Murtola, Tiina; Malinen, Jarmo

Waveform Patterns in Pitch Glides Near a Vocal Tract Resonance

Published in:
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH

DOI:
10.21437/Interspeech.2017-875

Published: 01/08/2017

Please cite the original version:
Waveform patterns in pitch glides near a vocal tract resonance

Tiina Murtola¹, Jarmo Malinen²

¹Department of Signal Processing and Acoustics, Aalto University, Finland
²Department of Mathematics and Systems Analysis, Aalto University, Finland
tiina.murtola@aalto.fi, jarmo.malinen@aalto.fi

Abstract

A time-domain model of vowel production is used to simulate fundamental frequency glides over the first vocal tract resonance. A vocal tract geometry extracted from MRI data of a female speaker pronouncing [i] is used. The model contains direct feedback from the acoustic loads to vocal fold tissues and the inertial effect of the full air column on the glottal flow. The simulations reveal that a perturbation pattern in the fundamental frequency, namely, a jump and locking to the vocal tract resonance, is accompanied by a specific pattern of glottal waveform changes.

Index Terms: speech production model, modal locking

1. Introduction

The source–filter theory of vowel production assumes that vocal fold vibrations occur independently of the vocal tract (VT) whose resonances modulate the vowel sound [1, 2]. Although this approach suffices for many purposes, some phenomena cannot be explained without filter-to-source feedback. Perturbations in vocal fold vibrations when the fundamental frequency \(f_0 \) is near the lowest formant \(F_1 \) are an example of such phenomena.

Although such perturbations have been reported in human speakers [3, 4, 5], excised larynges [6], physical laboratory models [7, 8, 9, 10], and computer simulations [4, 10, 11, 12], only a few speech modelling studies (namely, [4, 10, 12]) have given attention to the time-domain dynamics of \(f_0 \) glides near \(F_1 \), and only limited details are reported on waveform changes, e.g., amplitudes or pulse shapes, in the glides. Yet time-domain simulations are beneficial for studying the intrinsically time-domain speech production, and waveforms patterns can be used to compare speech models with in vivo measurements, e.g., [5], in greater detail than is possible with spectrograms.

The focus of this work is simulations of pitch glides over an isolated VT resonance. A VT geometry corresponding to [i] is used, and \(f_0 \) is varied over the interval [150 Hz, 310 Hz] which contains the first VT resonance \(F_{11} \). A low-order time-domain model comprising a biomechanical submodel of the glottis and acoustic submodels of the VT and subglottal tract (SGT) is used to investigate changes in glottal waveforms during these glides. The model contains two mechanisms by which the VT and SGT loads affect the glottis model. First, the effect of the air column inertia on the glottal flow is included. This approach is related, but not identical, to the level 2 interaction explained in [12]. Second, feedback from the VT/SGT acoustic directly to the vocal fold tissues is included. To our knowledge, glide simulations studies have not previously included this mode of feedback even though it is an important factor during the closed phase of the glottal cycle.

2. The model

The model used in this work is described in detail in [13, 14, 15] and outlined briefly below.

2.1. Vocal folds

The vocal folds are modelled as wedge-shaped vibrating elements of thickness \(L \) and length \(b \) (Figure 1). The oscillations of the elements are described using equivalent mass-spring-damper systems (Figure 2) with equations of motion

\[
\begin{align*}
M_1 \ddot{w}_1(t) + B_1 \dot{w}_1(t) + K_1 w_1(t) &= F_1(t), \\
M_2 \ddot{w}_2(t) + B_2 \dot{w}_2(t) + K_2 w_2(t) &= F_2(t),
\end{align*}
\]

where \(w_j = [w_{j1} \ w_{j2}]^T \) are the displacements of \(m_{j1} \) and \(m_{j2} \) in the \(y \)-direction for the \(j \)th vocal fold (\(j = 1, 2 \)) as shown in Figure 2. The load force pair \(F_j(t) = [F_{j1}(t) \ F_{j2}(t)]^T \) is described below. The mass, damping, and stiffness matrices \(M_j, B_j, \) and \(K_j \), respectively, in (1) are

\[
M_j = \begin{bmatrix}
m_{j1} + \frac{m_{j2}}{4} & \frac{m_{j1}}{2} + \frac{m_{j2}}{4}
\end{bmatrix}, \quad B_j = \begin{bmatrix}
b_{j1} & 0 \\
0 & b_{j2}
\end{bmatrix}, \quad K_j = \begin{bmatrix}
l_{1j}^2 k_{j1} + \frac{l_{2j}^2 k_{j2}}{2} & l_{1j} l_{2j} (k_{j1} + k_{j2}) \\
l_{1j} l_{2j} (k_{j1} + k_{j2}) & \frac{l_{2j}^2 k_{j1} + l_{2j}^2 k_{j2}}{2}
\end{bmatrix},
\]

and the parameters can be found in Figures 1–2. The impact force \(I \) has been assumed that \(l_1 + l_2 = 1 \). Symmetry is imposed on the vocal folds by using \(M = M_1 \), \(K = K_1 \), and \(B = B_1 \). The load force pair \(F_j(t) = [F_{j1}(t) \ F_{j2}(t)]^T \) is described below. The mass, damping, and stiffness matrices \(M_j, B_j, \) and \(K_j \), respectively, in (1) are

\[
\Delta W_i = \frac{w_{i1}}{H_0} \frac{w_{i2}}{H_0}, \quad i = 1, 2.
\]

