Björklund, Andreas; Kaski, Petteri; Koutis, Ioannis

Directed hamiltonicity and out-branchings via generalized laplacians

Published in: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017

DOI: 10.4230/LIPIcs.ICALP.2017.91

Published: 01/07/2017

Please cite the original version:
Directed Hamiltonicity and Out-Branchings via Generalized Laplacians∗†

Andreas Björklund1, Petteri Kaski2, and Ioannis Koutis3

1 Department of Computer Science, Lund University, Lund, Sweden
   andreas.bjorklund@yahoo.se
2 Department of Computer Science, Aalto University, Helsinki, Finland
   petteri.kaski@aalto.fi
3 Department of Computer Science, University of Puerto Rico – Rio Piedras,
   San Juan, Puerto Rico
   ioannis.koutis@upr.edu

Abstract

We are motivated by a tantalizing open question in exact algorithms: can we detect whether an n-vertex directed graph G has a Hamiltonian cycle in time significantly less than 2^n?

We present new randomized algorithms that improve upon several previous works:

1. We show that for any constant 0 < λ < 1 and prime p we can count the Hamiltonian cycles modulo p^\left\lfloor (1 - λ)n^3 \right\rfloor in expected time less than c^n for a constant c < 2 that depends only on p and λ. Such an algorithm was previously known only for the case of counting modulo two [Björklund and Husfeldt, FOCS 2013].

2. We show that we can detect a Hamiltonian cycle in O∗(3^n − α(G)) time and polynomial space, where α(G) is the size of the maximum independent set in G. In particular, this yields an O∗(3^n/2) time algorithm for bipartite directed graphs, which is faster than the exponential-space algorithm in [Cygan et al., STOC 2013].

Our algorithms are based on the algebraic combinatorics of “incidence assignments” that we can capture through evaluation of determinants of Laplacian-like matrices, inspired by the Matrix–Tree Theorem for directed graphs. In addition to the novel algorithms for directed Hamiltonicity, we use the Matrix–Tree Theorem to derive simple algebraic algorithms for detecting out-branchings. Specifically, we give an O∗(2^k)-time randomized algorithm for detecting out-branchings with at least k internal vertices, improving upon the algorithms of [Zehavi, ESA 2015] and [Björklund et al., ICALP 2015]. We also present an algebraic algorithm for the directed k-Leaf problem, based on a non-standard monomial detection problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases counting, directed Hamiltonicity, graph Laplacian, independent set, k-internal out-branching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.91

∗ A full version of the paper is available at http://arxiv.org/abs/1607.04002.
† The research leading to these results has received funding from the Swedish Research Council grants VR 2012-4730 “Exact Exponential-Time Algorithms” and VR 2016-03855 “Algebraic Graph Algorithms” (A.B.), the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement 338077 “Theory and Practice of Advanced Search and Enumeration” (P.K.), and grant NSF CAREER CCF-1149048 (I.K.). Work done in part while the authors were at Dagstuhl Seminar 17041 in January 2017 and at the Simons Institute for the Theory of Computing in December 2015.

© Andreas Björklund, Petteri Kaski, and Ioannis Koutis; licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 91; pp. 91:1–91:14
Leibniz International Proceedings in Informatics
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
1 Introduction

The Hamiltonian cycle problem has played a prominent role in the development of techniques for the design of exact algorithms for hard problems. The early $O(2^n)$ algorithms based on dynamic programming and inclusion-exclusion [1, 20, 19], remained un-challenged for several decades. In 2010, Björklund [3], gave a randomized algorithm running in $O(1.657^n)$ time for the case of undirected graphs. The algorithm taps into the power of algebraic combinatorics, and in particular determinants that enumerate cycle covers.

Despite this progress in the undirected Hamiltonian cycle problem, a substantial improvement in the more general directed version of the problem remains an open problem and a key challenge in the area of exact algorithms. The currently best known general algorithm runs in $O^*(2^n - \Theta(\sqrt{n}/\log n))$ time [4], and there are no known connections with the theory of SETH-hardness [18] that would – at least partly – dash the hope for a faster algorithm. A number of recent works have attempted to crack directed Hamiltonicity, revealing that the problem is indeed easier in certain restricted settings. Cygan and Pilipczuk [13] showed that the problem admits an $O^*(2^{(1-\varepsilon)d}n)$ time algorithm for graphs with average degree bounded by $d$, where $\varepsilon_d$ is a constant with a doubly exponential dependence on $d$. Cygan et al. [12] showed that the problem admits an $O^*(1.888^n)$ time randomized algorithm for bipartite graphs and that the parity of directed Hamiltonian cycles can also be computed within the same time bound. Björklund and Husfeldt [6] showed that the parity of Hamiltonian cycles can be computed in $O^*(1.619^n)$ randomized time in general directed graphs. Finally, Björklund et al. [5] showed that the problem can be solved in $O^*((2-\Theta(1))^n)$ time when the graph contains less than $1.038^n$ Hamiltonian cycles, via a reduction to the parity problem.

