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Abstract

Detailed and realistic tree form generators have numerous applications in ecology and forestry. For example, the varying
morphology of trees contributes differently to formation of landscapes, natural habitats of species, and eco-physiological
characteristics of the biosphere. Here, we present an algorithm for generating morphological tree “clones” based on the
detailed reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth model with simple
stochastic rules. The algorithm is designed to produce tree forms, i.e., morphological clones, similar (and not identical) in
respect to tree-level structure, but varying in fine-scale structural detail. Although we opted for certain choices in our
algorithm, individual parts may vary depending on the application, making it a general adaptable pipeline. Namely, we
showed that a specific multipurpose procedural stochastic growth model can be algorithmically adjusted to produce the
morphological clones replicated from the target experimentally measured tree. For this, we developed a statistical measure
of similarity (structural distance) between any given pair of trees, which allows for the comprehensive comparing of the
tree morphologies by means of empirical distributions describing the geometrical and topological features of a tree. Finally,
we developed a programmable interface to manipulate data required by the algorithm. Our algorithm can be used in a
variety of applications for exploration of the morphological potential of the growth models (both theoretical and
experimental), arising in all sectors of plant science research.

Keywords: quantitative structure tree model; morphological clone; stochastic data driven model; terrestrial laser scanning;
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Findings
Background

Models for plant architecture attract significant attention due
to their ability to assist empirical studies in ecology, plant bi-
ology, forestry, and agronomy [1]. The modeling activity is espe-

cially useful in research since it arises as fruitful collaboration
between specialists in different fields of studies: computer sci-
entists, mathematicians, and biologists [2].

Modeling plant architecture is approached from many direc-
tions. Some progress has been achieved in synthesis of realis-
tic plant forms in the field of computer graphics [3–5]. These
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models, although based on heuristic rules of growth, produce re-
alistic tree representation in a fast and efficient manner, which
is usually dictated by the application of this approach, i.e., natu-
ral scenery in computer visualization. Heuristic growth rules of
the procedural models for graphics applications are not firmly
based on biological principles, but nevertheless elucidate some
algorithmic properties of the growth process (for example, the
recursive [6] vs self-organizing [3, 7] character of architecture
development).

However, the most promising plant architectural models are
so-called functional-structural plant models (FSPM) [8–10] be-
cause this type of models allows for a balanced description be-
tween morphological and functional/physiological properties of
a plant. It is capable of connecting the external abiotic factors
(e.g., radiation, temperature, and soil) and the most vital func-
tions of a plant organism (such as photosynthesis, respiration,
and water and salt uptake) with its structural characteristics
[1, 2].

Nevertheless, biologically relevant architectural plant mod-
els rely on data in a form of empirically fitted functions and pa-
rameters that correspond to a particular species and/or certain
site conditions [11–14]. Thus, the change in these conditions re-
quires re-calibration of the models, which is done in a manual
fashion every time the model is simulated for the new condi-
tions. Strong dependence on data, where each simulation would
be calibrated automatically by data, is limited by both computa-
tion time and lack of the fast measurement and processing sys-
tems allowing for a detailed 3D morphological reconstruction of
the actual plant/tree.

The most recent advances in laser scanning techniques al-
low for fast and non-destructive measurement of trees with sub-
sequent reconstruction of various characteristics depending on
application (e.g., [15, 16]). Most of such studies dedicated to re-
construction of 3D point clouds obtained from laser scanning
measurements deal with overall characteristics, such as height,
width, and volume of stems/crowns, leaf index, biomass etc., re-
sembling traditional destructive methods of measurement [15,
17]. However, the detailed precise geometrical and topologi-
cal reconstruction of the tree architecture is never achieved
perfectly.

We use a fast, precise, automatic, and comprehensive re-
construction algorithm initially presented in Raumonen et al.
[18] and further developed and tested in Calders et al. [19]. The
algorithm reliably reconstructs a quantitative structure model
(QSM), which contains all geometrical and topological charac-
teristics of the object tree. Input for the method is the 3D point
cloud, sufficiently covering the tree, obtained from the terres-
trial laser scanning measurements (TLS). No additional allomet-
ric relations used for estimation of the branch proportions (as in
[20, 21]) are needed. Compared to other similar techniques (e.g.,
[20–22]), this method requires few parameters and no user inter-
action. It reconstructs the tree surface with subsequent cylin-
der (or any other geometrical primitive) approximation, which
is usually consistent with theoretical plant growth models. The
reconstruction algorithm has been validated in several studies
with several different tree species and different scanner instru-
ments [19, 23–26]. There are other published QSM reconstruction
methods from TLS data that can produce QSMs of at least similar
quality [23].