The rest gap parameters \(g \) and \(H_0 \) are shown in Figure 1.

When the vocal folds are closed, the load forces in (1) are produced by a nonlinear spring force with parameter \(k_H \), accounting for the elastic collision of the vocal folds, and by the acoustic counter pressure \(p_c = p_c(t) \) (see equation (11)) from the VT and SGT. Thus, the force pair for equations (1) during glottal closed phase is

\[
F = F_H = \begin{bmatrix}
k_H |\Delta W_1|^{3/2} - C_p p_c \\
C_p p_c
\end{bmatrix} \quad \text{for} \quad \Delta W_1 < 0.
\]

The geometric coefficient \(C_p = C_p(t) \) accounts for the moment arms and areas on which \(p_c \) acts (see equation (12)).
The first term represents viscous pressure losses, and the second term accounts for entrance/exit effects (i.e., pressure loss at entrance and partial recovery at exit) which are not attributable to viscosity [15, p. 9]. The parameters \(L_g, k_s, \mu, \) and \(\rho \) are described in Table 2.

The air flow (5) produces an aerodynamic force on the vocal folds [15, pp. 9–10]. When the vocal folds are open, the load force in (1) is hence \(\mathbf{F} = [F_{A,1}, F_{A,2}]^T \), and, for \(\Delta W_1 > 0 \),

\[
F_{A,1} = \frac{\rho HLS_1^2 v_2^2}{2 \cos^2 \phi} \left(-\frac{1}{\Delta W_1 (\Delta W_2 - \Delta W_1)} \right) + \frac{1}{(\Delta W_1 - \Delta W_2)^2} \ln \left(\frac{\Delta W_2}{\Delta W_1} \right) - C_p p_e, \quad \text{and}
\]

\[
F_{A,2} = \frac{\rho HLS_1^2 v_2^2}{2 \cos^2 \phi} \left(\sin^2 \phi \Delta W_2 + \cos^2 \phi \Delta W_1 \right) \left(\Delta W_1 W_2 (\Delta W_2 - \Delta W_1) \right)
- \left(\frac{1}{(\Delta W_1 - \Delta W_2)^2} \right) \ln \left(\frac{\Delta W_2}{\Delta W_1} \right) + C_p p_e,
\]

where \(\phi \) is the angle of the inclined vocal fold surface from the horizontal (Figure 1), and \(p_e \) is given by (11).

2.3. Vocal and subglottal tract acoustics

The total air flow in the airways has a component due to compressibility that can be treated using acoustics. One way of deriving the acoustic equations is to start with the equations of fluid and thermodynamics, and then remove all terms not required for describing a radiative transfer mode of energy and momentum, propagating at the speed of sound [16, Section 2]. The generalised Webster’s equation (see [17]) is used as acoustic loads to represent both the VT and the SGT

\[
\frac{1}{c_2^2 \Sigma^{(j)}(s)^2} \frac{\partial^2 \psi^{(j)}}{\partial t^2} + 2 \pi \sigma W^{(j)}(s) \frac{\partial \psi^{(j)}}{A^{(j)}(s) \partial t} - \frac{1}{A^{(j)}(s)} \frac{\partial}{\partial s} \left[A^{(j)}(s) \frac{\partial \psi^{(j)}}{\partial s} \right] = 0,
\]

where the parameters \(c, \sigma \) are in Table 2, and \(j = "V" \) or "S" refers to the VT or the SGT, respectively. The solution \(\psi^{(j)}(s, t) \) is the velocity potential of the acoustic field. The VT/SGT geometry is represented by the area function \(A^{(j)}(s) \), the stretching factor \(W^{(j)}(s) \), and the sound speech correction factor \(\Sigma^{(j)}(s) \), all at distance \(s \in [0, L^{(j)}] \) from the glottis, where \(L^{(j)} \) is the length of the VT/SGT.

