Niemelä, Janne Petteri; Marin, Giovanni; Karppinen, Maarit

Titanium dioxide thin films by atomic layer deposition

Published in:
Semiconductor Science and Technology

DOI:
10.1088/1361-6641/aa78ce

Published: 23/08/2017

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Titanium dioxide thin films by atomic layer deposition: a review

Janne-Petteri Niemelä*, Giovanni Marin and Maarit Karppinen*

Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland
*janne.p.niemela@gmail.com; maarit.karppinen@aalto.fi

Abstract
Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO₂ is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO₂ and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO₂ thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO₂ nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

CONTENTS
1. Introduction
2. Precursors and processes
 2.1 Halides
 2.2 Alkoxides
 2.3 Alkylamides
 2.4 Heteroleptic precursors
3. Structural characteristics
 3.1 Crystal structure
 3.2 From nucleation to morphology
4. Towards applications - doped films
 4.1 Al doping
 4.2 Nb doping
 4.3 N doping
5. Towards applications – nanostructures
 5.1 Coatings/overlayers on nanostructures
 5.2 Template-assisted nanostructures
6. Hybrid TiO₂-organic structures
7. Summary and outlook
1. Introduction

Titanium dioxide is a wide band gap semiconductor that exhibits various crystal structures, the tetragonal anatase and rutile structures being the most common ones. Although TiO$_2$ is possibly best known for its photocatalytic properties, it is an interesting material for dielectric and transparent-conductor applications as well. Owing to its higher dielectric constant, rutile is the structure-of-choice for dielectric applications, while the higher electron mobility of anatase makes it more attractive to transparent-conductor applications. Titanium dioxide tends to have n-type conducting character due to intrinsic defects that easily form in its crystal lattice. Depending on the targeted application, the intrinsic n-type nature can be complemented or compensated for by intentional extrinsic doping.

Atomic layer deposition (ALD) is a chemical thin film fabrication technique that relies on cyclic gas-surface reactions, where the precursor vapors are dosed over the growth surface one at a time. The cyclic nature of the ALD processes ensures excellent control over the film thickness, which is often demanded for today’s microelectronic devices with dimensions down-scaled to a nanometer level. Moreover, the self-limited surface reactions guarantee that the films deposited by ALD grow (sub)atomic layer-by-layer – a fact that enables in addition to the high level of thickness control, conformal deposition of thin films even on high-aspect-ratio nanostructures. These attractive characteristics have led to the apparent increased industrial interest towards ALD in general, and an explosive increase in the number of scientific publications during the last ten years, as is evident from figure 1 in the case of ALD of TiO$_2$.

The recent outburst of scientific productivity calls for reviewing the activities in the research field, and indeed, numerous general and topical reviews on atomic layer deposition have been published lately. For example, George wrote an overview on ALD in general, covering various more specific topics as well [1]. Miikkulainen et al. reviewed ALD processes in general with a special focus on crystallinity of inorganic films [2], while Johnson et al. provided a brief review on ALD fundamentals and selected applications [3]. Knez et al. introduced the advanced concepts of nanostructuring with ALD [4], and Profijt et al. reviewed the merits and challenges of plasma-assisted ALD [5]. Related to recent precursor development, heteroleptic precursors were reviewed with the focus on deposition of group four and five transition metal oxides [6,7]. Fabrication of inorganic-organic thin films by combining atomic and molecular layer deposition (MLD) was reviewed by George et al. and by Sundberg et al. [8,9]. Motivated by the large number of published works on certain widely studied materials, topical reviews such as the review on ALD of ZnO by Tynell et al. have become of increasing interest too [10].

In this work we review the atomic layer deposition of titanium dioxide from various perspectives. We begin by discussing the characteristics of different TiO$_2$ ALD processes based on halide, alkoxide, alkylamide and heteroleptic precursors. The discussion of the deposition processes is followed by a chapter devoted to film crystallinity. Leaning towards applications we review extrinsic doping of TiO$_2$ thin films with metal-insulator-metal capacitors, transparent conducting oxides and photocatalysis as case studies. Furthermore, an application-oriented chapter
on TiO₂ nanostructures is included. Finally we summarize the fabrication of titanium-based hybrid thin-film materials obtained via the strongly emerging combined ALD/MLD technique.

Figure 1. Number of publications on atomic layer deposition of TiO₂ as retrieved with SciFinder.
Table 1. Atomic layer deposition processes for TiO₂.

<table>
<thead>
<tr>
<th>Precursor:</th>
<th>H2O</th>
<th>H2O2</th>
<th>O2</th>
<th>O₃</th>
<th>H₂O plasma</th>
<th>O₂ plasma</th>
<th>MeOH</th>
<th>HCOOH</th>
<th>NH₃</th>
<th>N₂O plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halides:</td>
<td></td>
</tr>
<tr>
<td>TiCl₄</td>
<td>[11-333];</td>
<td>[334-340];</td>
<td>x</td>
<td>[271,341-343];</td>
<td>x</td>
<td>[344-346];</td>
<td>[347];</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti₄</td>
<td>[348-351];</td>
<td>[352-354];</td>
<td>[355,356];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti₄</td>
<td>[357];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Alkoxides:</td>
<td></td>
</tr>
<tr>
<td>Ti(OEt)₉</td>
<td>[37,54,63,91,607-617];</td>
<td>[54,63,91];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(OEt)₉</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[628-631];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(O'Bu)₉</td>
<td>x</td>
<td>x</td>
<td>[561];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Alkylamides:</td>
<td></td>
</tr>
<tr>
<td>Ti(NMe₂)₉</td>
<td>[278,384,509,511,635-728];</td>
<td>[688,729-734];</td>
<td>x</td>
<td>[561,683,735-743];</td>
<td>[384,646,744];</td>
<td>[384,646,651,741,745-761];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(NMe₂)₉</td>
<td>[762-766];</td>
<td>x</td>
<td>x</td>
<td>[767];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(NMe₂)₉</td>
<td>[767];</td>
<td>x</td>
<td>x</td>
<td>[767];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Heteroleptics:</td>
<td></td>
</tr>
<tr>
<td>Ti(OPr)₉(thd)</td>
<td>[636,769-773];</td>
<td>[774];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(OPr)₉(CpMe)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[775];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(OPr)₉(NPr-Me-amd)</td>
<td>[776];</td>
<td>x</td>
<td>x</td>
<td>[777];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(OMe)₉(CpMe)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[767];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(OMe)₉(CpMe₂)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[767,778-781];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(OAm)₉(trhd)</td>
<td>[769];</td>
<td>x</td>
<td>x</td>
<td>[777];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(NMe₂)₉(OPr)₉</td>
<td>[776];</td>
<td>x</td>
<td>x</td>
<td>[776];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(NMe₂)₉(Cp)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[767];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(NMe₂)₉(CpN)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[785];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(NMe₂)₉(CpMe)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[786,787];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(NMe₂)₉(CpMe₂)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[767];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(NMe₂)₉(Ngu-NMe₂)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[789];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(NMe₂)₉(Ngu-NEtMe)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[790];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ti(CHT)₉(Cp)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>[791];</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

* Ref. [546] with combined O₂/NH₃ reactant mixture. ** Refs. [792-797] without plasma. Note that a process (free from conventional oxygen sources) by combining TiCl₄ and Ti(OPr)₉ has also been demonstrated [798].
Figure 2. Ligands in the Ti precursors used in the ALD processes for TiO$_2$ thin films.
2. Precursors and processes

In the last couple of decades numerous ALD routes based on different precursor-reactant couples have been reported for the fabrication of TiO\textsubscript{2} thin films. In table 1 we summarize these processes with an aim to provide an easy access to the corresponding references, while figure 2 provides visualization of the different ligand types in the titanium precursors used. As is seen from table 1, homoleptic halides, alkoxides and alkylamides have been widely employed as Ti precursors. More recently various heteroleptic precursors with \textit{e.g.} cyclopentadienyl ligands have been introduced to improve the poor thermal stability of homoleptic alkoxides and alkylamides. Although water is by far the most common oxygen source, use of alternatives such as ozone or plasmas is sometimes justified to \textit{e.g.}, avoid physisorption of water at low temperatures, or to provide enhanced reactivity in the absence of sufficient thermal energy for water-based routes. In some cases comparison of processes present or missing in table 1 can illustrate interesting trends in the underlying chemistry; for example for the heteroleptic precursors, the lack of reactivity of certain precursors towards water and – on the other hand – the sufficient reactivity towards ozone or O\textsubscript{2} plasma can indeed be revealed from this table.

A common feature of ideal water-based thermal ALD processes is that the film growth proceeds via exchange reactions between the hydroxyl groups provided by water and the ligands (L) of the metal precursor. Thus, one water-based thermal ALD cycle for TiO\textsubscript{2} can be described on the basis of equations 1 and 2:

\begin{align}
 n(-\text{OH})(s) + \text{TiL}_4(g) & \rightarrow (-\text{O} -)_n\text{TiL}_{4-n}(s) + n\text{HL}(g) \\
 (-\text{O} -)_n\text{TiL}_{4-n}(s) + (4-n)\text{H}_2\text{O}(g) & \rightarrow (-\text{O} -)_n\text{Ti(OH)}_{4-n}(s) + (4-n)\text{HL}(g),
\end{align}

where \(n \) is the average number of ligands released by each TiL\textsubscript{4} molecule during the precursor adsorption, and where \(s \) and \(g \) refer to surface and gas-phase species, respectively. However, deviations from this ideal picture are possible. For example, when the surface density of hydroxyl groups decreases due to dehydroxylation at high temperatures, TiL\textsubscript{4} may also react dissociatively or associatively with oxygen bridges on the surface, leading to a decrease in the \(n \) value [13,40]. Moreover, the reaction byproducts may play a role in film growth by \textit{e.g.} re-adsorbing onto the surface and blocking the reaction sites. Subsequent completion of surface reactions (1) and (2) forms the so-called ALD cycle, and indeed, the film growth by ALD is realized by repeating this cycle. Stemming from the cyclic nature of the ALD technique, the film deposition rate is often described in terms of the so-called growth-per-cycle (GPC) value. Ideally, for the best repeatability of the ALD process, the GPC value should be constant as a function of the deposition temperature, which however is often not the case. For example with increasing temperature, even under self-saturating growth conditions, the GPC value can decrease for dehydroxylated surfaces, or increase due to increased thermal energy for the surface reactions. For non-self-saturating growth (not ALD)
the GPC value can *e.g.* increase at low temperatures due to physisorption of the precursors or increase at high temperatures due to self-decomposition of the precursors in the gas phase.

In ALD reviews it is typical to tabulate ALD processes together with their respective GPC values. However, provided the large statistical variation observed for the GPC values of the TiO$_2$ ALD processes, and in order to better illustrate and capture the underlying chemistry, we chose to represent the GPC-$v.s.$-temperature trends schematically instead of tabulating them (figures 3-7). When interpreting the figures, it should be kept in mind that the presented GPC values may, to some extent, depend on various factors in addition to temperature and the choice of the ALD process. For example, for very thin films the choice of the substrate can either enhance the GPC values *via* substrate-enhanced growth or reduce the GPC values *via* nucleation delay. For thicker films onset of crystallite formation upon growth propagation may alter the GPC values. Moreover, the type of the ALD reactor used or film-thickness measurement technique applied for determination of the GPC value may also play a small role. Therefore, in order to provide proper statistics and identify general GPC trends large amount of data published by various research groups for films deposited in various types of reactors on various kinds of substrates was gathered. However, owing to the massive amount of the literature, the data from all the references could not be included. Instead, as the halide, alkoxide and alkylamide-based processes have been mostly developed a while ago, the literature published before 2011 was mostly used. As for the heteroleptic precursors the advances in the field are recent, more recent literature was used in this case. From figure 3, that summarizes the GPC-$v.s.$-temperature trends for all the titanium-precursor families, the underlying chemistry and research directions are readily visible. For example, while TiCl$_4$ can be used up to high temperatures without decomposition, for alkoxides thermal self-decomposition can become a factor that limits the self-saturating nature of the surface reactions. Moreover, alkylamides show high reactivity at low temperatures, while the research on heteroleptic precursors has boosted up the thermal decomposition temperatures of the alkoxide and alkylamide precursors, often with a compromise in the GPC values. Here in Chapters 2.1-2.4 we present the characteristics of the ALD processes listed in table 1. Although the surface chemistry of ALD is intimately linked to the resultant structural properties of the films, these aspects are not discussed in depth in this chapter; instead, Chapter 3 is devoted to the discussion of the film crystallinity, phase composition and surface topography.
Figure 3. Growth-per-cycle (GPC) trends as a function of deposition temperature as retrieved from literature; the data are from the same references as in figures 4-7. In (a) red diamonds and green spheres indicate the trends for TiI₄- and TiF₄-based processes, respectively, while black spheres indicate TiCl₄-based processes. In (b) for alkoxides thermal decomposition and data for Ti(OMe)₄ is highlighted, while in (c) high low-temperature reactivity for alkylamides is evident. In (d) for heteroleptic precursors the trend to increase the thermal stability and good-quality data for CpMe₅-containing precursors are underlined. The dashed line shows the level of “typical” GPC of 0.5 Å/cycle for TiO₂ ALD as reference.

2.1 Halides

As the atomic layer deposition of TiO₂ was first reported using TiCl₄ as the titanium precursor and H₂O as the oxygen source [13,14], a notable part of the early literature discusses the deposition characteristics and the structural properties of the films obtained via this ALD route. Note that prior to the works [13,14], molecular layering of TiO₂ seems to have been reported in the USSR literature in Russian [799]. Indeed, detailed reaction mechanism studies have revealed some complexity beyond the simple ligand-exchange picture, such as dissociative or associative adsorption of TiCl₄ at high temperatures on dehydroxylated surfaces. However, the TiCl₄/H₂O route has remained as one of the most widely employed ALD process as it can be used in a rather straightforward way in a wide temperature range above 100 °C, even up to 600 °C. For TiI₄, the low dissociation energy of the Ti-I bond enables the easy removal of the iodide ligands, a fact that decreases steric hindrance and increases the GPC value [348]. For the same reason, however, thermal decomposition of the precursor leads to a loss of surface control of the film growth already at temperatures around 275 °C. On the contrary, the fluorine-based precursor TiF₄ is stable at least up to 400 °C [357]. For the halides in general, the drawback is the corrosiveness of the reaction byproducts, which can be
harmful to the deposition instruments and has been one of the drivers in the search for alternative titanium precursors.

Figure 4. Temperature trends of the growth-per-cycle (GPC) values, as retrieved from literature for the halide-based processes: in each of the three figures data for one of the Ti-halide precursors are highlighted (in green or red) at the time. The data illustrated in color in one of the figures, is shown in black in all the other figures. The data is retrieved from the following references: TiCl$_4$/H$_2$O [13,17,19,22,23,28,30,37,38,42,44,45,56,58,83,88,94,123,124], TiCl$_4$/H$_2$O$_2$ [334-336], TiCl$_4$/O$_3$ [271], TiCl$_4$/O$_2$ plasma [344,345], TiCl$_4$/MeOH [347], TiI$_4$/H$_2$O [348], TiI$_4$/H$_2$O$_2$ [352,354], TiI$_4$/O$_2$ [356], TiF$_4$/H$_2$O [357].

TiCl$_4$ with H$_2$O, H$_2$O$_2$, O$_3$, O$_2$ plasma or MeOH. The TiCl$_4$/H$_2$O process shows GPC values of around 0.5 Å/cycle, which decrease moderately with increasing deposition temperature (figure 4). The decreasing trend has been linked to a gradual transition in the mechanism of the reactions (1) or (2) as observed via *in-situ* quartz-crystal-microbalance (QCM), quadrupole-mass-spectrometry (QMS) and nuclear-magnetic-resonance (NMR) studies. The n value decreases from around 2 at 150 °C to notably below 1 at 300 °C [14,40,41], such that the role of dissociative or associative adsorption of TiCl$_4$ without release of any byproducts, and steric hindrance by the –Cl ligands, increase at high temperatures [40,41,46]. At low temperatures the high GPC values may be contributed by condensation of water, and in parallel higher Cl or H impurity levels are seen [13,32,41]. As possible secondary reactions, formation of hydroxychloride species as reaction intermediates have been proposed [16,17,41], but the lack of evidence in QMS experiments has indicated either short life time or very low concentration for these species, which could be explained by their rapid further reactions [40]. Hydroxychlorides could react with the surface hydroxyl groups to form Cl-terminated surface and release water, or decompose to form TiO$_2$ and water, or decompose releasing oxychloride species and water [16,40,41]. However, neither could have the oxychloride species been detected in QMS measurements [40]. It has been proposed [13] and predicted by computation [26] that the byproduct HCl could react with the surface hydroxyls and/or oxygen bridges such that the number of available reaction sites for the TiCl$_4$ molecules decreases. While the QCM experiments have indicated HCl to create low and unstable surface coverage and hence HCl to not to play a big role in the TiO$_2$ growth [41], Leem *et al.* saw HCl to
increase or decrease the growth rate in different ways depending on the reaction half-cycle and growth temperature [262].