In this paper we improve or generalize all of these works.

Our results. As one would expect, all recent “below-$2^n$” algorithm designs for the Hamiltonicity problem rely on algebraic combinatorics and involve formulas that enumerate Hamiltonian cycles. But somewhat surprisingly, none of these approaches employs the directed version of the Matrix–Tree Theorem (see e.g. Gessel and Stanley [17, §11]), one of the most striking and beautiful results in algebraic graph theory. The theorem enables the enumeration of spanning out-branchings, that is, rooted spanning trees with all arcs oriented away from the root, via a determinant polynomial. Our results in this paper derive from a detailed combinatorial understanding and generalization of this classical setup.

The combinatorial protagonist of this paper is the following notion that enables a “two-way” possibility to view each arc in a directed graph:

Definition 1 (Incidence assignment). Let $G$ be a directed graph with vertex set $V$ and arc set $E$. For a subset $W \subseteq V$ we say that a mapping $\mu : W \to E$ is an incidence assignment if for all $u \in W$ it holds that $\mu(u)$ is incident with $u$.

In particular, looking at a single arc $uv \in E$, an incidence assignment $\mu$ can assign $uv$ in two possible ways: as an out-arc $\mu(u) = uv$ at $u$, or as an in-arc $\mu(v) = uv$ at $v$.

From an enumeration perspective the serendipity of this “two-way” possibility to assign an arc becomes apparent when one considers how an incidence assignment $\mu$ can realize a

\[1\] Strictly speaking we are here assuming that both $u \in W$ and $v \in W$. To break symmetry in our applications we do allow also situations where $uv$ has only one possible assignment due to either $u \not\in W$ or $v \not\in W$. 


directed cycle in its image $\mu(W)$. Indeed, let
\[ u_1u_2, u_2u_3, \ldots, u_{\ell-1}u_\ell, u_\ell u_1 \in E \]
be the arcs of a directed cycle $C$ of length $\ell \geq 2$ in $G$ with $V(C) \subseteq W$. It is immediate that there are now exactly two ways to realize $C$ in the image $\mu(W)$. Namely, we can realize $C$ either (i) using only in-arcs with
\[ \mu(u_1) = u_\ell u_1, \mu(u_2) = u_1 u_2, \mu(u_3) = u_2 u_3, \ldots, \mu(u_\ell) = u_{\ell-1} u_\ell, \]
(1)
or (ii) using only out-arcs with
\[ \mu(u_1) = u_1 u_2, \mu(u_2) = u_2 u_3, \mu(u_3) = u_3 u_4, \ldots, \mu(u_\ell) = u_\ell u_1. \]
(2)
Incidence assignments thus enable two distinct ways to realize a directed cycle. Furthermore, it is possible to switch between (1) and (2) so that only the images of $u_1, u_2, \ldots, u_\ell$ under $\mu$ are affected. The algebraization of this combinatorial observation is at the heart of the directed Matrix–Tree Theorem (which we will review for convenience of exposition in Sect. 2) and all of our results in this paper.

Our warmup result involves a generalization of the directed Hamiltonian path problem, namely the $k$-Internal Out-Branching problem, where the goal is to detect whether a given directed graph contains a spanning out-branching that has at least $k$ internal vertices. This is a well-studied problem on its own, with several successive improvements the latest of which is an $O^*(3.617^k)$ algorithm by Zehavi [24] and an $O^*(3.455^k)$ algorithm by Björklund et al. [9] for the undirected version of the problem.

Using a combination of the directed Matrix–Tree Theorem and a monomial-sieving idea due to Floderus et al. [15], in Sect. 3 we show the following:

\textbf{Theorem 2} (Detecting a $k$-Internal Out-Branching). There exists a randomized algorithm that solves the $k$-internal out-branching problem in time $O^*(2^k)$ and with negligible probability of reporting a false negative.