In this work, we utilize an inverse iterative procedure to op-
timize model parameters for matching the (empirical) distri-
bution of structural features of the simulated stochastic tree
models (FSPM, graphical, or other) to that of the tree recon-
structed from the laser scanning data. Meanwhile, we formu-
late a measure of similarity of the tree structures based on the

tomographic analysis of the structural distributions (e.g., Radon
transform) [27, 28]. Finally, the optimal parameter set produces
morphological “clone” trees with similar overall structure, but
varying fine-scale details.

Recently, we have reported a proof-of-concept study where
we used reconstruction of a pine tree and the corresponding
FSPM (named LIGNUM [13, 29]) to demonstrate the practical fea-
sibility of the approach [30]. Here, however, we develop a uni-
fying interface (in the form of a programmable toolbox) for our
procedure and use a general purpose fast procedural tree growth
model from Palubicki et al. [3]. This procedural model is eas-
ier to adapt for technical experimentation with the whole al-
gorithm. A similar algorithmic pipeline was reported in Stava
et al. [5] for procedural tree growth models in the context of
graphics synthesis. However, in our approach, we see the tree
growth as a random process and, consequently, apply corre-
sponding statistical methods for measuring the similarity be-
tween trees. Moreover, in our algorithm, we put emphasis on bi-
ologically and physically relevant descriptions, hence the care-
ful choice of the reconstruction algorithm. Another advantage
is a possibility to use FSPM to relate physiological parameters
to the morphogenetic processes in trees. Finally, we use no ex-
tra structures improving visual properties of trees that are not
supported by empirical observation (e.g., leaves). We note that
any other choices of parameters and feature descriptions can be
used in our approach, further facilitated with the programmable
interface.

Algorithm overview

Our approach is based upon 5 distinct parts:

1. The quantitative structure model (QSM) is a reconstruction
of a tree model from 3D point clouds obtained from terres-
trial laser scanning measurements (TLS). Here we use spe-
cific algorithm for such reconstruction reported in [18] and
[19] but other approaches could be used as well.

2. The stochastic structure model (SSM) is a tree growth model
that is selected depending on the application. There are no
limitations on the class of the model, except that it must
produce a measurable 3D branching structure.

3. The structural data set (U) is a collection of structural fea-
tures (empirical distributions) to be compared between QSM
and SSM. It is important that U be defined in the same way
by both the QSM and SSM.

4. The measure of structural dissimilarity, or structural dis-
tance DS, is a measure of discrepancy between any two data
sets. In other words, DS(U1, U2) returns a value quantifying
how much different the two data sets U1 and U2 are.

5. The optimization algorithm is a numerical routine capable
of finding a minimum of any given function by varying its ar-
guments. Examples include the Newton algorithm, genetic
algorithm, and simulated annealing.

The connection between these components is outlined in Fig. 1,
with an explanation in the text below.

The algorithm outline (Fig. 1):
Stage A: preparation

A1: build QSM from TLS.
A2: extract Ud from QSM.

Stage B: main cycle

B1: simulate SSM (with fixed random generator seed for repro-
ducibility) for the given parameters and extract Um.
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Figure 1: The algorithm outline (see explanation in the text).

B2: compare Um and Ud, getting an estimation of the distance DS

between them.
B3: change SSM parameters trying to decrease DS, go to B1, or

stop and go to B4 (changing of the parameters and stopping
criteria depend on any particular realization of the optimiza-
tion routine).

B4: simulate SSM with the “best-fit” parameter values corre-
sponding to the smallest found DS.

B5: generate morphological clones using the best-fit SSM with
different random number sequences.

At the preparation stage, the QSM is formed from the TLS point
cloud (A1). The detailed description of this process is reported
in [18, 19]. The resultant QSM contains all the geometrical and
topological features needed to form the empirical distributions
Ud (A2). The distributions can be formed from several tree indi-
viduals if they are close by shape to ensure the sample size of
the data sets (e.g., a tree has a single main stem/trunk; hence its
features are underrepresented).

At the main cycle of the algorithm, the empirical distribu-
tion Um is formed from the simulated SSM tree (B1). Next, Um is
compared against Ud using the measure of distance (B2). The op-
timization routine iteratively minimizes the distance value ev-
ery time, changing the parameter values of SSM (B3), simulating
SSM, and repeating the cycle from B1. After the stopping criteria
of the optimization routine (number of iterations, minimal al-
lowed distance, etc.) are met, the algorithm stops and produces
the best-fit SSM tree (B4). The best-fit SSM with different random
sequences produces different morphological clones (B5).

