrow \mathbb{R}^{2 \times 2 \times 2 \times 2} \) following the generalized Hooke’s law of the chosen plane elasticity model.

A variational formulation of the plane gradient elasticity problem corresponding to (4) and the corresponding external energy reads as follows: for \(f \in [L^2(\Omega)]^2 \), find \(u \in U \subset [H^2(\Omega)]^2 \) such that

\[
a(u, v) = l(v) \quad \forall v \in V \subset [H^2(\Omega)]^2,
\]

338
where the bilinear form \(a : \mathbf{U} \times \mathbf{V} \to \mathbb{R} \), \(a(u, v) = a^c(u, v) + a^\nabla(u, v) \), and the load functional \(l : \mathbf{V} \to \mathbb{R} \) are, respectively, defined as

\[
a^c(u, v) = \int_\Omega \mathbf{E}\varepsilon(u) : \varepsilon(v) \, d\Omega, \tag{6}
\]

\[
a^\nabla(u, v) = \int_\Omega g^2 \nabla(\mathbf{E}\varepsilon(u)) : \nabla\varepsilon(v) \, d\Omega, \tag{7}
\]

\[
l(v) = \int_\Omega \mathbf{f} \cdot v \, d\Omega. \tag{8}
\]

The trial function set \(\mathbf{U} = \{ v \in [H^2(\Omega)]^2 | v|_{\Gamma_{C_s} \cup \Gamma_{C_d}} = \mathbf{u}, (\nabla v)|_{\Gamma_{C_s} \cup \Gamma_{F_s}} = \mathbf{w} \} \) consists of functions satisfying the essential boundary conditions, with the given Dirichlet data \(\mathbf{u} \) and \(\mathbf{w} \), whereas the test function space \(\mathbf{V} \) consists of \([H^2]^2\) functions satisfying the corresponding homogeneous Dirichlet boundary conditions.

As proved in [10], the energy norm of the problem induced by the bilinear form is equivalent to the \(H^2 \)-norm whenever \(\mathbf{U} = \mathbf{V} \), whereas symmetry, continuity and coercivity of the bilinear form (for \(g > 0 \)) guarantee the solvability of the problem. Furthermore, for conforming Galerkin methods these results imply optimal error estimates [10].

Numerical results via isogeometric analysis

Let us analyze a mode I crack problem in plane with a NURBS discretization of order \(p = 5 \) (see [10] for details) depicted in Fig. 1 (left). The stress distributions and crack openings compared for the classical and strain gradient models demonstrate, in particular, (1) the qualitative differences in the shapes of the openings and (2) the removal of the stress singularity as illustrated in Figs. 1 and 2 (for two different parameter values). As a conclusion, it should be noticed that the stress level in the strain gradient model is finally determined by the value of the (experimentally validated) length scale parameter \(g \).

![Figure 1: (left) Problem setting and computational domain with a uniform mesh; (middle) Shape of the crack opening; (right) Stress \(\sigma_{yy} \) along the crack line.](image)

![Figure 2: Stress \(\sigma_{yy} \) with the classical (a) and strain gradient (b,c) models.](image)
References

Jarkko Niiranen, Sergei Khakalo, Viacheslav Balobanov
Aalto University, School of Engineering, Department of Civil Engineering
PO Box 12100, 00076 AALTO, Finland
jarkko.niiranen@aalto.fi, sergei.khakalo@aalto.fi, viacheslav.balobanov@aalto.fi