In the full version of the paper [10] we give a further application for the $k$-Leaf problem, that is, detecting a spanning out-branching with at least $k$ leaves. We note that Gabizon et al. [16] have recently given another application of the directed Matrix–Tree Theorem for the problem of detecting out-branchings of bounded degree.

Proceeding to our two main results, in Sect. 4 we observe that the directed Matrix–Tree Theorem leads to a formula for computing the number of Hamiltonian paths in arbitrary characteristic by using a standard inclusion–exclusion approach, which leads to a formula that involves the summation of $2^n$ determinants. To obtain a below-$2^n$ design, we present a way to randomize the underlying Laplacian matrix so that the number of Hamiltonian paths does not change but in expectation most of the summands vanish modulo a prime power. Furthermore, to efficiently list the non-vanishing terms, we use a variation of an algorithm of Björklund et al. [8] that was used for a related problem, computing the permanent modulo a prime power. This leads to our first main result:

\textbf{Theorem 3} (Counting directed Hamiltonian cycles modulo a prime power). For all $0 < \lambda < 1$ there exists a randomized algorithm that, given an $n$-vertex directed graph and a prime $p$ as input, counts the number of Hamiltonian cycles modulo $p\lfloor(1-\lambda)n/(3p)\rfloor$ in expected time $O^*(2^{n(1-\lambda^2)/(19p \log_2 p)})$. The algorithm uses exponential space.

---

\footnote{Again strictly speaking it will be serendipitous to break symmetry so that certain cycles will have only one realization instead of two.}
A corollary of Theorem 3 is that if $G$ has at most $d^n$ Hamiltonian cycles, we can detect one in time $O(c^O_d n^d)$, where $d$ is any fixed constant and $c_d < 2$ is a constant that only depends on $d$. As a further corollary we obtain a randomized algorithm for counting Hamiltonian cycles in graphs of bounded average (out-)degree $d$ in $O(2^{1-\epsilon_d}n^d)$ time. The constant $\epsilon_d$ has a polynomial dependency in $d$. Previous algorithms had a constant $\epsilon_d$ with an exponential dependency on $d$ [7, 13]. (The proofs of these results are relegated to the full version of the paper [10].)

Returning to undirected Hamiltonicity, a key to the algorithm in [3] was the observation that determinants enumerate all non-trivial cycle covers an even number of times. This is due to the fact that each undirected cycle can be traversed in both directions. By picking a special vertex, one can break symmetry and force this to happen only for non-Hamiltonian cycle covers, so that the corresponding monomials cancel in characteristic 2. In Sect. 5 we present a “quasi-Laplacian” matrix whose determinant enables a similar approach for the directed case via algebraic combinatorics of incidence assignments, and furthermore enables one to accommodate a speedup assuming the existence of a good-sized independent set. We specifically prove the following as our second main result:

**Theorem 4 (Detecting a directed Hamiltonian cycle).** There exists a randomized algorithm that solves the directed Hamiltonian cycle problem on a given directed graph $G$ with a maximum independent set of size $\alpha(G)$, in $O^*(3^{\alpha(G)}-\alpha(G))$ time, polynomial space and with negligible probability of reporting a false negative.

Theorem 4 improves and generalizes the exponential-space algorithm of Cygan et al. [12].

**Terminology and conventions.** All graphs in this paper are directed and without loops and parallel arcs unless indicated otherwise. For an arc $e$ starting from vertex $u$ and ending at vertex $v$ we say that $u$ is the tail of $e$ and $v$ is the head of $e$. The vertices $u$ and $v$ are the ends of $e$. A directed graph is connected if the undirected graph obtained by removing orientation from the arcs is connected. A subgraph of a graph is spanning if the subgraph has the same set of vertices as the graph. A connected directed graph is an out-branching if every vertex has in-degree 1 except for the root vertex that has in-degree 0. We say that a vertex is internal to an out-branching if it has out-degree at least 1; otherwise the vertex is a leaf of the out-branching. The (directed) Hamiltonian cycle problem asks, given a directed graph $G$ as input, whether $G$ has a spanning directed cycle as a subgraph. The notation $O^*$ suppresses a multiplicative factor polynomial in the input size. We say that an event parameterized by $n$ has negligible probability if the probability of the event tends to zero as $n$ grows without bound.

## 2 The symbolic Laplacian of a directed graph

This section develops the relevant preliminaries on directed graph Laplacians.