The GPC values could be enhanced by increasing the reactivity for the second half-reaction (2) by using H$_2$O$_2$, O$_3$, or O$_2$ plasma as reactants. Indeed, in the case of H$_2$O$_2$ GPC values between 0.5 and 0.7 Å/cycle are slightly above the average seen for the TiCl$_4$/H$_2$O process, especially at the high end of the temperature range of 100-500 °C [334-339]. Similarly, the O$_3$-based process yields values around 0.5-0.7 Å/cycle in the temperature range of 250-450 °C [271,341], and slightly lower values at 600 °C [342]. For O$_2$ plasma, GPC values up to 1.35 Å/cycle at temperatures of 110-200 °C have been reported; for this route molecular chlorine was seen as the only byproduct with QMS and the films were free from Cl impurities, as determined with X-ray photoelectron spectroscopy (XPS) [344,345]. In the absence of –OH groups TiCl$_4$ likely adsorbs dissociatively on oxygen bridges on the film surface [344,345]. Moreover, growth of TiO$_2$ films via the TiCl$_4$/MeOH process has been reported in the context of fabrication of TiO$_2$–Cr$_2$O$_3$ nanolaminates. As a part of these layered structures this process yielded a GPC of 0.3 Å/cycle for the TiO$_2$ layers [347].

TiI$_4$ with H$_2$O, H$_2$O$_2$ or O$_2$. After the first attempts with the TiI$_4$/H$_2$O process, resulting in low GPC values [352], higher values from 0.7 Å/cycle at 135 °C to 1.5 Å/cycle at 450 °C were demonstrated [348]. For this process around two iodine ligands are released during the TiI$_4$ pulse at 135 °C ($n = 2$), while n decreases to around 1.5 at 200 °C for decreasing hydroxyl coverage of the film surface. Above 275 °C the QCM data indicate thermal decomposition of TiI$_4$ [348]. For the H$_2$O$_2$-based process the GPC vs. temperature trend is the same as for the H$_2$O-based process, with the difference that the GPC values are slightly lower with H$_2$O$_2$ [352-354]. Contrary to the TiCl$_4$-based routes, for TiI$_4$ the higher reactivity of H$_2$O$_2$ seems thus not to be beneficial. Based on QCM studies the surface reaction for TiI$_4$ adsorption proceeds by release of one or zero iodine ligands and TiI$_4$ decomposition yields the rest, summing up to a total of $n = 2$-3 above 250 °C. The low dissociation energy of the Ti-I bond enables thermal ALD of TiO$_2$ also by using O$_2$ as the reactant, so that GPC is around 0.6 Å/cycle at 235 °C – a value that may notably depend on the choice of the substrate though [348,355,356]. In the absence of hydroxyl groups the adsorbing TiI$_4$ molecules are expected to react with the oxygen bridges on the surface with possible release of iodine ligands in the form of gaseous I$_2$ byproduct, which in line with the low iodine impurity levels [355]. Low iodine impurity levels seem to be characteristic for the TiI$_4$-based processes [348,350,354].

TiF$_4$ with H$_2$O. This route was studied at 300, 400, and 500 °C and (contrary to what might appear from figure 4) the surface reactions were reported to saturate for both TiF$_4$ and H$_2$O exposures at 400 °C. The GPC values were 0.6-0.7 Å/cycle at 300 °C and around 1.0-1.7 Å/cycle at 500 °C such that the growth was faster on soda lime glass in comparison to borosilicate glass [357].

2.2 Alkoxides
The research on the alkoxide precursors has been largely driven by the need for finding alternatives for TiCl$_4$-based processes that suffer from the corrosion issues. Among alkoxides Ti(OiPr)$_4$ has been the most popular choice, with a benefit of showing reactivity towards H$_2$O even below 100 °C. Nevertheless, H$_2$O and O$_2$ plasma have also been used as oxygen sources with an aim to increase the growth rate. Reaction mechanism studies have shown exchange-reaction governed surface chemistry for the Ti(OiPr)$_4$/H$_2$O process, while more marked role of molecular or dissociative precursor adsorption is seen for the Ti(OEt)$_4$/H$_2$O route. The drawback of the alkoxide precursors is that they decompose at relatively low temperatures. For Ti(OiPr)$_4$ the decomposition starts around 250 °C, while Ti(OEt)$_4$ and in particular Ti(OMe)$_4$ are slightly more stable.

![Figure 5](image-url)

Figure 5. Temperature trends of the growth-per-cycle (GPC) values, as retrieved from literature for the alkoxide-based processes: in each of the six figures data for one to two of the Ti-alkoxide precursors are highlighted (in green or red) at the time. The data illustrated in color in one of the figures, is shown in black in all the other figures. The data was retrieved from the following references: Ti(OiPr)$_4$/H$_2$O [37,359,364,366,368,379,381,382,384,385,387,391-393,396,398,400,402,404], Ti(OiPr)$_4$/H$_2$O$_2$ [540], Ti(OiPr)$_4$/O$_3$ [547,551], Ti(OiPr)$_4$/O$_2$ plasma [384,397,567,569-571,573,574], Ti(OiPr)$_4$/H$_2$O plasma [384,397], Ti(OiPr)$_4$/N$_2$O plasma [576], Ti(OiPr)$_4$/HCOOH [598], Ti(OiPr)$_4$/CH$_3$OOH [598], Ti(OEt)$_4$/H$_2$O [37,63,607,615], Ti(OEt)$_4$/H$_2$O$_2$ [54,63,91], Ti(OMe)$_4$/H$_2$O$_2$ [614,618,622,627], Ti(OMe)$_4$/O$_3$ [628], and Ti(OtBu)$_4$/O$_3$ [561].

Ti(OiPr)$_4$ with H$_2$O, H$_2$O$_2$ and H$_2$O plasma. For the Ti(OiPr)$_4$/H$_2$O process the GPC values around 0.15-0.6 Å/cycle are typical with an increasing trend with increasing deposition temperature (figure 5) [359]. Thermal decomposition of Ti(OiPr)$_4$ onsets at around 250 °C and becomes marked at 350 °C [359-361,368]. Interestingly, the GPC values can show a notable (almost factor-of-two)
dependence on the water dose (not time), which may to some extent explain the large variation in the reported GPC values [37]. According to QMS and QCM data the number of OPr ligands released during the precursor pulse is around two between 150 and 300 °C [360,361]. Owing to the higher reactivity, H$_2$O as the reactant can improve the GPC values up to 1.2 Å/cycle at 100 °C. At higher temperatures of 200-250 °C the benefit of using H$_2$O vanishes and essentially similar growth rates of 0.5-0.6 Å/cycle are obtained with both H$_2$O and H$_2$O [360]. At 100 °C 2.6-2.9 OPr ligands are released during the Ti(OPr)$_4$ exposure, while at 200-250 °C n values of 1.2-1.7 indicate an increasing effect of steric hindrance to the film growth with increasing temperature [360]. For both H$_2$O and H$_2$O$_2$-based routes, carbon and hydrogen impurities are possible but they tend to decline with increasing temperature (at least in the absence of Ti(OPr)$_4$ decomposition of Ti(OPr)$_4$) [359,360,368,636]. The Ti(OPr)$_4$/H$_2$O plasma process yields steady GPC values around 0.5 Å/cycle in the wide temperature range of 50-300 °C, while at 350 °C Ti(OPr)$_4$ clearly decomposes [384,397]. The good-quality low-temperature performance should stem from improved reactivity of the H$_2$O-plasma reactant. In terms of carbon impurities the use of water plasma can be beneficial yielding residue-free films, as verified with XPS [384].

Ti(OPr)$_4$ with O$_2$, O$_3$ and O$_2$-plasma. Use of O$_2$ as the reactant has been mentioned in literature but not studied in detail [29,800]. Instead, for the O$_3$ reactant GPC values around 0.35-0.5 Å/cycle in the temperature range of 150-250 °C have been reported [547,553]. In the absence of –OH groups, based on in-situ Fourier transform infrared (FTIR) spectroscopy, Rai et al. proposed the surface reactions to proceed via formation of carbonate groups [553]. Probably, combustion of OPr ligands with O$_3$ results in the formation of CO$_2$ and H$_2$O; a fraction of the by-product CO$_2$ would then react with the surface forming carbonates [553]. Upon subsequent exposure to the precursor the carbonates react with the OPr ligand again releasing CO$_2$ [553]. The route based on O$_2$ plasma shows 0.3-0.8 Å/cycle at temperatures between 150 and 275 °C [362,397,567-569,571,573,576], while at high temperatures above 275 °C the self-limited nature of the surface reactions is lost due to decomposition of Ti(OPr)$_4$ [384,567]. Based on in-situ FTIR studies, both metal carbonates and hydroxyl groups could serve as reaction sites for the metal precursor [574]. Very high GPC of 1.9 Å/cycle for films grown at 50 °C by using oxygen radicals was reported; these films had density of 3.2 gcm$^{-3}$ with impurity contents of 13 at.% for hydrogen and of 4 at.% for carbon [570]. The impurity contents decline at the higher deposition temperatures as is typical [570,576]. In terms of carbon impurities, O$_2$ plasma based route might outperform the water-based thermal and plasma processes at 50 °C [384].

Ti(OPr)$_4$ with H$_3$COOH, HCOOH, N$_2$O-plasma or NH$_3$. The use of carboxylic acids as the oxygen source has been motivated by the need to minimize the formation of interfacial oxide between Si and a high-k oxide in CMOSFETS, a process that tends to occur when using the ordinary oxygen sources [598-601]. A constant GPC window with 0.6 Å/cycle was reported between 150 and 200 °C for the Ti(OPr)$_4$/H$_3$COOH process, while the Ti(OPr)$_4$/HCOOH process yields the growth of 0.52 Å/cycle at 150 °C; in the latter case the constant-GPC window is narrower and shifted towards the lower temperatures in comparison to the former case [598]. It was proposed that the surface reactions proceed such that an alcohol is released upon the carboxylic acid exposure, while an ester is released upon the Ti(OPr)$_4$ exposure. The films have low carbon content
For N₂O plasma reactant, Choi et al. reported a GPC of 0.59 Å/cycle at 250 °C, a notably higher value than obtained for Ti(O'Pr)₄/O₃ and Ti(O'Pr)₄/O₂-plasma processes in the same study [576]. The improvement was ascribed to the presence of intermediate O-N surface species that increase the ligand removal and decrease the steric hindrance [576]. Nitrogen impurities were not observed in the final full-thickness films [576]. The effect of the substrate was considered in detail in Ref. [606]. Use of the Ti(O'Pr)₄ precursor together with NH₃ reactant at 140 °C has also been reported [604,605].

Ti(OEt)₄ with H₂O or H₂O₂. The H₂O-based route has shown a range of values between 0.35-0.8 Å/cycle at 100-300 °C [607,609,611], while the precursor decomposition starts at around 250 °C, has slow kinetics below 300 °C, and becomes notable at 350 °C [607,609,610]. Note that, as for the Ti(O'Pr)₄/H₂O process, the GPC values may notably depend on the water doses (not time) [37]. The QMS studies have indicated that only n < 0.4 ligands on average were released upon adsorption of the precursor at 250 °C [610], whereas in-situ QCM studies by Aarik et al. indicated n values of 0.6 (225-250 °C), 1.2 (200 °C) and 1.5 (150 °C) [609]. This implies that molecular, dissociative, or side-product-ethanol mediated adsorption of Ti(OEt)₄ is more dominant than the surface exchange reaction between the -OH groups [609,610]. The FTIR results have indicated residues of unreacted OEt ligands for the films deposited at 125 °C [91], while at 200 °C the carbon and hydrogen levels were low [63]. Use of H₂O₂ as the oxygen source has not led to marked improvement of the GPC values, the carbon levels were higher though [54,63,90,91].

Ti(OMe)₄ with H₂O or O₃, and Ti(O'Bu)₄ with O₃. For the deposition from Ti(OMe)₄ and H₂O a constant-GPC regime at 0.5 Å/cycle has been seen between 250-300 °C [618]. Below this temperature range the growth rate decreased and above it an increase due to self-decomposition of the precursor was seen [618]. The decomposition was moderate up to 350 °C but notable at 400 °C indicating Ti(OMe)₄ to be the most stable alkoxide precursor. The stability order of Ti(O'Bu)₄ < Ti(O'Pr)₄ < Ti(OEt)₄ < Ti(OMe)₄ was concluded [618]. Impurity levels were 2 at.% for C and 7 at.% for H for films fabricated at 200 °C, and only fractions of a percent above 200 °C [618]. Film growth via the Ti(OMe)₄/O₃ process has been demonstrated between 250 and 300 °C [628-631]. Popovici et al. grew rutile films on RuO₂ substrates at 250 °C with a GPC of 0.4 Å/cycle [628,629,631], while at 300 °C a similar GPC of 0.4 Å/cycle for films of the anatase structure was reported [630]. The Ti(O'Bu)₄ precursor has not received much attention, it has however been used together with O₃ in a batch reactor showing a low GPC value of 0.16 Å/cycle [561].

2.3 Alkylamides

Motivation to use the alkylamide precursors stems from the low binding energy of the Ti-N bond, and hence high reactivity of the amide compounds towards water [634]. This provides a possibility to grow TiO₂ films well below 100 °C. Moreover, the side products of amides are less corrosive than HCl, i.e. the side product from the TiCl₄/H₂O process, which is a benefit when considering the reactor lifetime [634]. The most common alkylamide is Ti(NMe₂)₄, but Ti(NEt₂)₄ and...
Ti(NEtMe)₄ based processes are also available. The drawback is that Ti(NMe₂)₄ starts to decompose already around 200 °C.

Figure 6. Temperature trends of the growth-per-cycle (GPC) values, as retrieved from literature for alkylamide-based processes: in each of the three figures data for one to two of the Ti-alkylamide precursors are highlighted (in green or red) at the time. The data illustrated in color in one of the figures, is shown in black in all the other figures. The data was retrieved from the following references: Ti(NMe₂)₄/H₂O [384,634,636,639,642,643,674,767], Ti(NMe₂)₄/H₂O₂ [729], Ti(NMe₂)₄/O₃ [735,736,742,767,801], Ti(NMe₂)₄/H₂O plasma [384,744], Ti(NMe₂)₄/O₂ plasma [384,651,745-747,749], Ti(NEt₂)₄/H₂O [767], Ti(NEt₂)₄/O₃ [767], Ti(NEtMe)₄/H₂O [767], Ti(NEtMe)₄/O₃ [767].

Ti(NMe₂)₄ with H₂O, H₂O₂ or O₃. Typically, as is seen from figure 6, the Ti(NMe₂)₄/H₂O process exhibits a decreasing trend of the GPC with increasing deposition temperature. At low temperatures around 100 °C and below, the GPC values increase rapidly which might relate to physisorption of water and/or the Ti(NMe₂)₄ precursor. In this respect, in-situ IR studies have shown that physisorbed water has long lifetime on the film surface, up to 30 seconds even at 110 °C, and that it can contribute to the film growth [696]. On the other hand, saturating behaviour of the precursor and the reactant pulses at 50 °C have been used as an argument against the physisorption [636,646]. At high temperatures around 200-260 °C, the low binding energy of the Ti-N bond leads to early self-decomposition of the Ti(NMe₂)₄ precursor [635,636]. Absence of nitrogen impurities has indicated that the NMe₂ ligands are removed as a whole [636]. Interestingly, by using H₂O₂ as the oxygen source, crystalline films with anatase structure have been obtained already at 150 °C [729]. This is a lower temperature than is typically needed for crystallization via the water-based route (see chapter 3.1). No impurities were detected in the H₂O₂-based films in the temperature range 100-250 °C [729]. The Ti(NMe₂)₄/O₃ process shows similar temperature characteristics to those of the water-based process, with slightly lower GPC values at low temperatures [735,736,742,767,801].

Ti(NMe₂)₄ with O₂ plasma or H₂O plasma. Also for the O₂ plasma-based route the GPC-vs.-temperature data shows an increasing trend with decreasing temperature, and as for O₃, the GPC values for O₂ plasma process at low temperatures are slightly lower than for the water-based thermal route [384]. AES depth profiles showed presence of carbon impurities only at the sample surface for the film deposited at 200 °C [745]. The films deposited at 50 and 150 °C showed 3.5
and 2\% of carbon impurities [384]. Lee et al. reported very high GPC values around 2 Å/cycle even around 100-200 °C, however neither the carbon content, nor pulse saturation was commented [747,749]. For the Ti(NMe_2)_4/H_2O plasma process the GPC-v.s.-temperature trend was very similar to that of the thermal process [384]. The films deposited at 50 and 150 °C showed no carbon impurities [384].

Ti(NEt)_4 and Ti(NEtMe)_4 with H_2O or O_3. Katamreddy et al. have demonstrated TiO_2 film growth also via different combinations of the Ti(NEt)_4, Ti(NEtMe)_4 precursors and the H_2O and O_3 reactants [767]. The processes yielded the following GPCs: Ti(NEt)_4/H_2O 0.25 Å/cycle (125-250 °C), Ti(NEt)_4/O_3 0.4 Å/cycle (125-225 °C), Ti(NEtMe)_4/H_2O 0.4 Å/cycle (125-225 °C), Ti(NEtMe)_4/O_3 0.55 Å/cycle (125-225 °C) [767].