Below we describe general aspects of each of the main com-
ponents of the algorithm. The Methods section addresses fur-
ther the technical details.

Quantitative Structure Model
QSM is derived from the point cloud obtained by TLS. Essen-
tially, QSM is a surface reconstruction of the branches of the real

tree measured by TLS. The reconstruction itself is a stochastic
process, giving different architecture results for different runs.
Therefore, the reconstruction introduces internal errors in addi-
tion to the TLS measurement errors. Besides giving spatial loca-
tions of parts of the tree, QSM also reconstructs topological re-
lations between the tree branches. The branches of QSM consist
of elementary units, i.e., circular cylinders, but other geometrical
primitives can also be applicable [31]. Thus, any potential struc-
tural information about the original tree can be approximated
with high accuracy with QSM. The details of the reconstruction
algorithm are presented in [18, 19], while the validation of the
algorithm is demonstrated in [19, 23–25]).

In this work, we use the reconstructed QSM of a maple tree
(Fig. 2). The QSM was selected due to its non-trivial form and
obvious irregularities in the tree growth. This is needed to de-
termine whether the stochastic rules of SSM growth can ac-
count for this variability. In fact, the QSM growth irregulari-
ties might come from some deterministic sources, like constant
wind, shading from the neighbors, animal influences, etc. Thus,
our algorithm tries to compensate for the lack of knowledge of
the growth process with simple stochastic rules of SSM and op-
timization of the stochastic distance function.

Stochastic Structure Model
SSM is a simulated model, preferably based on analytical and/or
heuristic rules for the tree growth; however, any viable algorithm
for generating tree forms may be used. Importantly, the ultimate
output of the SSM simulation is a table containing data sets U
describing the tree structure.

Additionally, SSM may be supplied with stochastic variabil-
ity in its parameter values. Through our studies, we implement
simple stochastic variations in the form of normal and uniform
distributions added to the parameter values of SSM.

Finally, the elementary units, such as cylinders [31], forming
the SSM branches should be compatible with the units used in
the QSM reconstruction.
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Figure 2: The target QSM structure in 3 main 2D projections.

Table 1: Branch and segment features

Structural features, units Description

�, degree Inclination angle of the branch, i.e., angle with its parent branch.
�, degree Azimuthal angle of the branch, i.e., angle around its parent branch (calculated from the fixed direction).
Lt, m Total length of the branch (calculated as the sum of the segment lengths constituting the branch).
Rf, m Initial radius of the branch, i.e., radius of its first segment.
La, m Length of the parent branch from its beginning segment to the point where the current (child) branch emanates.
R, m Radius of the segment.
L, m Distance from the beginning of the branch to the segment.
� , degree Angle between horizontal projections of the segment and its parent segment.
� , degree Angle between vertical projections of the segment and its parent segment.

The additional details of the data set representation are explained in the Methods.

Examples of SSM are LIGNUM [13], a functional-structural
plant model based on the physiological principles of growth
of pine trees, but also applicable to other tree forms [32]; self-
organizing tree model [3] based on the heuristic principles of
growth, capable of producing various tree shapes and used in
computer graphics; plastic trees [4], procedural growth models
used in computer graphics; AMAP/GreenLab (see e.g., [33, 34]),
a modeling approach to generate FSPM based upon empirical
rules of growth with some physiological processes taken into ac-
count.

In this work, we use the self-organizing tree model (SOT) with
a shadow propagation algorithm [3] as SSM adapted for compar-
ison with QSM. Note that more specialized tree growth models
designed for the species in question would be better for the mor-
phology optimization, and the usual choice is FSPMs (see e.g.,
[30]).

Structural data sets
Structural data sets for any given tree structure are empirical
collections of the physical dimensions and spatial orientation
measures of segments and branches that are composed of seg-
ments. These data sets must be similarly obtained for any pair
of {Um, Ud} in the calculation of the structural distance.

Quantities in the data sets may represent scalar character-
istics and/or relations between several covariates (e.g., radii,
lengths, angles, tapering function of a branch, etc.). On one
hand, one needs to exhaustively describe morphology of the tree
using various geometrical and topological features. On the other
hand, as the number of compared data sets {Um, Ud} grows, the
efficiency of the optimization routine decreases since the num-
ber of distance measures to be minimized grows correspond-
ingly (one distance value for each pair {Um, Ud}). In the case of

multiple data sets, we minimize the average value of the corre-
sponding distances.

