Karimi, Bayan; Pekola, Jukka P.

Correlated versus uncorrelated noise acting on a quantum refrigerator

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.96.115408

Published: 05/09/2017

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Correlated versus uncorrelated noise acting on a quantum refrigerator

Bayan Karimi and Jukka P. Pekola
Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
(Received 23 March 2017; revised manuscript received 28 May 2017; published 5 September 2017)

Two qubits form a quantum four-level system. The golden-rule based transition rates between these states are determined by the coupling of the qubits to noise sources. We demonstrate that depending on whether the noise acting on the two qubits is correlated or not, these transitions are governed by different selection rules. In particular, we find that for fully correlated or anticorrelated noise, there is a protected state, and the dynamics of the system depends then on its initialization. For nearly (anti)correlated noise, there is a long time scale determining the temporal evolution of the qubits. We apply our results to a quantum Otto refrigerator based on two qubits coupled to hot and cold baths. The steady-state power does not scale with the number (=2 here) of the qubits when there is a strong correlation of noise acting on them; under driven conditions the highest cooling power of the refrigerator is achieved for fully uncorrelated baths.

DOI: 10.1103/PhysRevB.96.115408

I. INTRODUCTION

Controlling the susceptibility of qubits to decoherence sources is a central issue in developing a robust quantum computer [1–9]. Over the past two decades it has become obvious that the influence of a common source of noise on all qubits deviates dramatically from the situation where uncorrelated noise sources affect each individual qubit separately [10–13]. In the first case, so called decoherence-free subspaces emerge, meaning that there are states that are not affected by the noise source. To realize robust quantum circuits and to provide error correction [14] for them depends then on whether the noise sources are correlated or not [15–19].

In this paper we demonstrate selection rules that account for the transitions in a two-qubit system affected by either a common noise source or multiple sources shown schematically for two extreme cases in Fig. 1. The basic four-level system of the two qubits exhibits then a protected state (“decoherence-free subspace”) when subjected to fully (anti)correlated noise, whereas for uncorrelated noise, all the four states couple to the noise. In our work we focus, instead of on qubit decoherence, on energy transport between the baths at different temperatures producing the noise on the qubits. We study the dependence of this transmitted power on the initialization of the system and on the degree of noise correlation. To understand the influence of noise correlation in a physical system, we investigate a quantum Otto refrigerator [20,21], a representative of quantum machines that are currently of considerable interest due to their experimental feasibility [20–29].

II. MODEL AND GENERAL RESULTS

The total Hamiltonian describing the system and the environment is given by

\[H = H_{Q1} + H_{Q2} + H_N + H_{cN,1} + H_{cN,2}, \]

where \(H_{Q1}, H_{Q2} \) are the Hamiltonians of the two (driven) qubits, \(H_N \) is the Hamiltonian of the noise source(s), and \(H_{cN,1}, H_{cN,2} \) the couplings of qubits 1 and 2 to the noise source(s). For our main argument we may assume that the two qubits are mutually decoupled although the selection rules to be presented hold also for coupled qubits. In the quantitative analysis, we use the four Bell basis states \(|u_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_2 + |1\rangle_1|1\rangle_2) \), \(|u_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|1\rangle_2 - |1\rangle_1|0\rangle_2) \), \(|u_3\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|1\rangle_2 + |1\rangle_1|0\rangle_2) \), \(|u_4\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_2 - |1\rangle_1|1\rangle_2) \). The subscript \(j = 1, 2 \) on the right-hand side refers to the qubit \(j \), for which

\[H_{Qj} = -E_j (\Delta_j \sigma_z,j + q \sigma_x,j), \]

with \(E_j \) the overall energy scale of each qubit and \(\sigma_z,j, \sigma_x,j \) the Pauli matrices. Here \(|0\rangle_j \) and \(|1\rangle_j \) are the eigenstates of \(\sigma_x,j, 2\Delta_j \) the dimensionless energy splitting at \(q = 0 \), and \(q \) is the flux applied equally to both qubits. We assume that the system is fully symmetric, i.e., \(E_0 \equiv E_1 = E_2 \), and \(\Delta \equiv \Delta_1 = \Delta_2 \) and that all the noise sources and their couplings to the individual qubits are equal. The eigenenergies of the Hamiltonian (in units of \(E_0 \)) are given by

\[\lambda_1 = -2\sqrt{q^2 + \Delta^2}, \quad \lambda_2 = \lambda_3 = 0, \quad \lambda_4 = +2\sqrt{q^2 + \Delta^2} \]

