Ala-Nissilä, Tapio

Comment on "Upper critical dimension of the Kardar-Parisi-Zhang equation"

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.80.887

Published: 01/01/1998

Please cite the original version:
Comment on “Upper Critical Dimension of the Kardar-Parisi-Zhang Equation”

In a recent Letter [1], Lässig and Kinzelbach consider the existence of an upper critical dimension for the strong coupling regime of the Kardar-Parisi-Zhang (KPZ) equation [2]

$$\frac{\partial \mathbf{h}(\mathbf{r}, t)}{\partial t} = v \nabla^2 \mathbf{h}(\mathbf{r}, t) + \frac{\lambda}{2} [\nabla \mathbf{h}(\mathbf{r}, t)]^2 + \eta(\mathbf{r}, t), \quad (1)$$

where \(h(\mathbf{r}, t) \) is a height variable in \(d+1 \) dimensions, and \(\eta \) is white noise with short-range correlations. By mapping this problem onto directed polymers, they study interactions between the polymers and argue that there is a transition that corresponds to an upper critical dimension \(d_u \approx 4 + 1 \) for the KPZ equation. However, this is not supported by numerical simulations of a model that should be in the universality class of Eq. (1). To demonstrate this, I have performed simulations of the restricted solid-on-solid growth model [3] in dimensions \(d \approx 4 + 1 \). This model has been shown to give nontrivial scaling exponents in complete agreement with direct numerical solutions of the KPZ equation up to dimensions \(d \approx 3 + 1 \) [4,5]. In Fig. 1 I show results for the width \(w^2(t) \equiv \langle (h - \overline{h})^2 \rangle \) at \(d = 4 + 1 \) for a system of size 100\(^4\). After the finite-size oscillations have decayed, there is a well defined power-law scaling regime that gives an estimate of \(\beta(4 + 1) = 0.16(1) \) (from two independent runs) which is slightly larger than that presented previously [4]. I have also calculated \(\chi \) from an independent fit to the saturated width \(w(L) \) up to 35\(^4\) systems, which gives \(\chi(4 + 1) = 0.141(1) \) with excellent power-law scaling even for these smaller systems (see the inset of Fig. 1 and also Ref. [4]). In addition, I have improved the estimates of \(\beta \) for \(5 + 1 \) and \(6 + 1 \) dimensions to obtain 0.11(1) and 0.09(1), respectively [6].

To summarize, numerical results show no evidence of an upper critical dimension for a model that should be in the universality class of the KPZ equation, and thus do not support the arguments in Ref. [1].

T. Ala-Nissila
Helsinki Institute of Physics, University of Helsinki
P.O. Box 9, FIN-00014 Helsinki, Finland
and Department of Physics, Brown University
Providence, Rhode Island 02912

Received 20 February 1997; revised manuscript received 29 August 1997
PACS numbers: 64.60.Ht, 05.70.Ln, 68.35.Fx

[6] It should be noted that for \(d > 4 + 1 \), the oscillations in \(w(t) \) do not die out before saturation in the systems studied here.

FIG. 1. Surface width \(w^2(t) \) for a 100\(^4\) system at \(d = 4 + 1 \) (one run). Fitting between 40–1000 Monte Carlo steps gives \(\beta = 0.164(5) \). The inset shows data for the saturated surface width \(w(L) \), where the last data point for \(L = 100 \) is a rough estimate obtained by assuming that the saturation occurs around \(t \approx 10^{1.5} \) Monte Carlo steps.