**Permutations and the determinant.** A bijection $\sigma : U \rightarrow U$ of a finite set $U$ is called a permutation of $U$. A permutation $\sigma$ moves an element $u \in U$ if $\sigma(u) \neq u$; otherwise $\sigma$ fixes $u$. The identity permutation fixes every element of $U$. A permutation $\sigma$ of $U$ is a cycle of length $k \geq 2$ if there exist distinct $u_1, u_2, \ldots, u_k \in U$ with $\sigma(u_1) = u_2, \sigma(u_2) = u_3, \ldots, \sigma(u_{k-1}) = u_k, \sigma(u_k) = u_1$ and $\sigma$ fixes all other elements of $U$. Two cycles are disjoint if every point moved by one is fixed by the other. The set of all permutations of $U$ forms the symmetric group $\text{Sym}(U)$ with the composition of mappings as the product operation of the group.
Every nonidentity permutation factors into a unique product of pairwise disjoint cycles. The sign of a permutation $\sigma$ that factors into $c$ disjoint cycles of lengths $k_1, k_2, \ldots, k_c$ is $\text{sgn}(\sigma) = (-1)^{\sum_{i=1}^c (k_i - 1)}$. The sign of the identity permutation is 1.

The determinant of a square matrix $A$ with rows and columns indexed by $U$ is the multivariate polynomial

$$\det A = \sum_{\sigma \in \text{Sym}(U)} \text{sgn}(\sigma) \prod_{u \in U} a_{u, \sigma(u)}.$$ 

**The punctured Laplacian determinant via incidence assignments.** Let $G$ be a directed graph with $n$ vertices. Associate with each arc $uv \in E = E(G)$ an indeterminate $x_{uv}$. The symbolic Laplacian $L = L(G)$ of $G$ is the $n \times n$ matrix with rows and columns indexed by the vertices $u, v \in V = V(G)$ and the $(u, v)$-entry defined$^3$ by

$$\ell_{uv} = \begin{cases} \sum_{x \in V : x \neq v} x_{uw} & \text{if } u = v; \\ -x_{uv} & \text{if } uv \in E; \\ 0 & \text{if } u \neq v \text{ and } uv \notin E. \end{cases}$$

Observe that for each $v \in V$ we have that column $v$ of $L$ sums to zero because the diagonal entries cancel the negative off-diagonal entries. Furthermore, for each $u \in V$ we have that the monomials on row $u$ of $L$ correspond to the arcs incident to $u$. Indeed, each monomial at the diagonal corresponds to an in-arc to $u$, and each monomial at an off-diagonal entry corresponds to an out-arc from $u$. Thus, selecting one monomial from each row corresponds to selecting an incidence assignment.

To break symmetry, select an $r \in V$. The symbolic Laplacian of $G$ punctured at $r$ is obtained from $L$ by deleting both row $r$ and column $r$. We write $L_r = L_r(G)$ for the symbolic Laplacian of $G$ punctured at $r$. Let us write $B_r = B_r(G)$ for the set of all spanning out-branchings of $G$ with root $r \in V$. The following theorem is well-known (see e.g. Gessel and Stanley [17, §11]) and is presented here for purposes of displaying a proof that presents the cancellation argument using incidence assignments.

**Theorem 5** (Directed Matrix–Tree Theorem). $\det L_r = \sum_{H \in B_r} \prod_{uv \in E(H)} x_{uv}$.

**Proof.** Let us abbreviate $V_r = V(G) \setminus \{r\}$ and study the determinant

$$\det L_r = \sum_{\sigma \in \text{Sym}(V_r)} \text{sgn}(\sigma) \prod_{u \in V_r} \ell_{u, \sigma(u)}.$$  

In particular, let us fix an arbitrary permutation $\sigma \in \text{Sym}(V_r)$ and study the monomials of the polynomial $\prod_{u \in V_r} \ell_{u, \sigma(u)}$ with the assumption that this polynomial is nonzero. From (3) it is immediate for each $u \in V_r$ that $\ell_{u, \sigma(u)}$ expands either (i) to the diagonal sum $\sum_{x \in V : x \neq v} x_{uw}$, which happens precisely when $\sigma$ fixes $u$ with $\sigma(u) = u$, or (ii) to the off-diagonal $-x_{uv}$, which happens precisely when $\sigma$ moves $u$ with $\sigma(u) = v$.