and the corresponding eigenstates are

\[|1\rangle = \frac{1}{\sqrt{2}} \left(|u_1\rangle + \frac{q}{\sqrt{q^2 + \Delta^2}} |u_2\rangle + \frac{E}{\sqrt{q^2 + \Delta^2}} |u_3\rangle \right), \]

\[|2\rangle = |u_4\rangle, \]

\[|3\rangle = \frac{\Delta}{\sqrt{q^2 + \Delta^2}} |u_2\rangle - \frac{q}{\sqrt{q^2 + \Delta^2}} |u_3\rangle, \]

\[|4\rangle = \frac{1}{\sqrt{2}} \left(|u_1\rangle - \frac{q}{\sqrt{q^2 + \Delta^2}} |u_2\rangle - \frac{\Delta}{\sqrt{q^2 + \Delta^2}} |u_3\rangle \right). \]

For the noise, we consider a generic form of linear coupling between each qubit and the noise source as

\[H_{cN} \equiv \sum_{m=1,2} H_{cN,m} = \sum_{m=1,2} \hat{A}_m \delta \hat{X}_m(t), \]

FIG. 1. Two qubits subjected to (a) correlated and (b) uncorrelated noise sources.
where \hat{A}_n determines the coupling and $\delta \hat{X}_m(t)$ is the time t dependent fluctuation of the quantity. In what follows we investigate the cases of different degrees of correlation between two noise fluctuators. The noise correlators with the help of their Fourier transform are given by

$$
(\delta \hat{X}_m(t') \delta \hat{X}_n(t)) = \chi_{mn} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega(t'-t)} S(\omega),
$$

(6)

where $S(\omega)$ is the unsymmetrized noise spectrum of each current. For the sake of simplicity we assume that the spectra of the two noise sources that we are interested in are equal. Here, we define χ_{mn} as the degree of correlation of noise sources m and n. For autocorrelation, $\chi_{11} = \chi_{22} = +1$, and for crosscorrelation we set $\chi_{12} = \chi_{21} = \chi$, where $-1 \leq \chi \leq +1$. If $\chi = +1$, noise is fully correlated and for $\chi = -1$ anticorrelated, whereas for $\chi = 0$ we have uncorrelated noise from independent sources. As to the physical control of the level of correlation, it is in the first place governed by the distance of the noise sources from the quantum circuits (see, e.g., Ref. [13]). If the noise sources are far away, they couple to both qubits essentially equally (correlated noise or anticorrelated noise), but if they are very near to one of the qubits they couple effectively only to that one of the two (un correlated noise). Another concrete way of controlling the degree of correlation is to consider the coupling scheme to be introduced by the Otto refrigerator below. Adding extra mutual inductive couplings there from noise source 1 to qubit 2 and vice versa would allow for arbitrary values of χ in the given interval $-1 \leq \chi \leq +1$.

The transition rates from the kth to the lth instantaneous eigenstate due to the noise source(s) N can be calculated from Fermi’s golden rule as

$$
\Gamma_{k\rightarrow l,N} = \frac{1}{\hbar} \sum_{m,n=1}^{2} \langle k|\hat{A}_m|l\rangle \langle l|\hat{A}_n|k\rangle \chi_{mn} S_N(\omega_{kl}),
$$

(7)

where $\omega_{kl} = E_l - E_k = E_0(\lambda_k - \lambda_l)/\hbar$, and $S_N(\omega_{kl})$ is the noise induced by this source(s). These rates are the off-diagonal elements of

$$
\Gamma^{(N)} = \begin{pmatrix}
\cdots & (1-\chi)\Gamma^{(N)}_\uparrow & 0 \\
(1-\chi)\Gamma^{(N)}_\downarrow & \cdots & 0 \\
0 & (1+\chi)\Gamma^{(N)}_\downarrow & \cdots \\
(1+\chi)\Gamma^{(N)}_\uparrow & \cdots & 0
\end{pmatrix},
$$

(8)

The quantity of interest here is the power transmitted between the hot and cold baths mediated by the qubits. We write the master equation for the density matrix of the system and the environment $\rho_{\text{tot}} = \rho \otimes \rho_{\text{E}}$ in the interaction picture as

$$
\dot{\rho}_{\text{tot}} = \frac{i}{\hbar} [\rho_{\text{tot}}, H_{D,1}(t) + H_{N,L,I}(t)].
$$

(9)

Here we have assumed, going beyond Eq. (1), that the qubits are driven by time-dependent rotation $H_{D,1} = -i\hbar D(t)I$ where D is given by

$$
D = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & q/\sqrt{q^2 + \Delta^2} & \Delta/\sqrt{q^2 + \Delta^2} & 0 \\
0 & 0 & 0 & \sqrt{2} \\
0 & \Delta/\sqrt{q^2 + \Delta^2} & -q/\sqrt{q^2 + \Delta^2} & 0 \\
1 & -q/\sqrt{q^2 + \Delta^2} & -\Delta/\sqrt{q^2 + \Delta^2} & 0
\end{pmatrix}.
$$