2.4 Heteroleptic precursors

Heteroleptic precursors are molecules in which the ligands bonding to the central titanium atom are of more than one type. The synergetic effects in these precursors are expected to arise from the fact that one type of ligand can compensate for the drawbacks of the other type of ligand. Although TiCl_4 is thermally stable up to high temperatures, the corrosive byproduct HCl of the TiCl_4-based processes may be harmful for the deposition instruments. The processes based on the homoleptic alkoxides and alkylamides do not suffer from corrosion issues, however, thermal self-decomposition limits their use in general below 300 °C. Therefore, various routes for boosting up the thermal-decomposition temperature of the non-halide precursors have been investigated by replacing one or more of the original ligands of the alkoxide or alkylamide precursors. In this respect, thd and Cp ligands have been found to have a particularly stabilizing effect; for Cp this seems to be enhanced for Me-substituted Cp rings, especially for CpMe_5. It is worth noting that typically insufficient reactivity of water towards the Cp-based precursors requires the use of more reactive co-reactants such as ozone or O_2 plasma. The bulkiness of the Cp ligand may lead to a decrease in the GPC values due to steric hindrance, which could however be overcome by using O_2 plasma instead of ozone. The main driver for this development is the deposition of rutile-structured TiO_2 and SrTiO_2 thin films, which are interesting high-k materials for dynamic random access memories (DRAM).
Figure 7. Temperature trends of the growth-per-cycle (GPC) values, as retrieved from literature for processes based on heteroleptic precursors: in each of the nine figures data for one to four of the heteroleptic precursors are highlighted (in green, red, yellow or blue) at the time. The data illustrated in color in one of the figures, is shown in black in all the other figures. The data was retrieved from the following references:

- Ti(OiPr)$_2$(thd)$_2$/H$_2$O [769,771-773], Ti(OiPr)$_2$(thd)$_2$/O$_3$ [774], Ti(O$'$Am)$_2$(IPBM)$_2$/O$_3$ [769], Ti(OPr)$_2$(dmae)$_2$/H$_2$O [768], Ti(NMe$_2$)$_2$(O$'$Pr)$_2$/H$_2$O [776], Ti(NMe$_2$)$_2$(O$'$Pr)$_2$/O$_3$ [777], Ti(O$'$Pr)$_4$(NP$'$r-Me-amd)/H$_2$O [776], Ti(O$'$Pr)$_4$(NP$'$r-Me-amd)/O$_3$ [777], Ti(NMe$_2$)$_3$(guan-NMe$_2$)/H$_2$O [788], Ti(NMe$_2$)$_3$(guan-NMe$_2$)/O$_3$ [789], Ti(NEtMe)$_3$(guan-NMe$_2$)/H$_2$O [790], Ti(NEtMe)$_3$(guan-NMe$_2$)/O$_3$ [790], Ti(O$'$Pr)$_3$(CpMe)/O$_2$ plasma [775], Ti(OMe)$_3$(CpMe)/O$_3$ [767], Ti(OMe)$_3$(CpMe)$_2$/O$_3$ [767,778], Ti(OMe)$_3$(CpMe)$_2$/O$_2$ plasma [775,784], Ti(NMe$_2$)$_3$(CpMe)/O$_3$ [767], Ti(NMe$_2$)$_3$(CpMe)/O$_2$ plasma [787,802], Ti(NMe$_2$)$_3$(CpN)/O$_2$ plasma [785], Ti(CHT)Cp/O$_3$ [791].

Ti(O$'$Pr)$_2$(dmae)$_2$ with H$_2$O. In the study of this ALD route, the self-decomposition temperature was reported to shift by around 50 °C towards the higher temperatures in comparison to the Ti(O$'$Pr)/H$_2$O process [768]. The improved stability was thought to stem from the fact that the precursor exists as a monomeric complex with a pseudo-octahedral coordination and hence increased coordinative saturation for the central Ti atom. The GPC values around 0.3 Å/cycle between 80 and 300 °C were obtained, while above 300 °C the precursor started to self-decompose. However, the high level of impurities for the films’ surfaces (15 at.% for carbon and up to 5 at.%
of nitrogen below 300 °C) indicated incomplete hydrolysis of the metal precursor below 300 °C, which was also reflected to the crystallization behavior of the films such that anatase-structured films were obtained only at 400 °C [768].

Ti(OPr)2(thd)2 with H2O or O3, and Ti(O'Am)2(trhd)2 with H2O. The Ti(O'Am)2(trhd)2/H2O process proceeds as a saturated growth at 300 °C, however it suffers from very low growth rate of around 0.05 Å/cycle [769]. The Ti(OPr)2(thd)2/H2O process shows better performance: it exhibits self-saturating growth with GPC values up to 0.46 Å/cycle at 390 °C [769], with notable decomposition of the β-diketonate ligands and increasing carbon-impurity levels seen above 470 °C [772]. Moreover, Lee et al. observed self-saturating growth for the Ti(OPr)2(thd)2/H2O process at 370 °C with a GPC value of 0.25 Å/cycle [773], whereas the use of ozone as the reactant enabled notably higher GPC of 0.43 Å/cycle on a Ru substrate. The GPC value increases with increasing temperature for both the reactants, even for self-saturating surface reactions. The differences in the GPC values stem from interfacial reactions between the substrate and the oxygen source: strong oxidation power of ozone leads to in-situ oxidation of the Ru substrate to the rutile-structured RuO2, on top of which the growth of rutile-structured TiO2 with a high GPC is promoted. Note that, the alkoxide ligands add reactivity towards water as compared to homoleptic β-diketonates [773].

Ti(OPr)3(CpMe) and Ti(O'Me)3(CpMe3) with O2 plasma. Potts et al. reported film growth for the Ti(OPr)3(CpMe) precursor in the temperature range of 100-300 °C with a rather constant GPC values around 0.55 Å/cycle, while the use of the Ti(OPr)3(CpMe3) precursor yielded a GPC of around 0.5 Å/cycle. Film densities were high, comparable to the ideal anatase density of 3.9 g/cm³ even at the deposition temperatures as low as 100 °C; for the Ti(OPr)3(CpMe3)/O2 plasma process even at 50 °C the density was around 3.6 g/cm³. No carbon was detected in the films as measured with RBS for neither of the processes, while elastic recoil detection (ERD) showed 2-3 % of hydrogen to be present in the films. The Cp-containing precursors are not decently reactive towards water, so use of ozone or plasma is necessary. Note that here the O2-plasma based route seems to give higher GPC values [775] in comparison to the O3-based route discussed below.

Ti(OMe)3(CpMe) and Ti(OMe)3(CpMe3) with O3. The Ti(OMe)3(CpMe)/O3 process shows GPC of around 0.25 Å/cycle between 200 and 325 °C, with a marked precursor decomposition seen at 350 °C. The Ti(OMe)3(CpMe3)/O3 process enabled film growth with a GPC slightly below 0.3 Å/cycle between 200 and 400 °C with a significant decomposition seen only above 450 °C [767]. On the other hand Rose et al. saw precursor decomposition already at 350 °C [778]. The GPC values were around 0.25 Å/cycle. QMS studies indicated that one OMe ligand is released during the chemisorption of the metal precursor, while the Cp ligand and the rest of the OMe ligands are removed during the O3 pulse. XPS showed only surface carbon and TOF-SIMS only moderate carbon levels, decreasing with increasing deposition temperature. The films deposited at 280 °C on TiN had anatase structure and the films deposited on Ru had a mixed amorphous and rutile structure. The drawback in using non-symmetric molecules is that they may have lower sticking coefficients [779]. Computational aspects of the Ti(OMe)3(CpMe3)/O3 are discussed in [781,803].

Ti(NMe2)3Cp and Ti(NMe2)3(CpMe3) with O3. The Ti(NMe2)3Cp/O3 process shows GPC of around 0.4 Å/cycle between 175 and 275 °C, and at 350 °C the precursor decomposition becomes marked. For the Ti(NMe2)3(CpMe3)/O3 process GPC is slightly below 0.23 Å/cycle between 150
and 350 °C, so that at 350 °C the precursor decomposition becomes marked [767]. These data by Katamreddy et al. indicate the substitution of the Cp ring to have a stabilizing role on the Cp-based precursors [767]. This could be due to the methyl groups serving as electron donors to the Cp ring hence strengthening the Cp-Ti bond [7].

Ti(NMe₂)₃(CpMe) and Ti(NMe₂)₃(CpN) with O₂ plasma. Profijt et al. studied the role of substrate biasing in Ti(NMe₂)₃(CpMe)-based route between 100 and 300 °C. GPC values around 0.9 Å/cycle were obtained, with a slight increase with increased biasing. Notably, without epitaxial stabilization, formation of the rutile structure was observed at temperatures as low as 200 °C for films deposited on Si substrates, by applying substrate biasing. Together with the formation of the rutile structure, more impurities such as –OH groups were incorporated in the films, so that the films became slightly over-stoichiometric with increased biasing [786]. This process was also used to fabricate compact layers for flexible perovskite solar cells [787]. For the Ti(NMe₂)₃(CpN)-based route nearly constant GPC of 0.4 Å/cycle was reported between 200 and 400 °C. Between 100 and 200 °C the GPC values drop with decreasing temperature [785]. The films deposited (on oxygen plasma treated Ru substrates) at 200 °C were amorphous, while the films deposited at 400 °C possessed the rutile structure. [785]

Ti(CHT)Cp with O₃. Ti(CHT)Cp is different from the common Ti precursors in that instead of having four ligands it has only two, such that the metal center is surrounded by one η⁵-coordinated cyclopentadienyl ligand and one η⁷-coordinated cycloheptatrienyl ligand; the oxidation state of Ti has been debated but IV+ is considered the most likely one [791]. The ALD process with ozone shows GPC values around 0.35 Å/cycle at 300 °C with an increasing trend with increasing temperature in the range of 250-450 °C; precursor decomposition manifests itself at 400 °C, but it likely starts at around 350 °C. For films grown at 300 °C the carbon content is below 1 at%. The films deposited at 300 °C and below are predominately of the anatase structure, while at 325 and above the rutile structure starts to dominate. The Cp precursor does not react with water and requires ozone as the reactant [791].

Ti(Pr,Me-amd) with H₂O or O₃. The Ti(Pr,Me-amd) process using water as the reactant shows constant GPC around 0.5 Å/cycle between 300 and 350 °C with self-limiting growth demonstrated at 325 °C [776]. Carbon and nitrogen levels are below 1 at% within the temperature range of 275-375 °C. In the thermal decomposition regime above 375 °C the carbon levels jump up to 10-20 at%. The films had anatase structure within the entire temperature range studied. When ozone was used as the reactant the GPC was around 0.3 Å/cycle between 275-325 °C, being slightly lower than for the water-based process. However, similarly to the water process decomposition of the precursor was seen above 350 °C [777]. The films had anatase structure at 275 °C and above, and the carbon impurities were reported to be below the detection limit. Film purity was good and the films were stoichiometric regardless of the decomposition at 375 °C [777]. Ti(Pr,Me-amd) has the benefit of being liquid, hence avoiding particle incorporation into the films [776].

Ti(NMe₂)₂(O'Pr) with H₂O or O₃. The homoleptic alkoxide and alkylamide counterparts of Ti(NMe₂)₂(O'Pr) start to decompose around 250 °C, however the heteroleptic Ti(NMe₂)₂(O'Pr) shows an improvement in stability up to 325 °C [776,777]. The films deposited with water as the
reactant exhibited an increasing trend for the GPC value with increasing deposition temperature in the temperature range of 250-375 °C with a high value around 0.8 Å/cycle at 325 °C. Carbon and nitrogen levels were below 1 at.%. In the thermal decomposition regime above 375 °C the carbon levels were high 10-20 at.%. The films had anatase structure within the temperature range studied [776]. The films deposited with ozone as the reactant showed very similar characteristics to the films deposited via the water-based process, including self-saturate surface reactions and high GPC of 0.9 Å/cycle at 325 °C; moreover, the in-situ studies indicated that combustion reactions are taking place during both metal precursor and ozone pulses [777].

Ti(NMe)₃(guan-NMe) with H₂O or O₂ plasma. For this process film growth shows a region of rather constant GPC around 0.45 Å/cycle between 200 and 300 °C and strong increase below and above this temperature range up to values around 0.7 Å/cycle [788]. Regardless of this increase the GPC does not show a marked dependence on the precursor pulse length at 330 °C. Impurities were below 1 at.% for N and below 3 at.% for C below 300 °C, while above 300 °C a slight increase was observed. The anatase structure dominated in the films for deposited temperatures at around 250 °C, while small inclusions of the brookite phase were seen at 300 °C. Above 300 °C notable rutile inclusions appeared. Moreover, the authors noted that that shorter process time favors the growth of smaller crystallites and smoother films. The phase composition seemed to depend on the process time such that shorter times favored the growth of rutile phase [788]. O₂ plasma-based films demonstrated by Dang et al. were amorphous in the temperature range 100-225 °C and contained 10 at.% of carbon [789].

Ti(NEtMe)₃(guan-NEtMe) with H₂O and O₃. This ALD route exhibits rather constant GPC around 0.3-0.4 Å/cycle between 200 and 325 °C, independent on the oxygen source used [790]. For the water (for ozone not reported) process the GPC at 350 °C drops slightly, which hints absence of decomposition at such a high temperature. The stability is notably enhanced in comparison to the Ti(NEtMe)₄ precursor [767], perhaps due to chelate effect of the guanidinate ligand [790]. The ozone-based process yields very pure films with 1.3 at.% for carbon, 0.3 at.% for nitrogen and 0.5 at.% for hydrogen, whereas the water-based process incorporates more impurities into the films, such that the levels are 4.7 at.% for carbon, 1.6 at.% for nitrogen and 0.5 at.% for hydrogen. The impurity levels are reflected to the crystallization temperature of the films such that for the ozone-based process anatase-structured films are obtained at 275 °C (amorphous below), while for the water-based process the films grow with the anatase structure at 300 °C (amorphous below) [790].
3. Structural characteristics

Crystal structure and morphology are crucial properties for various potential applications of ALD-fabricated TiO$_2$ thin films. Both the dielectric and the electrical transport properties depend on the crystal structure of the material: rutile exhibits a high dielectric constant, while anatase possesses a high electron mobility for applications where high conductivity is needed. Texture of the films is of importance, as the tetragonal crystal structure may yield anisotropic physical properties. Moreover, grain boundaries may provide current leakage pathways in dielectric applications and reduce the carrier mobility in conducting applications; control of film morphology is vital for surface-area-sensitive applications such as catalysis.

3.1 Crystal structure

Atomic layer deposited TiO$_2$ thin films can be grown either as amorphous or in several different crystalline forms; crystal structures reported for the films are anatase, rutile, brookite, TiO$_2$-II phase and suboxide phases. With properly chosen deposition conditions some of these polymorphs can be obtained as a phase-pure material but often two or more crystal structures coexist and form a mixed-phase material. The key factors that determine the crystal structure of the as-deposited thin film are the deposition temperature, the choice of the ALD process and the substrate material, and the film thickness. Post-deposition annealing treatments can be employed to obtain the targeted crystal structure. In general, amorphous films are obtained at low deposition temperatures, films with anatase structure at intermediate temperatures and mixed-phase anatase-rutile or pure rutile TiO$_2$ films at high temperatures.

For the TiCl$_4$/H$_2$O process anatase crystals start forming (often within an amorphous TiO$_2$ matrix) already at 125-165 °C or above [19,42,88,91,100,117]. The rutile structure begins to form at around 350 °C [19], or above [74]. For the films deposited via the TiCl$_4$/H$_2$O$_2$ route no formation of rutile was seen up to 440 °C [335]. Lower crystallization temperatures are apparently realized when using O$_2$ plasma as the oxygen source, as anatase was observed by XRD at 135 °C and already at 110 °C by FTIR [344,345]. Onset temperatures comparable to those of the TiCl$_4$/H$_2$O process for anatase and rutile formation have also been reported for the TiI$_4$/O$_2$ [356] and the TiI$_4$/H$_2$O$_2$ [348] processes, while for the TiI$_4$/H$_2$O$_2$ process rutile started to form already at around 300 °C [352-354]. Note that for the TiI$_4$-based processes the self-limited nature of the film growth may be compromised at the temperatures were rutile forms. For the TiF$_4$/H$_2$O process the rutile structure was observed starting from 400 °C on soda-lime glass, whereas on borosilicate glass the anatase structure still predominated at 500 °C [357]. Interestingly, after very careful process optimization the TiCl$_4$/H$_2$O route can enable fabrication of the TiO$_2$-II phase (α-PbO$_2$-type high-density TiO$_2$ polymorph) on Si(111) substrates in the temperature range of 375-450 °C [21,22,25]. Growth of Ti$_9$O$_{17}$ suboxide films was achieved via the TiI$_4$/H$_2$O$_2$ route on glass substrates in a narrow temperature range of 300-325 °C; this structure was unstable upon storage though. Furthermore, some Ti$_3$O$_5$ inclusions were observed in the films fabricated via the TiI$_4$/H$_2$O route [352].