Branch- and segment-related data are described in Table 1
(see also Methods). These features are not exhaustive and can
be augmented when needed. But we found this set sufficient for
obtaining realistic tree shapes. Throughout the manuscript, we
maintain the notations Bw and Sw for the branch- and segment-
related data sets of the (Gravelius) order w, respectively. The zero
order w is assigned to the trunk (a branch connecting a tree with
the ground). At the branching points, the lateral buds give rise
to branches with order w + 1, where w is the order of the parent
branch, while the apical buds continue the branch of the same
order.

Measure of structural distance
The distance DS between any two data sets, or empirical dis-
tributions, measures the difference between the local densities
of points in U-space for these data sets, i.e., S and B tables of
morphological features. Here, it is constructed by measuring the
SSM vs QSM difference of the normalized cumulative distribu-
tions of the point densities projected onto a number of line direc-
tions in the coordinate space of the variables in U (see Methods).
The difference between the projected cumulative distributions
is further measured by the Kolmogorov-Smirnov statistic. The
resulting distance between the two data sets U is an average of
all statistics calculated from each of the lines.

In order to provide a reference to traditional measurement
systems, we also calculate three main tree characteristics that
are used for describing a tree shape [35], i.e., height (h), girth (g),
and crown spread (c). Finally, to compare SSM and QSM shapes, we
calculate relative error distances dh, dg, and dc for height, girth,
and crown spread, respectively. The classical distance di shows
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Figure 3: The rosette-shape SSM resulting from adjustment of the low-order segment-related scatters. (A) The SSM tree. (B) The target QSM. (C) Some segment-related
(S0,1) scatters used in the optimization. (D) Higher-order (w = 2) S-scatters (not used in optimization). (E) Higher-order (w = 2, 3) branch-related B-scatters (not used in

optimization). SSM/QSM scatters are shown in red/blue.

how large the difference is between entities i of the two trees in
proportion of the corresponding reference/QSM tree value.

The details of the distance calculations are further explained
in the Methods section.

Optimization routine
The measure of structural distance DS(Um, Ud) is minimized
by adjusting the parameters v of SSM. With infinite sampling,
DS = 0 for two trees that have exactly the same parameters v.
These trees are not copies of each other, but they are structurally
similar. The choice of U defined in DS is not unique, but ideally U
should satisfy the following uniqueness condition for DS to yield
an acceptable measure of distance. Let three trees be defined by
the corresponding parameters vA, vB, and vC with the data sets
UA, UB, and UC, respectively. Then, if DS(UA, UB) < DS(UA, UC), one
can update C←B; i.e., substitute tree C with tree B, find any new
vB for which the inequality holds, and repeat until DS(UA, UB) →0
and vB→vA. In practice, this should be true in a large neighbor-
hood of vA; however, in practice, DS > 0 due to the finite sampling
and insufficient model.

Testing of the algorithm

First, we run the optimization within each of the parameter
groups I—V, representing different processes of growth (see the
Methods for details) to determine the basic values of the param-
eters. These basic values represent choices that generate a viable
tree structure similar to the target QSM. Each optimization run
takes the best parameters for the group optimized at the previ-
ous step. The target structural distributions U for these runs are
segment-related (S) features of the branches of topological order

w = 0, 1, i.e., S0,1. Note that this exercise serves as a basic explo-
ration of the model’s behavior, which can be (partially) replaced,
for example, by the expert guesses for the parameter values or
some calibration process.

Second, based on these preliminary results, we may want to
determine the most influential parameters for each of the group
and combine them in a single optimization setup. Changes in
these parameters cause the largest relative changes in the struc-
tural distance value. This step is required to reduce optimization
time, and it is not needed if one possesses large enough compu-
tational resources. Several independent optimization runs were
taken in order to determine the most influential parameters. For
example, we found that the angular properties vary the least
among these runs, whereas the apical dominance requires sub-
tler adjustments (as can be understood from the complex struc-
ture of the target QSM).

Low-order topological adjustment of the shape
After these initial manipulations, we obtained a model with 11
parameters and good fit of the trunk (w = 0) and first-order
branches (Fig. 3C) with classical metrics dh = 0.05, dg = 0.42,
dc = 0.57. However, the overall form of the resulting minimal
score tree does not resemble the target QSM due to its rosette
shape (Fig. 3A and B). A closer look at the tree reveals that the
higher-order branches (w > 1) are mainly responsible for the
formation of the rosette-shape of the tree, i.e., the orders that
were not subject to the optimization (Fig. 3A and E). This exam-
ple demonstrates the contribution of the higher-order branches
to the overall tree shape, which suggests using the information
at w > 1 in further optimization steps. Moreover, the branch-
related (B) features, such as the angular properties of branches of
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