(10)

$H_{N,L,I}$ arises from the noise described above and is represented by the sum of the last two terms in Eq. (1), and specifically for a similar setup in [21]. The components of ρ can be obtained from the full master equation [34] by tracing out the environment with the result

$$
\rho_{kl} = \sum_{j=1}^{4} \rho_{kj} (i|D^{\dagger}D|l) e^{i\Omega_{j}^{\dagger} \int_0^t \lambda_j(u') du'} + \rho_{lj} (i|D^{\dagger}D|k) e^{i\Omega_{j}^{\dagger} \int_0^t \lambda_j(u') du'} + \delta_{jk} \rho_{kl} (\Gamma_{\rightarrow k} - \Gamma_{\rightarrow l}) - \frac{1}{2} \rho_{kl} (\Gamma_{\rightarrow k} + \Gamma_{\rightarrow l}).
$$

(11)
Here, $\Gamma_{i\rightarrow j} = \Gamma_{i\rightarrow j,H} + \Gamma_{i\rightarrow j,C}$, $\Omega = 2\pi \hbar f / E_0$ denotes the dimensionless frequency of the drive and $u = 2\pi ft$ the time, where f is the actual driving frequency.

The instantaneous power to bath B can then be written as

$$P_B = \sum_{k,l} \rho_{k,l} \omega_{k\rightarrow l,B}. \tag{12}$$

III. STATIONARY CASE: HEAT SWITCH

In the nondriven case the relaxation towards steady state is governed by

$$\dot{\rho}_d = \Gamma_{tot}^T \rho_d,$$ \tag{13}

where $\Gamma_{tot} = \Gamma^{(H)} + \Gamma^{(C)}$, and $\rho_d = (\rho_{11} \rho_{22} \rho_{33} \rho_{44})^T$. For $\chi = \pm 1$ the steady-state solution of Eq. (13) depends on the initial condition applied to the system. Due to forbidden transitions according to Eq. (8), the system behaves differently based on its initialization. With $\chi = +1$, if the system is initialized in the state $|2\rangle$ we have $\rho_{22} = 1, \rho_{11} = \rho_{33} = \rho_{44} = 0$ which demonstrates that $|2\rangle$ is a protected state. On the other hand, initializing in the subspace $\{|1\rangle, |3\rangle, |4\rangle\}$ for $\chi = +1$ leads to $\rho_{22} = 0, \rho_{11} = 1/(1 + r + r^2), \rho_{33} = r/(1 + r + r^2), \rho_{44} = r^2/(1 + r + r^2)$, where $r = \Gamma_{tt}/\Gamma_{11}$ and $\Gamma_{11} = \Gamma^{(H)} + \Gamma^{(C)}$. For $\chi = -1$, one should simply swap states $|2\rangle$ and $|3\rangle$ above. Generally for $\chi \neq \pm 1$ we have

$$\rho_{11} = \frac{1}{(1 + r)^2}, \quad \rho_{22} = \rho_{33} = \frac{r}{(1 + r)^2},$$

$$\rho_{44} = \frac{r^2}{(1 + r)^2}. \tag{14}$$

which is independent of the correlation χ. Then the steady state power to bath C reads

$$P_C = [- (\Gamma_{1\rightarrow 2,C} + \Gamma_{1\rightarrow 3,C}) \rho_{11} + (\Gamma_{2\rightarrow 1,C} - \Gamma_{2\rightarrow 4,C}) \rho_{22}$$

$$+ (\Gamma_{3\rightarrow 1,C} - \Gamma_{3\rightarrow 4,C}) \rho_{33} + (\Gamma_{4\rightarrow 2,C} + \Gamma_{4\rightarrow 3,C}) \rho_{44}] \hbar \omega_0$$

$$= 2(-\rho_{gg} \Gamma_{tt,C} + \rho_{ee} \Gamma_{11,C}) \hbar \omega_0 = 2P_0, \tag{15}$$

where $\rho_{gg} = 1 - \rho_{ee}$ is the ground state population of a single qubit in the instantaneous eigenbasis, and P_0 the transmitted power by it to the cold reservoir $[20]$. The power P_C in steady state thus scales with the number of qubits and is independent of the degree of correlation of the noise for $\chi \neq \pm 1$.