For the alkoxide-based processes the onset temperatures for the anatase formation appear to be slightly higher than for the halide-based processes. For the Ti(OiPr)$_4$/H$_2$O process the first signs of
the anatase formation are seen at 180 °C [360]; or above, and in the temperature range 200-325 °C films have the anatase or amorphous-anatase structure [359,368,373,391,547]. Similar to the water-based process the Ti(OPr)$_4$/O$_3$ route yields anatase-structured films at 250 °C on a silicon substrate [547]. On an Ru substrate O$_3$ oxidizes the substrate surface to rutile-structured RuO$_2$ which seeds the growth of rutile TiO$_2$ [547,548]. If the Ru seed layer is grown on TiN, anatase content is minimized [555]. Note that the use of RuO$_2$ substrates directly yields similar results [391,555]. Similar to ozone, both O$_2$ plasma or N$_2$O plasma serve as powerful oxidizers on Ru surfaces in a way that the N$_2$O plasma yields slightly purer rutile films with higher GPC values [576]. On silicon, also the O$_2$ plasma yields anatase films at 250 °C [568]. If an Ru surface is pretreated with O$_3$, films in which the rutile structure dominates can be also grown via the Ti(OPr)$_4$/H$_2$O process [371]. Similarly, rutile films can be obtained on oxidized Ir surfaces via the O$_2$ plasma-based process at 250 °C [397]. It is worth noting that Rai et al. reported mixed anatase-rutile films at temperatures as low as 150 °C via the Ti(OPr)$_4$/H$_2$O plasma process on HF-cleaned silicon [574]. For the Ti(OEt)$_4$/H$_2$O process anatase formation begins at around 180 °C or above [54,63,91,609,611]. Use of H$_2$O$_2$ as the oxygen source instead of H$_2$O has been reported to suppress crystallization slightly, presumably due to increased level of impurities [63]. For the Ti(OMe)$_4$/H$_2$O process, anatase formation has been reported to begin at 225 °C, as evidenced with XRD [618,625]. In general, for the alkoxide-based processes the film crystallinity might be suppressed at temperatures where the self-decomposition of the precursor starts to take place, as more and more impurities are incorporated in the films [607,618]. Moreover, for alkoxide-based processes it may also be difficult to obtain the rutile structure in the decomposition-free temperature regime without epitaxial seeding of the film growth.

For alkylamide-based processes the poor thermal stability of the precursors limits the decomposition-free film growth to temperatures below 200-260 °C [635,636]. Hence, in most of the cases obtaining crystalline as-deposited films becomes difficult, or the processes may not be decomposition free in the temperature region where crystalline films are obtained. For the Ti(NMe$_2$)$_4$/H$_2$O, Ti(NMe$_2$)$_4$/H$_2$O plasma and Ti(NMe$_2$)$_4$/O$_2$ plasma processes growth of amorphous films has been reported to take place below 250 °C [384,634,636,746,747,749]. The anatase phase has been seen to appear at 250 °C, while at 300 °C rutile inclusions have been potentially observed [635,746,749]. The poor crystallization tendency is not necessarily related to incomplete surface reactions and consequent high carbon and/or nitrogen content, as the films are reported to be of high purity [384,634,636]. Regarding the O$_2$ plasma-based process, formation of the rutile structure was seen for films deposited on stainless steel substrates at 400 °C, while on silicon substrates mixed-phase anatase-rutile structure formed at 300 °C and above [746,747,749]. Xie et al. compared H$_2$O, H$_2$O plasma and O$_2$ plasma as the oxygen source for Ti(NMe$_2$)$_4$; the highest level of carbon impurities was found for the Ti(NMe$_2$)$_4$/O$_2$ plasma process, which correlated with the poor crystallization tendency upon annealing [384]. The report regarding film crystallization when using H$_2$O$_2$ as the oxygen source makes a noteworthy exception, as the formation of anatase structure was reported to onset already at 150 °C [729].

For the processes based on heteroleptic precursors crystalline anatase films can typically be deposited in the decomposition-free regime, as the self-decomposition temperatures are shifted
towards the higher temperatures in comparison to the homoleptic alkoxides and alkylamides. For the Ti(NMe$_2$)$_2$(OiPr)$_2$ precursor TiO$_2$ films crystallize with the anatase structure starting from 250 °C be the oxygen source H$_2$O or O$_3$ [776,777]. For Ti(OiPr)$_2$(thd)$_2$ as the Ti precursor, the anatase structure was found to form in the temperature range of 340-470 °C when H$_2$O was used as the oxygen source [769,772,773], while using ozone as the oxygen source rutile structure forms on Ru substrate at 250 °C [773], in a similar way that has been reported for the Ti(OiPr)$_2$/O$_3$ process and discussed above [547]. Regarding the cyclopentadienyl-based processes anatase formation has been reported at 280 °C for the Ti(OiPr)$_3$(CpMe$_5$)/O$_3$ [778] and at 250 °C for the Ti(Cp)(CHT)/O$_3$ process [791]; for Ti(OiPr)$_3$(CpMe$_5$) amorphous-rutile films grow on Ru at 280 °C [778]. Notably, for the Ti(NMe$_2$)$_2$(CpMe)/O$_2$ plasma process formation of the rutile structure was observed at temperatures as low as 200 °C for films deposited on Si substrates, by applying substrate biasing [786]. For the Ti(Cp)(CHT)/O$_3$ process, the rutile content progressively increases starting from 300 °C being higher than the anatase content above 325 °C [791]. For amidinate-based processes the crystallization onset is similar such that the films fabricated using Ti(OiPr)$_3$(NiiPr-Me-amd) and H$_2$O reactants crystallize in the anatase phase at 250-375 °C [776], while use of O$_3$ as the oxygen source increases the onset of the crystallization slightly to 275 °C [777]. For guanidinate precursors the film crystallization takes place at slightly higher temperatures, at 275 °C for the O$_3$ process and at 300 °C for the H$_2$O-based process, when Ti(NEtMe)$_3$(guan-NEtMe) is used as the Ti precursor [790]. However, for the Ti(NMe$_2$)$_2$(guan-NEtMe) precursor the anatase formation was seen already at 250 °C, brookite inclusions seen in the temperature range of 300-315 °C and disappearing at 330 °C; rutile formation was seen to onset at 315 °C for films grown on Si [788]. The Ti(OiPr)$_3$(NPr-Me-amd) precursor yields anatase structure at 275 °C and above with H$_2$O or O$_3$ as co-reactants. For the Ti(OiPr)$_2$(dmae)$_2$/H$_2$O process the high level of impurities indicated incomplete hydrolysis of the metal precursor below 300 °C, so that anatase-structured films were obtained only at 400 °C [768]. For the Ti(OiPr)$_2$(thd)$_2$/H$_2$O and Ti(O$^\prime$Am)$_2$(trhd)$_2$/H$_2$O processes all the films exhibited anatase structure above 300 °C [772].

Role of film thickness. In the vicinity of the film surface and the film-substrate interface the crystal structure of the film may differ from that in the bulk of the film. For example, Aarik et al. observed that phase-pure TiO$_2$-II films can only be obtained below a critical thickness above which an increasing amount of the rutile phase forms [25]. Depending on the surface conditions of the substrate the ALD growth of TiO$_2$ may begin as amorphous or crystalline, even at temperatures where crystalline films eventually form. Removal of the native oxide layer from the surface of a silicon substrate can promote immediate crystallization via island-type growth mode, whereas on native-oxide-covered silicon surfaces the film growth begins with an amorphous layer and the crystallization only starts within the amorphous matrix after the film thickness exceeds the critical thickness [44]. Aarik et al. reported such critical thicknesses to be 10 nm at 210 °C and 2 nm at 300 °C for films grown on soda lime, fused silica or Si(111) substrates [19]. The thickness of the initial amorphous layer thus decreases with increasing deposition temperature.

Post-deposition treatments. In many cases a post-deposition annealing can be used to obtain the desired crystal structure, if it has not been reached during the film deposition. The phase-transition temperatures upon the post-deposition annealing treatments tend to be higher than those revealed
for as-deposited thin films from experiments with different deposition temperatures. Moreover, the structure of the as-deposited films may affect the transition temperature during the annealing. For example, for films obtained via the TiCl$_4$/H$_2$O process, annealing of an amorphous as-deposited (chlorine-rich) film in air/O$_2$ results in the anatase structure at 400 °C, and the structure remains as anatase at least up to 900 °C. On the other hand, if the as-deposited matrix is anatase, the rutile structure is obtained already at 750 °C [74,91]. An interesting exception is the amorphous-anatase transition seen upon a ten-hour hydrothermal treatment at 120 °C; this treatment however results in coarse-grained films rich in voids at crystal perimeters and at the film-substrate interface [83].

Epitaxial films. Epitaxial seeding of the film growth can provide further control over the desired crystal structure of TiO$_2$ films. Rutile structure is favored over the anatase structure and amorphous films for high-k applications; however, for lattice-mismatched substrates thermal energy needed for the formation of the rutile structure is high. In this respect, epitaxial seeding can provide means for lowering the processing temperature and control over the film orientation (table 2). Epitaxial rutile TiO$_2$(101) films have been deposited on α-Al$_2$O$_3$(1T02) [43], α-Al$_2$O$_3$(012) [348,354,356] and RuO$_2$(101) [94] surfaces. The rutile TiO$_2$(100) growth can be seeded by α-Al$_2$O$_3$(001) [123,354] and Ru surfaces; in the latter case high-reactivity oxygen source such as ozone is required to in-situ oxidize the Ru surface to RuO$_2$, which stabilizes the growth of rutile TiO$_2$ [547]. Note that according to Lee *et al.* anatase-structured TiO$_2$ is formed on an RuO$_2$ substrate from the Ti(OPr)$_2$(thd)$_2$ precursor when H$_2$O is used as the reactant [773]. Most likely the RuO$_2$ substrate surface is reduced to Ru by the first precursor pulse; ozone could reverse this such that RuO$_2$ is reformed, while the oxidation power of water is not enough for the oxidation [773]. Moreover, SnO$_2$(110) and SnO$_2$(001) surfaces can be used as substrates for film growth along 110 and 001 directions of TiO$_2$ rutile structure, respectively [543]. It is worth noting that, in Refs. [547] and [543] the rutile structure was obtained at temperatures as low as 250 °C, which is a marked improvement in comparison to the case of lattice-mismatched substrates. At high temperatures the TiO$_2$ II structure (mixed with the anatase/rutile structures) can form on sapphire surfaces with certain orientations [206,343]. Considering TCO applications for the anatase phase, it stems from the anisotropy of the crystal structure that the electron mobility in the (a,b) plane is notably higher than along the c-axis direction; hence growth of c-axis oriented films is favorable if electrons are to be transported in the in-plane direction. In this respect, Luka *et al.* recently demonstrated the growth of both anatase TiO$_2$(001) and anatase Nb:TiO$_2$(001) films on LaAlO$_3$(100) substrates at 220 °C [323]. Similar to LaAlO$_3$(100) surfaces, also SrTiO$_3$(100) surfaces can seed the growth of c-axis oriented anatase-structured TiO$_2$ [308,441,448]. Furthermore, MgO(001) surfaces have been reported to seed the growth of a-axis oriented anatase films [58,335,356].
Table 2. Epitaxially seeded ALD growth of TiO$_2$ thin films.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>TiO$_2$ structure (orientation)</th>
<th>Growth temperature</th>
<th>ALD process</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Al$_2$O$_3$(1102)</td>
<td>Rutile(101)</td>
<td>425-500 °C</td>
<td>TiCl$_4$/H$_2$O</td>
<td>[43]</td>
</tr>
<tr>
<td>α-Al$_2$O$_3$(012)</td>
<td>Rutile(101)</td>
<td>445 °C</td>
<td>TiI$_4$/H$_2$O</td>
<td>[348]</td>
</tr>
<tr>
<td>α-Al$_2$O$_3$(012)</td>
<td>Rutile(101)</td>
<td>275-455 °C</td>
<td>TiI$_4$/H$_2$O$_2$</td>
<td>[354]</td>
</tr>
<tr>
<td>α-Al$_2$O$_3$(001)</td>
<td>Rutile(100)</td>
<td>330-455 °C</td>
<td>TiI$_4$/O$_2$</td>
<td>[356]</td>
</tr>
<tr>
<td>α-Al$_2$O$_3$(001)</td>
<td>Rutile(100)</td>
<td>450 °C</td>
<td>TiCl$_4$/H$_2$O</td>
<td>[123]</td>
</tr>
<tr>
<td>α-Al$_2$O$_3$(001)</td>
<td>Rutile(100)</td>
<td>455 °C</td>
<td>TiI$_4$/H$_2$O$_2$</td>
<td>[354]</td>
</tr>
<tr>
<td>α-Al$_2$O$_3$(001)</td>
<td>TiO$_2$ II(001)*</td>
<td>425-475 °C</td>
<td>TiCl$_4$/H$_2$O</td>
<td>[206]</td>
</tr>
<tr>
<td>α-Al$_2$O$_3$(001)</td>
<td>TiO$_2$ II(100)*</td>
<td>425-500 °C</td>
<td>TiCl$_4$/O$_3$</td>
<td>[343]</td>
</tr>
<tr>
<td>α-Al$_2$O$_3$(001)</td>
<td>TiO$_2$ II(001)*</td>
<td>425-475 °C</td>
<td>TiCl$_4$/H$_2$O</td>
<td>[206]</td>
</tr>
<tr>
<td>RuO$_2$(101)</td>
<td>Rutile(101)</td>
<td>425 °C</td>
<td>TiCl$_4$/H$_2$O</td>
<td>[94]</td>
</tr>
<tr>
<td>Ru</td>
<td>Rutile(100)</td>
<td>250 °C</td>
<td>Ti(OiPr)$_4$/O$_3$**</td>
<td>[547]</td>
</tr>
<tr>
<td>Ir</td>
<td>Rutile</td>
<td>250 °C</td>
<td>Ti(OiPr)$_4$/O$_3$**</td>
<td>[558]</td>
</tr>
<tr>
<td>SnO$_2$(110)</td>
<td>Rutile(110)</td>
<td>250 °C</td>
<td>Ti(OiPr)$_4$/H$_2$O$_2$</td>
<td>[543]</td>
</tr>
<tr>
<td>SnO$_2$(001)</td>
<td>Rutile(001)</td>
<td>250 °C</td>
<td>Ti(OiPr)$_4$/H$_2$O$_2$</td>
<td>[543]</td>
</tr>
<tr>
<td>MgO(001)</td>
<td>Anatase(100)</td>
<td>390 °C</td>
<td>TiCl$_4$/H$_2$O</td>
<td>[335]</td>
</tr>
<tr>
<td>MgO(001)</td>
<td>Anatase(100)</td>
<td>300 °C</td>
<td>TiCl$_4$/H$_2$O</td>
<td>[58]</td>
</tr>
<tr>
<td>MgO(001)</td>
<td>Anatase(100)</td>
<td>230-375 °C</td>
<td>TiI$_4$/O$_2$</td>
<td>[356]</td>
</tr>
<tr>
<td>SrTiO$_3$(100)***</td>
<td>Anatase(001)</td>
<td>225-250 °C</td>
<td>Ti(OiPr)$_4$/H$_2$O</td>
<td>[441,448]</td>
</tr>
<tr>
<td>LaAlO$_3$(100)</td>
<td>Anatase(001)</td>
<td>220 °C</td>
<td>TiCl$_4$/H$_2$O</td>
<td>[323]</td>
</tr>
</tbody>
</table>

*Mixed with anatase and rutile phases.
**Ozone oxidizes Ru to RuO$_2$ or Ir to IrO$_2$ during the first TiO$_2$ ALD cycles.
***Substrate is Si(001) with few unit cell thick SrTiO$_3$(100) buffer layer.

3.2 From nucleation to film morphology

Deposition temperature and the conditions on the substrate surface largely determine how the thin-film growth begins and how the initial conditions are reflected to the evolution of the film morphology and grain size with increasing film thickness.

First deposition cycles. The nature and surface density of functional groups on the substrate surface are among the key factors that determine the first steps of the film growth. This was systematically studied for the TiCl$_4$/H$_2$O process by comparing the film-growth characteristics on hydroxyl-rich (Radio Corporation of America (RCA)-cleaned) and hydride-ending (HF-cleaned) Si(100) surfaces at 300 °C [45]. On a hydroxyl-rich surface the growth initiates with a homogeneous amorphous layer, while on a predominately hydride-ending surface the growth starts
from the very few spots rich in hydroxyl groups [45]. A plausible explanation is that the abundant hydroxyl groups are hydrogen bonded and form low-mobility bidentate species upon chlorination; then the surface does not arrange itself towards the anatase structure with ease, and the film growth onsets as amorphous. Provided that the temperature is high enough, crystalline anatase grains can then form within/on the amorphous layer regardless of the substrate [30,117]. On the other hand, for a low degree of hydroxyl coverage monodentate high-mobility species form upon chlorination and the deposition onsets via formation of small island-type crystalline grains [45]. Island-type growth has also been reported for TiO$_2$ films grown on phlogopite mica at 500 °C, and also for amorphous films grown on soda-lime glass at 300 °C [17]. Mechanisms proposed for the island formation include migration of surface species [17] and cleaving the surface Si-O-Ti linkages by the first H$_2$O pulses; in the latter case hydroxychloride species would be produced leading to local restoration of Si-OH-termination of the surface [59]. Note that for the growth proceeding via island formation, reaching the full coverage of the substrate may take up to some 100-200 ALD cycles [17,28]. The growth on hydride ending surfaces may also be considered as substrate inhibited [208,263,652]; this could even be used as a means for area-selective deposition such that growth rate is notably higher on –OH terminated areas, while growth is inhibited on –H terminated areas [208,263].