The following boundary conditions are used for (8)

\[
\frac{\partial \psi^{(j)}}{\partial s} (L^{(j)}); t) + \theta^{(j)} c \frac{\partial \psi^{(j)}}{\partial s} (L^{(j)}); t) = 0.
\]

The first boundary condition couples the resonator to the glottal velocity (5) with scaling \(C_v^{(V)} = h H_1 / A^{(V)}(0) \) and \(C_v^{(S)} = -h H_1 / A^{(S)}(0) \). The normalised acoustic resistances \(\theta^{(j)} \) at the other ends are given in Table 1.

2.3.1. VT and SGT geometries

The VT geometry of a healthy 26 years old female corresponding to a prolonged [i] at \(f_0 = 210 \) Hz was used. MRI data was acquired using the method described in [18], and the computational geometries were extracted using the custom software described in [19, 20]. The VT geometry and area function are shown in Figure 3, and the related VT geometry dependent parameter values are given in Table 1. The inertia parameter in the glottal velocity (5) is taken to be \(C_{iner} = C_{iner}^{(V)} + C_{iner}^{(S)} \).
Assuming L is best understood in reference to the moment produced by p_c on the vocal fold wedge. Assuming p_c acts longitudinally on the vertical surface in Figure 3 and considering moments around the inferior edge of the wedge

$$C_p = \frac{1}{L} (H_1 - \Delta W_1)(2H_0 - H_1 - \Delta W_1).$$

3. Numerical simulations

As a preparation of the pitch glides, the vocal fold mass matrix M is determined as detailed in [13, p. 14]. Long steady simulations are used to obtain an initial stiffness matrix K^0 that produces $f_o \approx 150$ Hz and vocal fold damping that keeps the glottal flow amplitude unchanging, resulting in $b = 0.01$. Values for other constants are listed in Table 2.

In all simulations, the equations of motion (1) are solved using a fourth order Runge-Kutta method, the glottal velocity (5) using implicit Euler method, and the Webster’s equations (8) are discretised spatially using finite element method and temporally using Crank-Nicolson method (for further details, see [13, pp. 12–14 and 24–27]).

The pitch glides are achieved by changing K and p_s.

$$K(t) = 2.22^{0.0T} K^0 \quad \text{and} \quad p_s(t) = 2^{0.0T} p_s^0. \quad (13)$$

Changing p_s has only a small impact on f_o in these glides but it ensures that, in the absence of VT/SGT feedback, increasing K does not lead to significant changes in glottal pulse shapes (i.e., type of phonation).

4. Simulation results

A spectrogram for the simulated glottal flow U in a glide with feedback level $Q_{pc} = 0.1$ is shown in Figure 4. A perturbation is clearly visible when f_o crosses f_{R1}. This pattern is absent if the same simulation is carried out without VT feedback (i.e., $Q_{pc} = 0$). Note that no subharmonics are observed in this glide.

Figure 5 (top panel) shows parameters which have been extracted from U pulse by pulse. Since subharmonics were not present, there was no ambiguity in the definition of a pulse.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VT</th>
<th>SGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic resistance $\theta^{(S)}$</td>
<td>0.014</td>
<td>1</td>
</tr>
<tr>
<td>Termination area $A^{(S)}(L^{(S)})$</td>
<td>66 mm2</td>
<td>1000 mm2</td>
</tr>
<tr>
<td>Inertia parameter $C^{(S)}_{iner}$</td>
<td>2820 kg/m3</td>
<td>1040 kg/m3</td>
</tr>
<tr>
<td>Tract length $L^{(S)}$</td>
<td>136 mm</td>
<td>350 mm</td>
</tr>
<tr>
<td>1st resonance f_{R1}</td>
<td>199 Hz</td>
<td>500 Hz</td>
</tr>
<tr>
<td>2nd resonance f_{R2}</td>
<td>2798 Hz</td>
<td>1000 Hz</td>
</tr>
</tbody>
</table>

Table 1: Physical and physiological parameters dependent on the VT and SGT geometries.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed of sound in air c</td>
<td>343 m/s</td>
</tr>
<tr>
<td>density of air ρ</td>
<td>1.2 kg/m3</td>
</tr>
<tr>
<td>kinematic viscosity of air μ</td>
<td>18.27 μN s/m2</td>
</tr>
<tr>
<td>VT/SGT boundary loss coefficient α</td>
<td>7.6 $\cdot 10^{-7}$ s/m</td>
</tr>
<tr>
<td>spring constant in contact k_H (from [22])</td>
<td>730 N/m</td>
</tr>
<tr>
<td>glottal gap at rest g</td>
<td>0.4 mm</td>
</tr>
<tr>
<td>vocal fold length b (from [23])</td>
<td>10 mm</td>
</tr>
<tr>
<td>vocal fold thickness L (from [22])</td>
<td>6.8 mm</td>
</tr>
<tr>
<td>superior vocal fold spring location l_1</td>
<td>0.85</td>
</tr>
<tr>
<td>inferior vocal fold spring location l_2</td>
<td>0.15</td>
</tr>
<tr>
<td>control area height below glottis H_0</td>
<td>11.3 mm</td>
</tr>
<tr>
<td>control area height above glottis H_1</td>
<td>2 mm</td>
</tr>
<tr>
<td>viscous thickness L_v</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>glottal entrance/exit coefficient k_t</td>
<td>0.4</td>
</tr>
<tr>
<td>subglottal pressure (over ambient) p_s^0</td>
<td>650 Pa</td>
</tr>
</tbody>
</table>