The inset of Fig. 4(b) demonstrates the puzzling result that this power is larger than $2P_0$ for the special values $\chi = \pm 1$, i.e., for fully correlated or anticorrelated noise. The origin of this result becomes obvious by looking at the dynamics of the density matrix after the system has been initialized in an arbitrary state. Due to the presence of a protected state $|2\rangle$ ($|3\rangle$)

$$FIG. 2. Transition rates in the four-level system of decoupled qubits for different levels of noise correlation χ. $$

$$FIG. 3. Illustration of correlated ($\chi = +1$, left), uncorrelated ($\chi = 0$, center), and anticorrelated ($\chi = -1$, right) noise in the Otto refrigerator configuration. $$

$$FIG. 4. The power P_C normalized by $2P_0$ (black dot-dashed lines), where P_0 is the power of a single qubit, at $q = 0$ via the nondriven qubits to the cold bath(s) as a function of time (Γ_{tt}) for various degrees of correlation χ (a) $\chi = 0, 0.5, 0.8, 0.9, 0.95, 0.98, 0.99$, and 1 from bottom to top; the system is initialized in $|1\rangle$ at $t = 0$. (b) The same values and colors for χ as in (a), initialized in $|2\rangle$ at $t = 0$. Inset in (a): Populations ρ_{11}, ρ_{22} (black lines), ρ_{33} (red lines), ρ_{44} (dark cyan lines), and ρ_{gg} (blue lines) when the system is initialized in $|2\rangle$ at $t = 0$ for $\chi = 0$ (dot-dashed lines) and $\chi = 0.9$ (solid lines). Inset in (b): Dimensionless steady state power via the nondriven qubits to the cold bath(s) as a function of detuning q for the case where the noise is fully (anti)correlated (black line) and for other degrees of correlation (red line). The parameters are $\hbar \omega_0 / E_0 = \hbar \omega_2 / E_0 = 0.1$, $g_1 = g_2 = 1.0, k_B T_H / E_0 = 0.2, k_B T_C / E_0 = 0.05, Q_C = Q_H = 10$, and $\Delta = 0.1$. $$

115408-3
In this device, applying a periodic time-dependent drive \(\chi \) to the qubits in Fig. 3, heat can be transferred from the cold bath to the hot one, provided \(\omega_{01} = 1/\sqrt{L C H} > \omega_C = 1/\sqrt{L C C} \). We introduce a standard driving protocol \(q(t) = (1 + \cos 2\pi ft)/4 \). In the numerical results, the power is averaged over one cycle once it has reached the steady state. Solving the general master equation (11) numerically, we plot the frequency dependence of the cooling power of the quantum refrigerator for different degrees of correlation in two different frequency ranges in Figs. 5(a) and 5(b). It is vivid that at very low frequencies the curves for all values of \(\chi \) (except \(\chi = +1 \)) in Fig. 5(a) collapse on each other. They start to deviate from the curve at \(\chi = 0 \) at the critical frequency \(\Omega_c \propto (1 - \chi) \). This is because of the competition between the slowest transition rates \(\propto (1 - \chi) \) in Eq. (8) to/from [2] and the driving frequency \(\Omega_c \). At higher frequencies, \(\Omega \gg \Omega_c \), the transitions to/from state [2] cannot follow the drive [Fig. 5(b)]; [2] is thus dynamically protected and we effectively deal with a three-level system. Thus for \(\Omega \gg \Omega_c \), all the curves with \(\chi \sim +1 \) converge to the same value (see inset). In this regime \(P_{22} \) has a small but essentially time-independent value. For \(\chi = +1, P_{22} = 0 \) as the system was initialized in state [1]. For this particular value of \(\chi \) the power \(P_C \) is again higher than in the partially correlated case. Yet the highest cooling power is generally achieved for uncorrelated noise.

V. CONCLUSIONS

We have investigated the golden-rule transition rates between the four energy levels of a two-qubit system when it is subjected to fully and partially (anti)correlated noise sources. By tuning the degree of correlation of the noise sources, we demonstrate protected states and variations in the transmitted power between thermal baths. This power exhibits a different steady-state value in the presence of a protected state as opposed to that of the standard four-level system. In particular, the former power vanishes when the qubits are initialized in a protected state. Moreover, for nearly (anti)correlated noise, there is a long relaxation time to reach the steady state level of power which is fully independent of the level of correlation of the noise for \(\chi \neq \pm 1 \). Under ac driven conditions, there is an interesting interplay between this slow relaxation rate and the driving frequency over a wide range of \(\chi \), governing the power of a quantum refrigerator that we present as an example.

ACKNOWLEDGMENTS

We acknowledge Yuri Galperin, Rosario Fazio, and Michele Campisi for useful discussions. The work was supported by the Academy of Finland (Grants No. 272218 and No. 284594).