It is good to note that the potential nucleation delay or substrate-enhanced growth might influence the GPC values for very thin films. For example for the TiCl$_4$/H$_2$O process the GPC value may be enhanced during approximately first 5 ALD cycle on both hydroxyl-rich native oxide surface and hydrogen-terminated silicon surface, such that higher GPC is seen on hydroxyl-rich surface (at 100 °C) [118]. After the 5 cycles the effect of the substrate-enhanced growth levels off and the GPC becomes constant with increasing number of ALD cycles [118]. For higher number of ALD cycles film growth is typically linear with increasing number of cycles, regardless of the surface treatment of the Si substrate [44,124]. Other examples are substrate-enhanced growth observed for Ti(Oi'Pr)$_4$/N$_2$O plasma and Ti(Oi'Pr)$_4$/O$_2$ plasma processes on Ru surfaces [606], and for the Ti(Oi'Pr)$_4$/O$_2$ plasma process on TiN [573].

Bulk of the film. When the film growth begins with the formation of amorphous TiO$_2$, crystalline grains start forming within/on top of the amorphous layer after the film has reached the critical thickness, which can be as much as 1400 cycles [41,117,198,611,614,615]. At low temperatures the nucleation of the crystallites begins from fewer sparsely-spaced sites than at the higher temperatures [117]. Hence, as more and more cycles are applied and the grains expand laterally, the crystalline nuclei are free to grow larger at the low temperatures compared to the situation at the higher temperatures (>300 °C) where the growing grains sooner collide with the neighboring ones [117]. Provided that there is sufficient thermal energy available, at high temperatures thermally activated coalescence of the neighboring grains (Ostwald ripening) may increase the mean grain size (figure 8). Hence, the temperature dependence of the grain growth is governed by the density of the nucleation sites such that the grain size decreases with increasing temperature, and that an upturn at around 250-300 °C can be possibly seen due to Ostwald ripening [117]. This grain size vs. temperature trend is in reasonable accordance with the data from several authors for TiO$_2$ films deposited on various substrates [38,44,75,88,100]. Roughly speaking the
minimum grain size in reasonably-thick (>50 nm) films is somewhere below 100 nm, while at low-enough and at high-enough temperatures grain size is above 100 nm, likely larger at low temperatures. The micron-size grains observed for TiO$_2$ films grown on Al$_2$O$_3$ surface can be mentioned a rare exception [144]. The substrate pre-treatments can also lead to a difference in grain size as reported by Mitchell et al.: grain sizes larger than 100 nm were seen for TiO$_2$ films grown on RCA-treated silicon substrates and smaller than 100 nm for films deposited on HF-treated silicon [44]. It is worth noting that, even though the film growth would begin by formation of an amorphous layer, the subsequent grain growth can progressively consume the initial amorphous regions eventually resulting in throughout-crystalline films [75]. Note also that the transition from amorphous to crystalline film growth after reaching the critical film thickness may influence the GPC values if the growth rates for the amorphous and crystalline phases differ from each others [611].

Film surface. The roughness of the film surface is largely determined by the deposition temperature and the film thickness, via the aforementioned mechanisms [17,19,625]. At low temperatures where TiO$_2$ grows amorphous, films with smooth surfaces are obtained. As the deposition temperature is increased (> 150 °C) and anatase crystallites start to form within the amorphous TiO$_2$ matrix, the surface roughness increases in parallel with the grain size [19]. Surface roughness increases also with increasing film thickness, such that e.g. at 150 °C TiO$_2$ films become notably rougher when the film thickness increases from 2 to 30 nm (1000 to 3000 ALD cycles); however after 3000 cycles the increase in roughness seems to somewhat level off [30]. Moreover, as ascribed to improved grain alignment, epitaxial films can be less rough on the surfaces than the corresponding films on lattice-mismatched substrates [58].

![Figure 8](image_url)

Figure 8. (left) SEM micrographs of TiO$_2$ films deposited with 1000 ALD cycles at various temperatures. (right) Schematic grain-growth models of ALD TiO$_2$ films: (a) at low deposition temperatures (150–250 °C) and (b) high deposition temperatures (above 300 °C). Reprinted with permission from Lee W and Hon M 2010 *J Phys Chem C* **114** 6917. Copyright 2010 American Chemical Society [117]
4. Towards applications - doped films

For many applications undoped stoichiometric semiconductor materials fail to provide the required functionalities. Frequently though, the lattice of an intrinsic material is not fully stoichiometric but comes with a notable concentration of cationic or anionic vacancies or self-interstitial ions that largely define the physical properties of the material. To complement or to compensate for the intrinsic properties, and to fully unlock the needed functional properties, doping via incorporation of extrinsic cations or anions is often needed. In atomic layer deposition of oxide materials elemental substitutions are realized by replacing single ALD cycles of the parent oxide with single cycles of the oxide of the dopant metal, which in principle leads to layer-wise localization of the dopant atoms. However, the dopant atoms may diffuse during the deposition or post-deposition treatments to substitutional sites in the host lattice, to a larger or to a lesser extent.

For ALD-fabricated TiO$_2$ thin films typical extrinsic cation dopants are Al and Nb, while anion-site doping is mainly attempted with N (table 3). The literature discussing Al doping is in particular motivated by the implementation of the rutile-structured TiO$_2$ films for high-k applications, while Nb doping of anatase-structured films is mainly investigated transparent-conducting-oxide (TCO) applications in mind. The anion-site doping with N decreases the band-gap of TiO$_2$, hence sensitizing the material to visible light; this is highly relevant for photocatalytic applications. Moreover, Ta [406,626], Co [630] and Zn [292] cation substitutions have been reported, the first case showing TCO properties close to those of Nb-doped films, and the second case being related to interesting magnetic properties. Furthermore, H$_2$S-modified TiO$_2$ films have shown promising photocatalytic performance [81]. In this chapter we cover the literature regarding doping of ALD-fabricated TiO$_2$ thin films discussing the deposition chemistry in relation to the targeted functional properties.

Table 3. Doping of TiO$_2$ thin films in ALD.

<table>
<thead>
<tr>
<th>ALD process</th>
<th>Subst.</th>
<th>Temp. (°C)</th>
<th>Crystal structure</th>
<th>Doping ratio1</th>
<th>EOT (nm)</th>
<th>Leakage current at 0.8 V (A/cm2)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti(O(Pr)$_3$/AlMe$_3$/O$_3$</td>
<td>Ru</td>
<td>250 (400)</td>
<td>rutile1</td>
<td>1/60 – 1/120</td>
<td>0.48 (1/60)</td>
<td>0.8×10$^{-7}$ (1/60)</td>
<td>[551, 552, 554]</td>
</tr>
<tr>
<td>Ti(O(Pr)$_3$/AlMe$_3$/O$_2$ plasma</td>
<td>Ru</td>
<td>250 (400)</td>
<td>rutile/anatase</td>
<td>1/30 – 1/90</td>
<td>0.5 (1/60)</td>
<td>0.5×10$^{-7}$ (1/60)</td>
<td>[576]</td>
</tr>
<tr>
<td>Ti(O(Pr)$_3$/AlMe$_3$/N$_2$O plasma</td>
<td>Ru</td>
<td>250 (400)</td>
<td>rutile</td>
<td>1/30 – 1/90</td>
<td>0.6 (1/90)</td>
<td>0.2×10$^{-7}$ (1/90)</td>
<td>[576]</td>
</tr>
<tr>
<td>Ti(O(Pr)$_3$/AlMe$_3$/H$_2$O</td>
<td>RuO$_2$</td>
<td>225</td>
<td>rutile2</td>
<td>1/60 – 1/120</td>
<td>2.9 (1/60)</td>
<td>0.3×10$^{-7}$ (1/60)</td>
<td>[402]</td>
</tr>
<tr>
<td>TiCl$_4$/AlCl$_3$/H$_2$O</td>
<td>RuO$_2$</td>
<td>400 (300)</td>
<td>rutile</td>
<td>1/10 – 1/100</td>
<td>0.9</td>
<td>1×10$^{-4}$</td>
<td>[130]</td>
</tr>
<tr>
<td>Ti(O(Pr)$_3$/AlMe$_3$/O$_3$</td>
<td>Ir</td>
<td>250 (400)</td>
<td>rutile</td>
<td>1/60</td>
<td>0.50, 0.53</td>
<td>1×10$^{-5}$, 0.5×10$^{-8}$</td>
<td>[558]</td>
</tr>
<tr>
<td>Ti(O(Pr)$_3$/AlMe$_3$/H$_2$O</td>
<td>Ge</td>
<td>250 (500)</td>
<td>amorphous</td>
<td>1/5 – 1/20</td>
<td>1.6 (1/10)</td>
<td>1×10$^{-5}$ (1/10)</td>
<td>[418]</td>
</tr>
</tbody>
</table>
Ti(NMe₂)₄/AlMe₃/H₂O Si 150 (600) amorphous 1/20 – 1/50 7.7 (1/20) 1×10⁻⁷ (1/20) [650]
Ti(OPr)₃/AlMe₃/O₂ RuO₂ 250 (400) rutile² 1/60 0.44, 0.50 3×10⁻⁷, 0.7×10⁻⁸ [127]
Ti(OPr)₃/AlMe₃/O₂ plasma RuO₂ 250 (400) rutile² - 0.46 1×10⁻⁴ [556]
TiCl₄/AlMe₃/H₂O RuO₂³ 400 (300) rutile 1/60 0.39, 0.46 3×10⁻⁷, 2×10⁻⁸ [186]
Ti(OPr)₃, Ti(O'Bu)₃, Ti(NMe₂)₄, Ti(OEt)₄/AlMe₃/H₂O Si, TaN 150-240 (up to 600) amorphous/anatase 1/15 – 1/40 12 (on TaN) 5×10⁻⁷ (at 2 V) [561]
Ti(O'iPr)₄/AlMe₃/30/AlMe₃/H₂O TiN, TaN 350 (300) rutile, anatase 1/2 – 1/126 0.57 (on RuO₂) 0.5×10⁻⁷ [564]

Nb doping

<table>
<thead>
<tr>
<th>Nb doping</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti(OMe)₃/Nb(OEt)₅/H₂O</td>
<td>SiO₂</td>
<td>215 (600)</td>
<td>anatase³</td>
<td>1/20-1/2</td>
<td>1.9</td>
</tr>
<tr>
<td>TiCl₃/Nb(OEt)₅/H₂O</td>
<td>glass</td>
<td>210 (500-600)</td>
<td>anatase³</td>
<td>1/20-1/2</td>
<td>1.4</td>
</tr>
<tr>
<td>TiCl₃/Nb(OEt)₅/H₂O</td>
<td>glass</td>
<td>100-280 (600)</td>
<td>anatase³</td>
<td>1/20</td>
<td>1.5</td>
</tr>
<tr>
<td>TiCl₃/TBTDEN/H₂O</td>
<td>LaO³ (100)</td>
<td>220</td>
<td>anatase</td>
<td>1/25</td>
<td>3.1</td>
</tr>
<tr>
<td>TiCl₃/TBTDEN/H₂O</td>
<td>Al₂O₃ (0001)</td>
<td>220</td>
<td>rutile</td>
<td>1/25</td>
<td>39</td>
</tr>
</tbody>
</table>

N doping

<table>
<thead>
<tr>
<th>N doping</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TiCl₄/H₂O/NH₃</td>
<td>glass</td>
<td>500</td>
<td>anatase, rutile</td>
<td>1/6-3/4</td>
<td>Searic acid degradation, contact angle</td>
</tr>
<tr>
<td>TiCl₄/(NH₃/H₂O mixture)</td>
<td>Si</td>
<td>400</td>
<td>anatase, rutile</td>
<td>-</td>
<td>Photocurrent</td>
</tr>
<tr>
<td>Ti(NMe₂)₄/H₂O/N₂ plasma</td>
<td>Si</td>
<td>150 (>500)</td>
<td>amorphous/anatase, rutile</td>
<td>1/3-1/10</td>
<td>Searic acid degradation</td>
</tr>
<tr>
<td>TiCl₄/H₂O/N₂ plasma</td>
<td>Si</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>Methylene blue degradation, contact angle</td>
</tr>
<tr>
<td>TiCl₄/H₂O/N₂ plasma</td>
<td>Si, Ti, nanotubes</td>
<td>250,350</td>
<td>-</td>
<td>-</td>
<td>Photocurrent</td>
</tr>
</tbody>
</table>

Other dopants

<table>
<thead>
<tr>
<th>Other dopants</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti(NEt₂)/Hf(NEt₂)/H₂O</td>
<td>Si</td>
<td>175-250</td>
<td>amorphous</td>
<td>1/6-1/2</td>
<td>-</td>
</tr>
<tr>
<td>Ti(OMe)₃/Ta(OEt)₅/H₂O</td>
<td>SiO₂</td>
<td>215 (600)</td>
<td>(anatase)</td>
<td>1/20-1/2</td>
<td>Transparent conductor</td>
</tr>
<tr>
<td>Ti(OPr)₃/TATTDMTa₂/H₂O</td>
<td></td>
<td>220</td>
<td>anatase</td>
<td>1/16-1/7</td>
<td>Dye-sensitized solar-cell electrode</td>
</tr>
<tr>
<td>Ti(OMe)₃/Co(acac)/H₂O</td>
<td>Si, glass</td>
<td>300 (650)</td>
<td>(anatase, rutile)⁹</td>
<td>1/101-1/12</td>
<td>Magnetic properties</td>
</tr>
</tbody>
</table>
4.1. Al doping

The massive part of the work done on the Al substitutions has found the motivation from application of Al-doped ALD-TiO₂ thin films as the dielectric layers in metal-insulator-metal (MIMs) capacitors for dynamic-random-access memories (DRAMs). As the dielectric constant of rutile-structured TiO₂ is around 170 along the c axis and around 90 along the a axis (notably larger than the values around 40 for anatase), it is the rutile structure that is of the interest for the dielectric applications [556]. However, leakage current through the TiO₂ layers tends to be unacceptably high, which is the main bottleneck for the use of undoped TiO₂ as a dielectric material [551]. Remarkably, Kim et al. showed a decrease in leakage current values of multiple orders of magnitude by doping Al in the rutile TiO₂ matrix [551]; this was the discovery that largely inspired the later research on the topic.

Deposition characteristics. As AlMe₃ is by far the most common metal precursor for the ALD growth of Al₂O₃, it is not surprising that AlMe₃ has typically been used to realize the Al doping of ALD-TiO₂ films (see table 3). Besides AlMe₃, AlCl₃ has been studied as a hydrogen-free alternative [130,265]. The choice of the oxygen source is important particularly when TiO₂ is grown directly on a metal surface. For example in the case of Ru substrates, use of water leads to the formation of anatase/amorphous TiO₂, while the higher oxidation powers of O₃, O₂ plasma and N₂O plasma enable the *in-situ* formation of interfacial RuO₂ that promotes the growth of rutile-structured TiO₂ at notably low temperatures around 250 °C, owing to the lattice-matching structures of the two compounds [551,552,554,576]. However, when RuO₂ is used as the growth surface, also the H₂O-based process can provide rutile-structured TiO₂ films *via* local epitaxy [130,186,189,402]. Furthermore, comparing the different oxygen sources in terms of the growth characteristics, Choi et al. noticed that N₂O plasma provided notably higher GPC values than O₃ and O₂ plasma, without significantly compromising the electrical properties [576].
It is often seen that the film-growth characteristics for the doped ALD films deviate to some extent from those for the constituent binary oxides, which is typically reflected to the GPC values. For example, Kim et al. found that for the Ti(OPr)$_4$/AlMe$_3$/O$_3$ process the GPC values for Al-doped TiO$_2$ films are lower compared to the value for undoped TiO$_2$: for the doping ratios 1/120, 1/90, and 1/60 the values were 0.28, 0.27, and 0.26 Å/cycle, respectively, while for the undoped film GPC was 0.33 Å/cycle [552]. This was ascribed to retarded adsorption of the Ti(OPr)$_4$ precursor molecules on the film surface right after the dopant AlMe$_3$ cycle, as in contrast, the adsorption of AlMe$_3$ is reported to be higher on the Ti-O surface than on the Al-O surface [552].

The measured atomic content Al/(Al+Ti) can be notably higher (6, 8, and 12 at.%) than expected from the ALD-cycle ratio ((AlMe$_3$/O$_3$)/(Ti(OPr)$_4$/O$_3$ + AlMe$_3$/O$_3$) = 1/120, 1/90, and 1/60) [551], which is in line with the enhanced adsorption of AlMe$_3$ on the TiO$_2$ surface. Note that, the Al content can be fine-tuned by omitting the O$_3$ pulse preceding the AlMe$_3$ exposure which leads to a slightly lower Al/(Al+Ti) ratio [554]. Note also that for the TiCl$_4$/AlMe$_3$/H$_2$O process the Al precursor adsorption has been reported to be hindered such that the ALD doping cycle ratio of 1/60 leads to Al content of Al/(Al+Ti) = 0.5 at.% only [186]. For the Ti(OPr)$_4$/AlMe$_3$/O$_3$ process, film growth proposedly shows the lowest rate right after the AlMe$_3$/O$_3$ cycle and then recovers to a constant value before the next AlMe$_3$/O$_3$ cycle. However this constant GPC value is still lower than for the undoped TiO$_2$, as some Al diffuses to the film surface when the deposition proceeds, thus hindering the chemisorption of the precursor for the Ti(OPr)$_4$/O$_3$ cycles [552].

