Ala-Nissilä, T.

Comment on "Upper critical dimension of the Kardar-Parisi-Zhang equation"

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.80.887

Published: 01/01/1998

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Comment on “Upper Critical Dimension of the Kardar-Parisi-Zhang Equation”

In a recent Letter [1], Lässig and Kinzelbach consider the existence of an upper critical dimension for the strong coupling regime of the Kardar-Parisi-Zhang (KPZ) equation [2]

$$\frac{\partial h(r,t)}{\partial t} = \nu \nabla^2 h(r,t) + \frac{\lambda}{2} [\nabla h(r,t)]^2 + \eta(r,t),$$ \hspace{1cm} (1)

where $h(r,t)$ is a height variable in $d + 1$ dimensions, and η is white noise with short-range correlations. By mapping this problem onto directed polymers, they study interactions between the polymers and argue that there is a transition that corresponds to an upper critical dimension $d_u \leq 4 + 1$ for the KPZ equation. However, this is not supported by numerical simulations of a model that should be in the universality class of Eq. (1).

To demonstrate this, I have performed simulations of the restricted solid-on-solid growth model [3] in dimensions $d \geq 4 + 1$. This model has been shown to give nontrivial scaling exponents in complete agreement with direct numerical solutions of the KPZ equation up to dimensions $d = 3 + 1$ [4,5]. In Fig. 1 I show results for the width $w^2(t) \equiv \langle (h - \bar{h})^2 \rangle$ at $d = 4 + 1$ for a system of size 100^4. After the finite-size oscillations have decayed, there is a well defined power-law scaling regime that gives an estimate of $\beta(4 + 1) = 0.16(1)$ (from two independent runs) which is slightly larger than that presented previously [4]. I have also calculated χ from an independent fit to the saturated width $w(L)$ up to 35^4 systems, which gives $\chi(4 + 1) = 0.141(1)$ with excellent power-law scaling even for these smaller systems (see the inset of Fig. 1 and also Ref. [4]). In addition, I have improved the estimates of β for $5 + 1$ and $6 + 1$ dimensions to obtain 0.11(1) and 0.09(1), respectively [6].

To summarize, numerical results show no evidence of an upper critical dimension for a model that should be in the universality class of the KPZ equation, and thus do not support the arguments in Ref. [1].

T. Ala-Nissila
Helsinki Institute of Physics, University of Helsinki
P.O. Box 9, FIN-00014 Helsinki, Finland
and Department of Physics, Brown University
Providence, Rhode Island 02912

Received 20 February 1997; revised manuscript received 29 August 1997 [S0031-9007(97)05070-9]
PACS numbers: 64.60.Ht, 05.70.Ln, 68.35.Fx

[6] It should be noted that for $d > 4 + 1$, the oscillations in $w(t)$ do not die out before saturation in the systems studied here.