Table 2: Physical and physiological constants.
The f_o trajectory shows the perturbation pattern in greater detail than Figure 4: a rapid increase (latter referred to as a jump for clarity) from approximately 180 Hz to f_{R1}, a locking to a plateau at f_{R1} with small oscillations at the beginning, and a smooth release. Figure 5 (top panel) also shows the open quotient OQ and the closing quotient CIQ, see [24, Fig. 4]. The lower panel of Figure 5 shows the amplitudes (i.e., maxima as glottis closes fully through the glide) of U and ΔW_1, and full pulse shapes at five instants are shown in Figure 6. The jump in f_o (instant B) is accompanied by a peak in the OQ and CIQ values, i.e., a momentary increase in breathiness, and a minimum in U and ΔW_1 amplitudes. The increased breathiness shows as a rounder and less skewed U pulse, and Figure 6 also displays more gradual opening and closing of the vocal folds and build-up and cut-off of the flow when compared to pre-perturbation instant A. At the beginning of the locking plateau, OQ and CIQ drop while the amplitudes of U and ΔW_1 increase rapidly. By the instant C the pulse shapes have become very similar to the starting shapes (A). OQ and CIQ then continue to decrease (increased pressedness) and the amplitudes to increase through the locking event at fairly steady rates. The vocal fold oscillations amplitude reaches its maximum slightly after f_o starts to increase again (D). This is also when maximum pressedness of the phonation occurs. After instant D, OQ and CIQ start to increase gradually while amplitudes decrease, until well away from the perturbation (E), the pulse shapes are very similar to the start (A). The similarity of the pulse shapes at the beginning and end of the glide was achieved by using the p_o control described above.

![Figure 5](image-url)

Figure 5: Top: f_o (black) on left axis, and open quotient OQ (solid gray) and closing quotient CIQ (dashed gray) on right axis. Bottom: Maximum U in each pulse (black) on left axis and maximum glottal gap ΔW_1 in each pulse (gray) on right axis. Vertical lines indicate time instants shown in Figure 6.

5. Discussion

The changes in glottal waveform around the f_o jump and locking can be interpreted by considering energy in the system. The total energy in the model is the sum of the acoustic, flow, and vocal fold oscillation energy. At the jump, i.e., when f_o first reaches f_{R1}, the energy contained in the vocal fold movements and the glottal flow is reduced to feed the resonating VT. Injected energy is needed to unlock the model to a frequency range different from the VT resonance. The glide controls (13) provide this energy injection into the glottal flow, and they also increase the storage potential of the vocal fold mass-spring system to accommodate a part of this energy injection at a frequency higher than the plateau value of f_o. Finally, the eigenfrequency of the mass-spring system wins and f_o is released.

The pattern of waveform changes, accompanying the observed f_o locking pattern, is robust against variations in parameter values and some model modifications, such as changing the lip termination to a first-order impedance model approximation of the piston model [15, 25]. The existence of the f_o locking and the details of the f_o trajectory do, however, depend on the parameter values and model details. Besides the feedback parameter Q_{po}, the loss parameters (b, L_o, k_1) also play a critical role in determining the f_o trajectory. A low b value, for example, can reduce or remove the jump and locking, while a high b has the opposite effect. This supports the energy interpretation as b regulates how much of the injected energy is stored in the vocal fold movements and hence available to unlock the system.

At the jump, the increased OQ reduces the duration of strong acoustics–vocal fold feedback in the glottal cycle, helping the system to settle at the locking plateau. In contrast, higher OQ increases the duration of the glottal cycle where feedback from the VT/SGT acoustics directly to the glottal flow (level 1 interaction in [12], not included here) is at its strongest. Waveform variations have not been reported for glides using this interaction mode, so questions remain open regarding whether such models exhibit similar self-limiting dynamic behaviour and which effect would be dominant in systems containing both feedback modes.

6. Conclusions

The simulations indicate that the feedback from resonator acoustics directly to vocal fold tissues can cause significant perturbations to vocal fold dynamics when f_o crosses a VT resonance. These perturbations are visible in both f_o and the glottal waveforms, indicating a special energy transfer pattern between the vocal fold vibrations, glottal flow, and VT/SGT acoustics.
7. References