Contrary to e.g. Al doping of ALD-ZnO thin films where the absence of significant Al diffusion can result in layer-wise localization of the Al-dopant atoms [805], Al doping of TiO$_2$ is reported to lead to more homogenous cross-plane distribution of the dopant atoms [551]. It has been proposed that the diffusion pathway for the Al ions is likely provided by Ti vacancies present in over-stoichiometric films (with O:Ti = 2.2 in this case) [552]. Moreover, first-principle calculations have indicated that Al atoms find energetically favourable positions on the surface of rutile TiO$_2$, such that there is a driving force for Al atoms towards the film surface during the growth [552]. These conclusions by Kim et al. [551,552,554] are supported for example by the results of Hudec et al. who detected Al on the film surface for a 20-nm thick film doped only in its bottom 2.5-nm part; the through-thickness Al concentration was far from constant though [130]. Apart from the higher-than-average Al content on the top surface, the depth profile of the Al concentration may also exhibit a peak at the film-substrate interface [130]. Furthermore, from XPS investigation it has been shown that Al ions form in rutile-structured films a chemically uniform Al–Ti–O film without any phase separation [551]; also, for anatase films peak shifts in Raman data have indicated that Al$^{3+}$ substitutes for Ti$^{4+}$ in the anatase lattice [650].

Dielectric properties. The capability of a dielectric material to store charge can be described by the so-called equivalent-oxide-thickness value: EOT = $d\times(3.9/k)$, where d is the physical film thickness and k the dielectric constant. To achieve the goal of the international technology road map for semiconductors, the effort has been to reach EOT values below 0.5 nm together with leakage current values below 10^{-7} A/cm2 at 0.8 V for capacitor dielectrics in DRAMS (memory elements consisting of a capacitor and a transistor). Attempts to achieve the 0.5-nm limit by decreasing the thickness of ordinary-k materials (k around 20-30) lead to excessively high leakage
current values, and hence high-\(k\) materials are demanded for [186,551]. Rutile-structured TiO\(_2\) with its notably high \(k\) value in the range of 90-170 is thus among the considerable candidates [130,186,551]. However, due to the relatively small band gap of rutile around 3 eV, and in-gap donor states due to intrinsic oxygen vacancies and titanium interstitials, the energy offset between the Fermi level of the metal electrode and the conduction band bottom of TiO\(_2\) is low [551]. This leads to too high leakage currents through the TiO\(_2\) layers, which is the main bottleneck for the use of undoped TiO\(_2\) in dielectrics applications [551]. When doped in the TiO\(_2\) matrix, Al in the oxidation state 3\(^+\) is expected to create acceptor states that should compensate for the intrinsic donor states, and hence lead to the lower leakage currents and better overall dielectric performance [551].

Indeed, trivalent Al has been evidenced to create acceptor states in the TiO\(_2\) band gap such that Fermi level is seen to shift towards the valence band, by 0.2-0.5 eV as revealed from XPS and capacitance-voltage measurements, and by 0.25-0.65 eV via first-principle calculations [551]. This shift of Fermi level increases the Schottky barrier between Al:TiO\(_2\) and the capacitor electrode and is thus the likely explanation for the reduction of the leakage current [551]. Considering the Al:TiO\(_2\)-RuO\(_2\) interface properties, thicker RuO\(_2\) layers enable higher Schottky barriers than thin RuO\(_2\) layers obtained on Ru via in-situ oxidation, as in the latter case the work function of RuO\(_2\) is reduced due to the close presence of the thick Ru bottom layer [556]. Moreover, regarding the Al:TiO\(_2\)-RuO\(_2\) interface properties oxygen-plasma pretreatment of the RuO\(_2\) surface has been reported to enhance the barrier height between the metal and the dielectric layer [186,189]. Locating the dopant layers closer to the Al:TiO\(_2\)-RuO\(_2\) interface may further enhance the barrier height simultaneously allowing for higher \(k\) in the bulk of the TiO\(_2\) layer with lower Al concentration [565]. Use of hydrogen-free processes may furthermore lead to lower leakage current values [265].

After Kim et al. had demonstrated that Al doping provides a viable means for decreasing the leakage current value for rutile TiO\(_2\) films [551], similar results by various authors followed, as summarized in table 3. It is evident from the table that anatase-structured or amorphous films do not provide the required dielectric performance, achieved only for the rutile-structured films. When rutile-structured films are obtained via epitaxial growth, leakage current values below 10\(^{-7}\) A/cm\(^2\) with EOT below 0.5 (or very close to it) are generally observed. The dielectric performance observed appears to be rather independent of the ALD process used, such that aside of the original Ti(O\(_i\)Pr\(_4\))/AlMe\(_3\)/O\(_3\) route [551,552,554], e.g. the Ti(O\(_i\)Pr\(_4\))/AlMe\(_3\)/H\(_2\)O [130] and TiCl\(_4\)/AlMe\(_3\)/H\(_2\)O [186,265] routes give similar results once RuO\(_2\) is used as the substrate instead of Ru. It is worth noting that post-metallization annealing treatments for metal-insulator-metal stacks are frequently used to optimize the electrical performance. Typically the annealing atmosphere contains a small amount of oxygen together with nitrogen or oxygen only.

4.2. Nb doping
Niobium in the oxidation state 5+ is highly soluble in the TiO$_2$ matrix, which allows for turning the rather robust dielectric material into a highly conducting material. Indeed, the resultant high electrical conductivity together with the wide band gap of around 3.2 eV make Nb-doped TiO$_2$ an interesting candidate for applications where transparent conducting oxides are needed. In comparison to the rutile structure, the lower electron effective mass and thereby the higher mobility make the anatase-TiO$_2$ structure of interest for TCO applications.

Deposition characteristics. Fabrication of Nb:TiO$_2$ films has been demonstrated using either Ti(OMe)$_4$ [626] or TiCl$_4$ [240,311,315,323] as the titanium precursor, Nb(OEt)$_5$ [240,311,315,626] or tert-butylimido-tris-diethylamido-niobium (TBTDEN) [323] as the niobium precursor and H$_2$O as the oxygen source (table 3). The fact that niobium chloride is known to have an etching effect on niobium oxide surfaces [806], might complicate its use as the dopant precursor. The reasonable deposition temperature window for these processes spans roughly from 100 to 300 °C, being limited at the lower end by the reactivity of TiCl$_4$ and at the higher end by the thermal stability of the alkoxide precursors. Regarding the growth characteristics, the GPC of the doped films decreases progressively with increasing doping level, implying that TiO$_2$ exhibits delayed growth after the dopant Nb(OEt)$_5$/H$_2$O cycle, at least for the TiCl$_4$-based process [240]. Even though at temperatures above 150-200 °C undoped TiO$_2$ tends to start to crystallize in the anatase structure even on lattice-mismatched surfaces, the picture for the doped films is slightly different. Namely, Nb doping suppresses the crystallization of the films (at growth temperatures around 210 °C) in a way that the as-deposited films are amorphous with the exception of the lightly doped (Nb/(Nb+Ti) < 0.10) films for the TiCl$_4$-based process [240,626]. Once the films are crystallized through a post-deposition annealing treatment at around 500-600 °C under reducing conditions, Nb is found to substitute Ti in the anatase lattice, seen as an increased lattice-plane spacing determined by XRD [240,311,626].

It stems from the anisotropy in the transport properties of the anatase structure that the highest in-plane conductivity is obtained for c-axis oriented films [807]. Growth of c-axis oriented films is possible on single-crystal substrates that provide epitaxial seeding for the film growth. However, often for applications epitaxial growth may not be possible and control over the film orientation without epitaxial seeding is needed. Interestingly, ALD-fabricated Nb:TiO$_2$ films crystallized *via* annealing of amorphous as-deposited films, may exhibit remarkable degree of c-axis orientation and exceptionally large lateral grain size up to around 10-100 µm for films with a thickness below 100 nm [311,315,626]. This has been explained in terms of explosive crystallization [626], in other words, crystallization onsets from few sparsely spaced points in an amorphous film, after which the grain growth propagates rapidly until the growth fronts collide with the neighbouring ones. As the grain growth is extremely fast, there is no time for the crystallization to start from the higher-activation-energy onset points upon temperature increase during annealing. The process results in highly c-axis oriented grains spanned by cross-shaped domains of single-crystalline c-axis oriented anatase [311,626]. This crystallization behaviour is prominent for heavily Nb-doped TiO$_2$ (Nb/(Nb+Ti) > 0.15) films. For the low-doping regime (Nb/(Nb+Ti) < 0.10), at least in case of the TiCl$_4$-based process, films with large grain size can be obtained by annealing amorphous as-deposited films grown at lower temperatures around 170 °C; in this case however the grains do not
feature cross-shapes and the preferred c-axis orientation is lost [315]. For low level of doping, growth of c-axis oriented films is though possible on e.g. single crystal LaAlO$_3$(100) substrates [323].

TCO properties. Transparent conducting oxides are materials frequently used in optoelectronic devices as electrodes. A good TCO has as-high-as-possible electronic conductivity and is as transparent as possible. For maximum conductivity ($\sigma = \mu n e$) the material should have high free-carrier density (n) and high mobility (μ) (e stands for electron charge). Typically, transparency of TCOs around the visible range is limited by band-gap absorption at the high-energy side of the transparency window and by the free-electron gas absorption at the low-energy side. Both of these absorption processes depend on n such that increasing n shifts the absorption edges towards higher energies. Hence, too high n can severely limit transparency in the Vis-NIR range via free-carrier absorption and in terms of carrier density, the high transmittance and the high conductivity are thus contradicting properties – a fact that underlines the importance of high carrier mobility for the best TCO performance. A general criterion for transparent conductors is that they should show a room-temperature resistivity of the order of 10^{-3} Ωcm, or below, and transparency above 80% in the visible range [808].

When Nb:TiO$_2$ films are grown from Ti(OEt)$_4$ or TiCl$_4$, Nb(OEt)$_5$ and H$_2$O precursors at around 210 °C on borosilicate glass or thermal SiO$_2$, followed by a reductive post-deposition annealing at 500-600 °C (in hydrogen-containing atmospheres), very low resistivity values of ~1 mΩcm can obtained for highly-doped films (Nb/(Nb+Ti) \geq 0.2) [240,311,626]. However, for the films with lower substitution ratios the resistivity values are more than an order of magnitude higher [240,311,626]. Hall-effect measurements (2-300 K) have indicated a signature of phonon-scattering dominated mobility for the highly-doped films, while for the low-doping regime comparison of the Hall mobility values against the optical mobility values have revealed grain-boundary scattering limited mobility [311]. The transport data are in good agreement with the microscopy and XRD results that have shown larger grain size and high degree of c-axis orientation of the grains for the high-doping regime [240,311,626]. However, for TCO applications, the excessive electron doping of the high-doping regime is not beneficial, as the free carrier absorption progressively suppresses the transparency window in the vis-NIR side of the electromagnetic spectrum. Formation of too small grains in lightly-doped films can be avoided by decreasing the deposition temperature to around 170 °C (at least for the TiCl$_4$/Nb(OEt)$_5$/H$_2$O process); then the charge transport becomes virtually free from grain-boundary scattering and the conduction electrons are predominately scattered by phonons inherent to the anatase TiO$_2$ lattice and by impurities [315]. Most importantly, achieving the low resistivity with the low doping level enables the improved vis-NIR transmittance via decreased free-carrier absorption, thus improving the overall TCO performance of the material [315]. Moreover, high-quality as-deposited crystalline films grown on epitaxial LaAlO$_3$ substrates grown at 220 °C via the TiCl$_4$/TBTDEN/H$_2$O process have shown resistivity values around 3 mΩcm for 4% Nb doping [323].

Niobium works as an efficient electron donor in the anatase lattice such that high carrier-density values with close to one-to-one ratio with the Nb atomic density values are obtained [311]. As a result the Nb:TiO$_2$ films can be regarded as degenerate semiconductors – a fact indicated by the
lack of temperature activation in the carrier density values and the Burstein-Moss shift seen for the fundamental absorption edge [311,315]. Stemming from the anisotropy in the effective mass of anatase the future challenge is to increase the control over film orientation such that electron conduction along the low-effective-mass \((a,b)\) plane is maximized for lightly-doped films grown on non-lattice-matched substrates. Furthermore, lowering the temperature required for the annealing step would broaden the spectrum of possible applications. Note that also tantalum serves as a dopant that notably lowers the resistivity of TiO\(_2\) films, however, the lowest resistivity values reported for Ta-doped TiO\(_2\) are around 10\(\times\)10\(^{-3}\) \(\Omega\)cm [626].

4.3 \(N\) doping

Titanium dioxide is well known for its photocatalytic properties, however, the wide band gap of the material limits the light-activation regime above 3.2 eV. In order to reduce the band gap and sensitize TiO\(_2\) to visible light, doping with nitrogen is a prominent approach.

Deposition characteristics. Fabrication of N-doped TiO\(_2\) films has been demonstrated via various ALD routes. A thermal ALD process that employs TiCl\(_4\)/H\(_2\)O cycles for TiO\(_2\) and TiCl\(_4\)/NH\(_3\) cycles for incorporation of nitrogen was reported by Pore \textit{et al.} [65], while Cheng \textit{et al.} employed a similar approach using TiCl\(_4\) together with H\(_2\)O-NH\(_3\) vapour mixture [128]. Plasma-assisted ALD processes employing N\(_2\) plasma as the nitrogen source and Ti(NMe\(_2\))\(_2\)/H\(_2\)O [689] or TiCl\(_4\)/H\(_2\)O [242] cycles for TiO\(_2\) have also been developed. Moreover, Zhang \textit{et al.} demonstrated a deposition route based on H\(_2\)-N\(_2\) plasma and Ti(NMe\(_2\))\(_2\)(CpMe) [804]. The GPC values fall in the range typically reported for undoped TiO\(_2\) films, with a trend of decreasing GPC with increasing N content [65,128].

As TiN has a strong tendency towards oxidation, the incorporation of N into the anion site of the TiO\(_2\) lattice may not be as straightforward as the cation-site doping with metal atoms. This was seen in the report by Pore \textit{et al.} where replacing single TiCl\(_4\)/H\(_2\)O cycles in the TiO\(_2\) process by TiCl\(_4\)/NH\(_3\) cycles at the (TiCl\(_4\)/NH\(_3\))/(TiCl\(_4\)/H\(_2\)O + TiCl\(_4\)/NH\(_3\)) ratios as high as 1/2 led to low level (<1 at.\%) of nitrogen content in the form of molecularly absorbed N\(_2\) [65]. Only when the approach was changed (perhaps counter intuitively) such that three or more consecutive TiCl\(_4\)/NH\(_3\) cycles were followed by single TiCl\(_4\)/H\(_2\)O cycles (or simple H\(_2\)O-oxidation cycles), respectable N doping (>3.8 at.\%) was achieved and Ti-N bond formation was seen [65]. The approach of using H\(_2\)O-NH\(_3\) vapour mixture for doping shows a good control over the N content in a way that N levels of 0.2, 0.7, 1.2, 1.5, and 4.3 at.% are achieved by increasing the relative amount of NH\(_3\) in the vapour mixture [128]. Incorporation of N atoms via the conventional single-cycle doping approach using plasma-based processes may be more feasible than via thermal process: Deng \textit{et al.} reported substitution ratios of 1/10, 1/6, and 1/3 to lead to N levels of 3.3, 4.7 and 9.4 at.\%, respectively; Ti-N bonding was moreover seen by XPS [689].

Regarding crystallization, according to the results by Pore \textit{et al.} the higher N content together with the Ti-N bond formation seem to favour the growth of anatase-structured films with preferred \(c\)-axis orientation, while mixed-phase anatase-rutile films are obtained for low N levels (at 500 °C) [65]. With the exception of the preferred orientation this observation is supported by the results of
Cheng et al., who furthermore saw a shift in the anatase (101) peak position (in an XRD pattern) with increasing doping level as an indication of substitutional incorporation of N into the O site in the TiO$_2$ lattice (at 400 °C) [128]. When the deposition was realized through the Ti(NMe$_2$)$_4$/H$_2$O/N$_2$ plasma process at a relatively low temperature of 150 °C, amorphous films were obtained [689]. These amorphous films were then crystallized upon annealing at a temperature of ~500 °C; note that the required crystallization temperature increases slightly for increasing N levels [689]. Lack of oxygen in the annealing atmosphere favours the rutile structure, whereas air anneal leads to the formation of anatase-structured films with preferred c-axis orientation that becomes more pronounced at higher N levels [689].

Photocatalytic properties. When a material is irradiated with light with energy larger than its band gap electrons from the valence band are excited to the conduction band, leaving holes behind in the valence band. These photo-generated holes and electrons can drive oxidation and reduction reactions on the material surface. Due to its large band gap of around 3.2 eV, TiO$_2$ can only exploit UV-range photons and activation of the material to the visible light has been an active research topic. Often the anatase structure or an anatase-rutile mixture is considered better than the rutile structure regarding the photocatalytic performance, though the topic yet has remained a subject of discussion [809,810].

Indeed, lowering the TiO$_2$ band gap by N doping has been proven successful through different ALD routes [65,242,313,689]. For thermal ALD Pore *et al.* reported a modest shift in the band-gap value down to 2.9 eV (anatase TiO$_2$) for nitrogen content of 8.1 at.%, while a plasma-based process yielding a similar nitrogen level of 9.4 at.% enabled a more pronounced decrease of the band gap down to 1.9 eV (amorphous TiO$_2$) [65]. However, attempts to anneal the amorphous films to obtain the anatase structure drove out the N dopants and the band gap was found to increase to a value close to that seen for undoped TiO$_2$ [689].

Looking into the photocatalytic properties of ALD fabricated N-doped TiO$_2$, simple reduction in the band gap may not directly imply improved photocatalytic performance. Pore *et al.* reported heavy recombination of the photogenerated electron-hole pairs for their N-doped film obtained via thermal ALD, such that the films showed poor performance both in the UV and visible range in terms of stearic acid decomposition [65]. Photocurrent experiments by Cheng *et al.* also pointed towards prominent recombination for the higher N content, however films within the low-doping regime below 1.2 at.% exhibited enhanced photocurrent production in the visible range while largely maintaining the UV activity [128]. Furthermore in this respect, it has been proposed that substitutional N is linked to the presence of Ti$^{3+}$ that functions as a recombination centre [804]. However, Rao *et al.* showed improved performance for films from the N$_2$ plasma-based process in comparison to the undoped TiO$_2$ in the visible range in terms of methylene blue degradation, again for a rather low N level of around 1%. Deng *et al.* showed enhanced stearic acid decomposition for annealed N-doped films where most of the nitrogen was driven out by the annealing step; in this case the enhanced performance was ascribed to the increased surface area of the films [689]. Indeed, enhanced surface area is beneficial for surface-driven processes such as catalysis, a fact that has inspired research on N-doped TiO$_2$ nanotubes: Liu *et al.* showed enhanced water-splitting power for post-deposition doped samples [313], while Chen *et al.* fabricated N-doped nanotubes
by annealing molecular-layer-deposited films and showed degradation of methylene blue under visible light [811].

5. Towards applications – nanostructures

The unique capability enabled by the ALD technique is the conformal deposition of ultrathin films on high-aspect-ratio nanostructures. Recalling the well-known catalytic activity of TiO$_2$ in particular, ALD provides us with an attractive means for fabrication of high-surface-area nanostructured surfaces for catalysis [320,566,739]. As TiO$_2$ is furthermore photoactive, the research examples related to the employment of ALD for nanostructuring of TiO$_2$ can be mostly found in the fields of chemical catalysis [114,515,812], photovoltaics [155,325,813,814], photoelectrolysis [812,814], and photochemical hydrogen generation [188]. Apart from catalysis, another field where high surface area is beneficial is sensors; indeed TiO$_2$ has also been investigated as a gas barrier layer [815], a gas sensor [816] and a biological sensor [175]. Titanium dioxide is also biocompatible and ALD-fabricated TiO$_2$ thin films could potentially offer superior performances in some frontier medical applications [817]. Moreover, the interesting properties of nanostructured TiO$_2$ include UV-light-switchability combined with hydrophilicity/phobicity and photoactivity [303,818]. The variety of different ALD-TiO$_2$ nanostructures and their potential applications are highlighted in figure 9.

In this chapter we discuss the different nanostructuring approaches demonstrated in literature. A distinction is made between the approaches where TiO$_2$ serves as a mere coating layer and approaches where the substrate is used as a sacrificial template for fabrication of (self-supporting) TiO$_2$ nanostructures. Deposition on planar carbon-based substrates is also discussed here, as the goals are often very similar to those with the nanostructures.

5.1 Coatings/overlayers on nanostructures

Nanoparticles. Zinc oxide nanoparticles show good photocatalytic activity, but they suffer from lower chemical stability [566]. This drawback of ZnO nanoparticles was overcome by coating them with an ALD-TiO$_2$ overlayer without compromising the excellent photochemical activity of the original ZnO particles [566]. Another example related to nanoparticle catalysts is the core-shell Au-Al$_2$O$_3$ and Au-SiO$_2$ nanoparticles coated with a 1.5-nm-thick ALD-TiO$_2$ layer used for CO reduction [819]. For such a thin layer, the film growth was observed to proceed by formation of islands, such that TiO$_2$ grew preferentially on the under-coordinated Au sites [819]. The island-type growth mode can even be exploited to fabricate structures, where TiO$_2$ nanoparticles form on supporting nanoparticles, e.g. silica or titania nanoparticles [812,813]. The high surface area makes these nanostructures attractive for water splitting, decomposition of organic contaminants [812] and improvement of dye-sensitized solar-cell performance [813]. When an ALD-TiO$_2$ layer is deposited on nanoparticles, the coating can furthermore provide improved inter-particle and
particle-substrate adhesion [813]. Moreover, Kim *et al.* obtained improved chemical water-splitting performance for Co/C nanoparticles by coating them with an ALD-TiO$_2$ layer [320].

Carbon nanotubes. Acauan *et al.* deposited TiO$_2$ on carbon nanotube (CNT) surfaces that had undergone different surface treatments prior to the deposition [820]. On the pristine CNT surface TiO$_2$ grew as small particles with broad size distribution and poor and non-uniform coverage. The treatment of CNTs with nitrogen improved the coverage such that crystalline uniformly distributed particles of TiO$_2$ formed, with a narrow size distribution of 7-8 nm. When the CNTs were treated with oxygen, continuous films instead of nanoparticles were formed. The work suggests that the nucleation of TiO$_2$ preferentially onsets on C-X sites (with X being N or O atoms) rather than on C-C defects. Also Marichy *et al.* studied the deposition of TiO$_2$ on carbon nanotubes [821]. The morphology of the TiO$_2$ film depended strongly on the functionality of the CNTs, a property that was controlled with heat treatments of the CNTs prior to the deposition of the TiO$_2$ layer. Consequently, the morphology of the TiO$_2$ overlayer varied from homogeneous and conformal amorphous (pre-deposition heat treatment at 700 °C) to a more granular and particulate amorphous (pre-treatment at 1500-3000 °C). The homogeneous layer showed a significant change in resistivity in the presence of NO$_2$ and O$_2$ gases indicating continuous layers to perform better for gas sensing purposes. The TiO$_2$ layer was observed to have p-type response towards oxygen and nitrogen dioxide [821]. Apart from the catalytic applications, amorphous TiO$_2$ films deposited on CNTs have been tested as anodes for lithium ion batteries [822]. The ALD-TiO$_2$ films displayed high specific capacity resulting from the high surface area of the underlying CNTs. The high capacity achieved was higher than the theoretical bulk value. The TiO$_2$/CNT system was also fabricated as a free-standing structure reinforcing the idea that the combination could provide the high-power and high-capacity anodes for Li-ion battery applications.

Graphitic and polymeric carbon. Carbon nanosheets (CNS) have been studied as high-surface area substrates for photocatalytic TiO$_2$ films deposited by ALD [739]. After the deposition the samples were annealed at 600°C to form a porous, nanocrystalline and photocatalytically active CNS-TiO$_2$ composite film. The annealing treatment transformed the as-deposited amorphous titanium oxide to anatase with the morphology remaining unchanged (figure 10). Ismagilov *et al.* used nanographite films (few-layer graphene nanowalls with cross-plane oriented nanoscrolls) as a substrate for the TiO$_2$ deposition [289]. The ALD-TiO$_2$ film grown on them with a thickness ranging from 50 to 250 nm covered the nanowalls homogeneously while only partially coating the needle-like nanoscrolls where rather individual spherical particles were formed. Even when the thickness of the TiO$_2$ coating was as much as 200 nm, the field emission characteristics of the graphene were not significantly affected. The application proposed for the structure is as cold anode in vacuum electronic devices since TiO$_2$ was also found to form a protective passivation layer on top of the graphite.

Titanium dioxide deposited by ALD on graphene nanosheets (GNSs) could find application in Li-ion batteries as well. Li *et al.* deposited amorphous TiO$_2$ on GNSs for an anode material [823]. The amorphous nature of TiO$_2$ provided the structure with short Li$^+-$ion diffusion pathways while the CNSs offered excellent electrical conductivity and large electrode/TiO$_2$ contact area. These characteristics contributed to the remarkable electrochemical performance of the structure. In
another work, the authors utilized ALD to coat mesoporous activated carbon (AC) electrodes with TiO$_2$ [824]. The mesoporous AC substrate was chosen in order to enhance the low electrical conductivity, poor cyclic performance and low Li$^+$-ion diffusivity of TiO$_2$. The thus fabricated TiO$_2$-coated AC electrode showed improved performance with a high specific capacitance, high rate capability and enhanced cycle life compared to pristine AC electrodes.

Lange et al. used TiO$_2$ grown on top of low-density polyethylene as a gas-barrier enhancer of the plastic film [815]. The growth of the TiO$_2$ layer starts inside the polyethylene film with the first 10-15 cycles penetrating the surface, after which the deposition continues normally on top of the surface. To avoid cracks, the deposition temperature was kept at a maximum of 50 °C, when the TiO$_2$ layer was confirmed to be an effective oxygen barrier.

Figure 10. HRTEM image showing the anatase crystallites grown on a graphite wall of a carbon nanosheet. Reprinted with permission from Verbruggen S W et al. 2014 Appl Catal., B 160-161 204. Copyright 2014 American Chemical Society [739].

Other substrates. Hoshian et al. utilized the photoactivity of TiO$_2$ to fabricate photoswitchable hydrophilic/hydrophobic surfaces [303,818]. Titanium oxide has phototunable hydrophilic properties that arise from its surface chemistry and, when deposited on top of microscale overhanging pillars the surface can be made hydrophobic, as illustrated in figure 11. Thus, the switching of the state of the surface can be controlled by UV exposure. The combination of photoswitching, micropillar design and surface nanostructuring made the switching/recovery possible. Moreover, Tian et al. have demonstrated the coating of nickel foam with ALD-TiO$_2$ for antireflection layer of solar cells (figure 12) [325].

Microfabricated silicon nanowires (NWs) can be used as anode material in Li-ion batteries but their performance is not ideal. Lotfabad et al. coated the structure with ALD-TiO$_2$ [825]. The amorphous coating was conformal and not only enhanced the electrochemical properties but also prevented the agglomeration of Si NWs that would lead to delamination from the conductive substrate in the battery. Also, TiO$_2$ has been found advantageous as a coating for LiMO$_2$ cathodes.
where $M = (\text{Ni,Mn,Co})$ or (Ni,Co,Al) [826,827]. Here the thin TiO_2 layer acts mostly as a protective layer for the active LiMO_2 cathode material preventing its dissolution and promoting the Li^+-ion diffusion.

Figure 11. (bottom, left) Image of the hydrophobic structure in macro scale. (top, right) Microscale scanning-electron-microscope image of the same. (bottom, right) The working principle of the structure is schematically explained. Reprinted with permission from Hoshian S et al. 2015 ACS Appl Mater Interfaces 7 15593. Copyright 2015 American Chemical Society [303]

Figure 12. Scanning electron micrograph of nickel foam coated with TiO_2 Reprinted with permission from Tian L et al. 2015 J Vac Sci Technol A 33 01A141. Copyright 2015 AIP Publishing LLC [325].
5.2 Template-assisted nanostructures

Nanotubes. In template-assisted nanostructuring an ALD-TiO$_2$ layer of a desired thickness is first conformally deposited on a sacrificial template. Then the template is selectively removed by etching or by a heat treatment, which yields the TiO$_2$ nanostructure shaped by the template. In general ALD-based nanotubes are probably most commonly fabricated using porous anodic alumina (PAA) as a sacrificial template; in case of TiO$_2$, nanotubes have also been fabricated using other type of templates such as carbon nanocoils [399], carbon nanotubes [828], nanocellulose aerogel [138], polyvinylpyrrolidone-modified polysulfone [247] or polycarbonate membrane [292]. Note that, as the TiO$_2$ deposition on nanotube templates are often performed at low temperatures, subsequent annealing in the temperature range of 300-500°C can convert the as-deposited amorphous nanotubes into the anatase crystal structure [85,114,159]. Owing to the high surface area and functionalization possibilities, the TiO$_2$ nanotube structures are highly interesting for photocatalysis and photovoltaics [148,246,272,320,829,830].

Nanotube arrays can be fabricated using PAA as a template, such that the outer diameter of the nanotubes is controlled by the PAA pore width, while the thickness of the ALD layer deposited on the pore walls determines the inner radius of the nanotubes, as illustrated in figure 13. Besides the width of the pores, the depth and spacing of the hexagonally arranged pores can be tuned by the fabrication parameters of the through-porous PAA template [85,172,381]. The well-defined structure of the template enables fabrication of consistent and homogeneous arrays of nanotubes with good contact between the closed bottom of the nanotubes and the substrate [85,114,476].

In an early work by Shin et al. on ALD-grown TiO$_2$ nanotubes, the structures were fabricated utilizing a polycarbonate filter as a template, and excellent control over the wall thickness of the nanotubes was achieved [829]. However, the control of the other dimensions of the nanotubes was not so good compared with the level of control typically seen for PAA-templated nanotubes. Su et al. reported the use of a polycarbonate membrane as a template [292]. Moreover, helical TiO$_2$ nanotubes have been fabricated using carbon nanocoils as a sacrificial template and studied for their mechanical properties [399]. These nanotubes showed improved elastic modulus values compared to the ordinary non-helical ones, therefore having potential applications as nanosensors, mechanical springs, actuators and elastic electrical conductors [399]. Deng et al. used CNTs as a template and showed that the as-deposited TiO$_2$ layer could continuously coat the CNT surfaces [828]. However, after calcination above 475 °C the TiO$_2$ layer transformed to a stack of interconnected nanoparticles in place of the removed CNTs. Upon increasing the temperature, TiO$_2$ was transformed from the as-deposited amorphous phase to crystalline anatase phase while the carbon was gradually removed.

Possible nanotube structures are not limited to arrays, as use of network-structured templates enables fabrication of nanotube networks. Korhonen et al. coated nanocellulose fibers, organized in a random mesh, with ALD-TiO$_2$ [138]. After removal of the template, a hollow nanotube network of anatase TiO$_2$ was obtained. When these TiO$_2$ nanotubes were tested as a humidity sensor, they showed a relatively fast response time in the 40-80% humidity region. Other proposed
applications include non-wetting surfaces, carriers, encapsulation, drug-release, catalysis, microfluidics and filtration. Similar nanotube networks have also been fabricated by using cellulose nanofibers as a template [272]. Both pure TiO$_2$ and ZnO-TiO$_2$ bilayer nanotubes were fabricated with the wall thicknesses of 100 and 150 nm, respectively, and tested as photoelectrochemical (PEC) photoanodes. Moreover, use of polyvynilpyrolidone-modified polysulfone [246] and tris-8-hydroxyquinoline gallium [148] can be used as a template to obtain hollow TiO$_2$-network structures.

Currently TiO$_2$ nanotubes realized through template-assisted ALD are also investigated as Li-ion battery anode materials. Both sacrificial templates and intermediate layers to obtain hollow tubular structures have been utilized. A common material here used in combination with TiO$_2$ is SnO$_2$ [831-833]. In the case of Carvajal et al. the template made of vertically aligned SnO$_2$ nanorods was not sacrificial [831]; on top of these nanorods two layers were deposited by ALD, first a sacrificial ZnO layer and then TiO$_2$. Removal of the ZnO layer then created a 30 nm gap between the active materials, SnO$_2$ and TiO$_2$. In another work, a hollow SnO$_2$/TiO$_2$ structure was employed to obtain good initial discharge capacity and cycling performance [832]. In this case too, ZnO was used as a sacrificial template grown as nanotubes on the surface of flexible carbon cloth. On these ZnO nanotubes, SnO$_2$ (utilizing SnCl$_4$ and H$_2$O as precursors) was grown by ALD followed by ZnO etching and ALD of TiO$_2$ (with TiCl$_4$ and H$_2$O). This structure was able to accommodate the large internal stress from the volume expansion of SnO$_2$ while the TiO$_2$ layer protects it from pulverization and exfoliation. Similar SnO$_2$/TiO$_2$ nanotube structures have been fabricated also using the traditional PAA template method. First ALD of TiO$_2$ is performed inside the template holes, followed by the ALD of SnO$_2$ [834]. The thinner walls of the nanotubes resulted in enhanced capacity retention.

Recently Zhong et al. fabricated a nanotube array made of TiO$_2$/Fe$_2$O$_3$ utilizing Co$_2$(OH)$_3$CO$_3$ as a sacrificial template [835]. According to the article the performance of the structure was superior compared to most reported TiO$_2$/metal oxide composites. This was attributed to the combination of the high specific capacity of Fe$_2$O$_3$ and the usual structural stability of the TiO$_2$ backbone.
Figure 13. Fabrication route for TiO$_2$ nanotubes using a porous anodic alumina (PAA) template. (A) The PAA template prepared from an aluminum film. (B) TiO$_2$ is conformally deposited by ALD inside the pores of the PAA template. (C) Template is removed by etching, which leaves an array of TiO$_2$ nanotubes on the substrate. (D) Illustration of the hexagonal arrangement of the PAA-based nanotubes. (E) Scanning electron micrograph of a nanotube array with hexagonal packing Reprinted with permission from Deng S *et al.* 2014 RSC Adv 4 11648. Copyright 2014 American Chemical Society [836].

Inverse opals. Inverse opals are structures formed from an opal template (amorphous SiO$_2$ or polystyrene spheres organized in regular, closely packed planes) infiltrated with a material (*e.g.* TiO$_2$). The template is then removed leaving a TiO$_2$ structure that is the inverted of the initial opal. One of the main characteristics of these TiO$_2$ nanostructures is the high surface area together with a high void volume (74% in [188]). These nanostructures could be interesting material candidates for applications such as photochemical hydrogen generators [188], photochemical cells [530], dye-sensitized solar cells [837] or photonic crystal displays [140].

Conventionally inverse opals are formed by means of infiltrating liquid into the opal template. However, by using ALD a better control on the wall thickness is achieved, together with an improved infiltration that yields filling fractions close to the theoretical maximum [72]. The ALD processes used to fabricate the inverse opals are all operating with long pulse or long hold times depending on the reactor type. Long processing times are needed because the infiltration of the precursors needs to be complete and uniform. The infiltration, being a diffusion process, cannot be sped up and the thickness of the template will define the deposition time. During the post-deposition template-removing calcination (for polystyrene templates) or HF etching (for silica
templates) the inverse opal structure is formed, while the TiO$_2$ is transformed to the anatase crystalline phase. Figure 14 presents a schematic and a SEM cross-section image of an inverse-opal structure fabricated with a template formed by stacked particles, while figure 15 shows how the dimensions of an inverse-opal structure can be further controlled with ALD after the template removal.

The inverse opals are porous structures that can then again be used as a substrate for further processing, such as fabrication of multi-layered inverse opals. For example, Graugnard et al. fabricated non-close-packed inverse-opal photonic crystals on opal templates [72]. The opal template was first coated with a sacrificial Al$_2$O$_3$ layer and then with a TiO$_2$ dielectric layer. When both the template and the sacrificial layer were removed by etching, the remaining structure was composed of TiO$_2$ structured as spherical voids connected by air channels. The dielectric structure can then be further coated to adjust the size of the air channels and the thickness of the walls. Other examples on further tailoring of TiO$_2$ inverse opals include sensitization with CdS quantum dots for photoelectrochemical hydrogen generation [188], and sensitization with indoline for dye-sensitized solar cells [837].

Other structures. Titanium oxide coating has also been used to enhance the hydrophobicity of nanostructured surfaces replicated on polydimethylsiloxane (PDMS) from an aluminum template [818]. Aluminum was etched to create the nanostructures and then coated with 25-nm thick ALD-TiO$_2$ layer. Then, PDMS was casted and cured on top of the structure. After the removal of aluminum by etching, the nanostructures remained replicated on the PDMS surface with the TiO$_2$ coating transferred on them. The final surface showed enhanced hydrophobicity compared to the nanostructured PDMS alone thus confirming the benefits provided by the added TiO$_2$ layer.

![Figure 14](image-url) **Figure 14.** (left) Schematic of the fabrication of TiO$_2$ inverse opal structure. Starting from an ordered nanoparticle template (A) the ALD coating is applied (B). When the template is removed the TiO$_2$ coating remains forming the inverse-opal structure (C). (right) Scanning electron micrograph of a TiO$_2$ inverse-opal structure fabricated with a template with particle size of 756 nm. Reprinted with permission from Kubrin R et al. 2012 J Am Ceram Soc 95 2226. Copyright 2012 John Wiley and Sons. [431]
Figure 15. Fabrication route for a coated inverse opal structure. Starting from packed nanoparticles (NP) in (a), a sacrificial coating is applied in (b) and then the dielectric TiO$_2$ is deposited by ALD in (c). The NPs and the sacrificial layer are etched away in (d) and (e) with another TiO$_2$ deposition is performed in (f) to control the size of the air channels. Reprinted with permission from Graugnard E et al. 2006 Adv Funct Mater 16 1187. Copyright 2006 John Wiley and Sons. [838]
6. Hybrid TiO$_2$-organic structures

Molecular layer deposition (MLD) is a technique analogous to ALD with the difference that in MLD the film growth proceeds via deposition of molecular monolayers instead of atomic monolayers. When two (or more) different organic MLD precursors are reacted on a substrate surface in a cyclic self-limited manner, purely organic thin films such as polyimide [839] and polyamide [840] can be grown; this is an approach that dates back to 1990s. More recently, an interesting way to combine organic MLD precursors and metal-containing ALD precursors to produce inorganic-organic thin films has been demonstrated [841-843]. In addition to enabling the fabrication of completely new types of inorganic-organic hybrid materials, this novel combinatorial approach (ALD/MLD) adds an additional degree of freedom for tailoring inorganic materials such as TiO$_2$, as the ratio of the inorganic and organic constituents in these layered hybrid materials can be freely tuned with an accuracy of atomic or molecular monolayer [307,841,844-846]. In this chapter we briefly introduce the literature on Ti-based hybrid thin films by ALD/MLD.

In the first published work on Ti-based hybrid films by ALD/MLD the film growth was achieved from Ti(O'iPr)$_4$ and CH$_2$=CH(CH$_2$)$_6$SiCl$_3$ precursors [841]. After this, attention regarding the organic precursors has shifted more and more on aliphatic and aromatic organic alcohols, amines and carboxylic acids [9]. In most of the works TiCl$_4$ has been used as the Ti precursor; it has been combined with ethylene glycol [847,848], glycerol [847,849], 8-hydroxyquinoline [842,850], ethanolamine [811], malonyl chloride [811] and 4,4’-oxydianiline [851,852]. Ideally, the growth of a hybrid thin film takes place via self-saturating ligand-exchange reactions between e.g. the –OH groups of an organic alcohol and –Cl groups of TiCl$_4$, that is, in a way familiar from ALD. Note that the reaction sequences are not limited to two-precursor processes but multi-precursor processes are also possible, as illustrated by the work by Chen et al. who demonstrated the growth of hybrid films using TiCl$_4$, ethanolamine and malonyl chloride [811]. The possible complications with the ALD/MLD film growth relate to unwanted double surface reactions, such that both functional groups of an organic precursor react during one half-cycle reaction with the surface. This is a problem that may lead to slowing down of the film growth as the functional group density on the surface of the growing film decreases with increasing film thickness. This can be though largely avoided by using aromatic molecules with rigid backbones [9].

Thermal post-deposition treatments provide a powerful tool for tuning the structure and properties of these hybrid films, such that annealing in oxygen-containing environments may provide a pathway to porous inorganic structures, while annealing in reductive conditions leads to formation of TiO$_2$:C composite-type materials where the carbon is present in graphitic form [845,849]. Inorganic-organic thin films where the thickness of the organic layers is kept at a monomolecular level while expanding the thickness of the inorganic layers, the organic layers can be used to fine-tune the properties of the inorganic matrix. In this regards, examples are TiO$_2$:polydiacetylene hybrid superlattices obtained combining the TiCl$_4$/H$_2$O process with single intermediate TiCl$_4$/HDD/UV-exposure cycles for the polydiacetylene layers (HDD stands for 2,4-
hexadiyne-1,6-diol) [844], TiO$_2$:hydroquinone superlattices for tuning the optical properties and TiO$_2$:C superlattices for thermal conductivity suppression of TiO$_2$ [307, 845, 846]. The ability to combine the properties of inorganics and organics in one material holds a great promise, yet the research on these hybrid materials is still in its infancy and a lot remains to be understood regarding e.g. the local structure of the films and finding the key inorganic-organic material pairs and properties for break-through applications.
7. Summary and outlook

During the past decades over fifty different ALD processes have been developed for TiO$_2$ by combining homoleptic halide, alkoxide, alkylamide, and also heteroleptic precursors with \textit{e.g.,} water, ozone, and oxygen plasma. The most common halide-based process is TiCl$_4$/H$_2$O, which can be used in a wide temperature range above 100 $^\circ$C. Other halides, namely TiI$_4$ and TiF$_4$, have also been studied but are not as common as TiCl$_4$. For the halides in general, the drawback is the corrosiveness of the reaction byproducts, which can be harmful to the deposition instruments and has been one of the drivers in the search for alternative titanium precursors among alkoxides, alkylamides and heteroleptic precursors. While Ti(O\textit{Pr})$_4$ has been the most popular alkoxide precursor, showing reactivity towards H$_2$O even below 100 $^\circ$C, Ti(OEt)$_4$ and Ti(OMe)$_4$ have also received some attention. The drawback of the alkoxide precursors is that they decompose at relatively low temperatures, such that for Ti(O\textit{Pr})$_4$ the decomposition starts around 250 $^\circ$C, while Ti(OEt)$_4$ and in particular Ti(OMe)$_4$ are slightly more stable. Alkylamides are highly reactive towards water, so that TiO$_2$ films can be grown well below 100 $^\circ$C. The most common alkylamide is Ti(NMe$_2$)$_4$, but Ti(NEt$_2$)$_4$ and Ti(NEtMe)$_4$ based processes are also sometimes employed. The drawback is that Ti(NMe$_2$)$_4$ starts to decompose already around 200 $^\circ$C. In order to boost up the thermal-decomposition temperature of the non-halide precursors, various heteroleptic precursors have been developed. In this respect, Cp ligands have shown a particularly positive stabilizing effect when combined in a single precursor molecule with alkoxide or alkylamide ligands. The stabilizing effect seems to be enhanced for Me-substituted Cp rings, especially for CpMe$_5$. It is worth noting that typically insufficient reactivity of water towards these Cp-based precursors requires the use of more reactive co-reactants such as ozone or O$_2$ plasma.

Depending on the deposition conditions, as-grown TiO$_2$ thin films can be amorphous, one of the crystalline forms, \textit{i.e.,} anatase, rutile, brookite, TiO$_2$-II phase, suboxide phases, or – as also often being the case – a mixture of some of these. Amorphous films are obtained at low temperatures, films of the anatase structure at intermediate temperatures and films of the rutile structure at high temperatures. For the halide-based processes anatase crystals start forming within the amorphous matrix at around 130 $^\circ$C or above, while formation of the rutile structure is observed around 300 $^\circ$C or above. For the alkoxide-based processes the onset temperature for the anatase structure appears to be slightly higher than for the halide-based processes, \textit{i.e.,} 180 $^\circ$C or higher. The low decomposition temperature of the precursor makes it difficult to obtain rutile films within the decomposition-free deposition temperature regime. This holds also for alkylamides, for which even the anatase-formation temperatures may overlap with the precursor decomposition regime. Heteroleptic precursors typically enable anatase films to be obtained in the decomposition-free regime, starting from 250 $^\circ$C, while the onset temperatures for rutile formation are typically above 300 $^\circ$C. Evidently, the choice of the growth surface plays a role in the formation of the crystal structure. The growth of TiO$_2$ films is often initiated by a formation of a homogeneous amorphous layer, being presumably linked to a high density of hydroxyl groups on the surface. In the opposite
low-hydroxyl-group-density case, the deposition may initiate via formation of small island-type crystal grains. When the film growth begins with the formation of an amorphous layer, crystalline anatase grains can subsequently form within/on the amorphous layer, provided that the deposition temperature is high enough. Moreover, lattice match between TiO$_2$ and the substrate plays a role, such that for example epitaxial growth of rutile films at the notably low temperatures around 250 °C is possible on rutile-structured RuO$_2$, SnO$_2$ and IrO$_2$ surfaces.

For ALD-fabricated TiO$_2$ the common dopant cations are Al and Nb, while anion-site doping with N is also possible. AlMe$_3$ has typically been used as the Al-dopant precursor, while AlCl$_3$ has been studied as a hydrogen-free alternative. The choice of the oxygen source can be important when TiO$_2$ is grown on a metal surface; e.g. on Ru the high oxidation power of O$_3$, O$_2$ plasma or N$_2$O plasma is needed for in-situ formation of interfacial RuO$_2$ that promotes the growth of rutile-structured TiO$_2$ at notably low temperatures around 250 °C. Interesting for high-k applications, Al-doping has been shown to decrease the leakage current values for rutile TiO$_2$ films by multiple orders of magnitude in comparison to undoped TiO$_2$. This has been ascribed to increased Schottky barrier at the metal-insulator interface, as Al$^{3+}$ acceptors lower the Fermi level in TiO$_2$. Contrary to Al$^{3+}$, Nb$^{5+}$ in the anatase structure makes TiO$_2$ a degenerate semiconductor and hence an interesting transparent conductor. Fabrication of Nb:TiO$_2$ films has been demonstrated using either Ti(OMe)$_3$ or TiCl$_4$ as the Ti precursor, Nb(OEt)$_5$ or TBTDEN as the Nb precursor and H$_2$O as the oxygen source. Via reductive heat treatment of amorphous as-deposited films, the films on glass substrates exhibit large crystal grains and hence high mobility with resistivity values as low as 1 mΩcm. Especially for high Nb contents the crystal grains are extraordinarily large and highly c-axis oriented. Doping TiO$_2$ with nitrogen is a prominent approach to reduce the band gap and sensitize the material to visible light, and has been attempted via various thermal and plasma ALD routes. Indeed, lowering the TiO$_2$ band gap by N doping together with improved photocatalytic properties has been reported. However, the decreased band gap may not directly imply improved photocatalytic performance, as due to doping, simultaneously enhanced recombination has been reported.

The unique feature of the ALD technique is the ability to conformally deposit ultrathin films on high-aspect-ratio nanostructures. A distinction can be made between the nanostructuring approaches where TiO$_2$ serves as a mere coating layer and approaches where a substrate is used as a sacrificial template for fabrication of TiO$_2$ nanostructures. Having the eye on the utilization of the well-known catalytic activity of TiO$_2$, ALD therefore is a promising technique for tailoring/fabricating high-surface-area nanostructured surfaces for catalysis by coating e.g., different nanoparticles and carbon nanotubes. The template-assisted approach enables fabrication of TiO$_2$ nanotube arrays, again interesting for catalysis, and for example inverse-opal structures interesting for solar-cell electrodes or photonic crystals.

During the past decade, an increasing number of ways to combine organic MLD precursors and metal-containing ALD precursors for the fabrication of inorganic-organic thin films has been demonstrated. In addition to enabling fabrication of completely new hybrid materials, the ALD/MLD approach brings in additional freedom for tuning inorganic materials, TiO$_2$ among the others, as the ratio of the inorganic and organic constituents in these layered hybrid materials can
be freely tuned with an accuracy of atomic or molecular monolayer. For these hybrid materials, post-deposition treatments provide a powerful tool for tuning their structure and properties. For example annealing in oxygen may provide a route to porous inorganic structures, while use of reductive conditions can lead to the formation of nanocomposite-type materials with carbon in graphitic form.

In the future, the continuing downscaling of microelectronic devices implies ever increasing demand for atomic-level thickness control for deposition of ultrathin films on three-dimensional nanostructures – extremely stringent conditions that can be met by atomic layer deposition but not necessarily by other thin-film techniques. The literature overviewed in this work shows that a wide range of ALD processes with specific characteristics is available for tailoring TiO\textsubscript{2} films for different applications. Besides nanostructuring, enhanced control over the material properties achieved by doping, and by combining TiO\textsubscript{2} with organics by means of atomic/molecular layer deposition, are foreseen as future research directions on the way to further enhanced technological applicability of TiO\textsubscript{2} thin films.

Acknowledgement

This work has been supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Advanced Grant Agreement (No. 339478) and also by the Strategic Research Council at the Academy of Finland (No. 303452) and the Mineral Resources and Material Substitution Programme of the Academy of Finland (No. 292431).
References

[46] Puurunen R L 2003 Chemical Vapor Deposition 9 327

Lim G T and Kim D 2006 Thin Solid Films 519 3318

Lim G T and Kim D 2006 Thin Solid Films 519 3318

Alessandri I, Zucca M, Ferroni M, Bontempi E and Depero L E 2009 Small 5 336

Alessandri I and Depero L E 2010 ACS Appl Mater Interfaces 2 594

Swaminathan S, Shandalov M, Oshima Y and McIntyre P C 2010 Appl Phys Lett 96 082904

Chen Y W, Prange J D, Dühnen S, Park Y, Gunji M, Chidsey C E D and McIntyre P C 2011 Nat Mater 10 539

Wittig R, Waller E, von Freymann G and Steiner R 2012 J Laser Appl 24 042011

Chen Y W, Prange J D, Dühnen S, Park Y, Gunji M, Chidsey C E D and McIntyre P C 2011 Nat Mater 10 539

Wittig R, Waller E, von Freymann G and Steiner R 2012 J Laser Appl 24 042011

Thomas M A, Cui J B and Watanabe F 2012 ECS Trans 45 41

Kim C E and Yun I 2012 Appl Surf Sci 258 3089

Kim H, Ko K and Kang H 2012 ECS Trans 50 127

Jin S H, Jun G H, Hong S H and Jeon S 2012 Carbon 50 4483

[666] Kim C E and Yun I 2012 ECS Trans 45 89
[677] Ye L and Gougousi T 2013 ACS Appl Mater Interfaces 5 8081
[702] Li X, Bassi P S, Boix P P, Fang Y and Wong L H 2015 ACS Appl Mater Interfaces 7 16960

67
[832] Zhang H, Ren W and Cheng C 2015 Nanotechnology 26 0957