Let us write $M(\sigma)$ for the set of all incidence assignments $\mu : V_r \to E$ with the properties that (i) each $u \in V_r$ fixed by $\sigma$ is assigned to an in-arc $\mu(u) = wu \in E$ for some $w \in V$, and (ii) each $u \in V_r$ moved by $\sigma$ is assigned to the unique out-arc $\mu(u) = uv \in E$ with $\sigma(u) = v$.

$^3$ Recall that we assume that $G$ is loopless so the entries with $u = v$ are well-defined.
Let us write $f = f(\sigma)$ for the number of elements in $V_r$ fixed by $\sigma$. It is immediate by (i) and (ii) that we have
\begin{equation}
\prod_{u \in V_r} \ell_{u, \sigma(u)} = \sum_{\mu \in M(\sigma)} (-1)^{n-1-f(\sigma)} \prod_{u \in V_r} x_{\mu(u)}.
\end{equation}

Next observe that from $\mu$ we can reconstruct $\sigma = \sigma(\mu)$ by (i) setting $\sigma(u) = u$ for each $u$ assigned to an in-arc in $\mu$, and (ii) setting $\sigma(u) = v$ for each $u$ assigned to an out-arc $uv$ in $\mu$. Thus the union $M = \bigcup_{\sigma \in \text{Sym}(V_r)} M(\sigma)$ is disjoint. Let us call the elements of $M$ proper incidence assignments. By (4) and (5) we have
\begin{equation}
\det L_r = \sum_{\mu \in M} (-1)^{n-1-f(\sigma)} \text{sgn}(\sigma(\mu)) \prod_{u \in V_r} x_{\mu(u)}.
\end{equation}

We claim that an incidence assignment $\mu$ is proper if and only if for every $u \in V_r$ there is exactly one $u' \in V_r$ such that $\mu(u')$ is an in-arc to $u$. For the “only if” direction, let $\sigma$ be the permutation underlying a proper $\mu$, and observe that vertices moved by $\sigma$ partition to cycles so a $\sigma$ never moves a vertex to a fixed vertex. Thus, we have $u' = u$ for the points fixed by $\sigma$, and $u' = \sigma^{-1}(u)$ is the vertex preceding $u$ along a cycle of $\sigma$ for points moved by $\sigma$. For the “if” direction, define $\sigma(u) = u$ if $u = u'$ and $\sigma(u') = u$ if $u' \neq u$. In the latter case we have $\mu(u') = u'u$, which means that $u'' \neq u'$ and thus $\sigma(u'') = u'$; by uniqueness of $u'$ eventually a cycle must close so $\sigma$ is a well-defined permutation underlying $\mu$ and thus $\mu$ is proper.

Let us write $\mathcal{K}_r$ for the set of all spanning subgraphs of $G$ with the property that every vertex in $V_r$ has in-degree 1 and the root $r$ has in-degree 0. From the previous claim it follows that we can view the set $\mu(V_r) = \{\mu(u) : u \in V_r\}$ for a proper $\mu$ as an element of $\mathcal{K}_r$. Furthermore, $\mu(V_r)$ is connected (and hence a spanning out-branching with root $r$) if and only if $\mu(V_r)$ is acyclic.

Consider an arbitrary $H \in \mathcal{K}_r$. If $H$ has a cycle, let $C$ be the least cycle in $H$ according to some fixed but arbitrary ordering of the vertices of $G$. (Observe that any two cycles in $H$ must be vertex-disjoint and cannot traverse $r$ because $r$ has in-degree 0.) Now consider an arbitrary proper $\mu$ that realizes $H$ by $\mu(V_r) = H$. The cycle $C$ is realized in $\mu$ by either (1) (in which case $\sigma(\mu)$ fixes all vertices in $C$), or (2) (in which case $\sigma(\mu)$ traces the cycle $C$). Furthermore, we may switch between realizations (1) and (2) so that the number of fixed points in the underlying permutation changes by $|V(C)|$ and the sign of the underlying permutation gets multiplied by $(-1)^{|V(C)|-1}$. It follows that the realizations (1) and (2) have different signs and thus cancel each other in (6). If $H$ does not have a cycle, that is, $H \in \mathcal{B}_r$, it follows that there is a unique proper $\mu$ that realizes $H$. Indeed, first observe that $H$ can be realized only by assigning in-arcs since any assignment of an out-arc in $\mu$ implies a cycle in $H = \mu(V_r)$, a contradiction. Second, the in-arcs are unique since each $u \in V_r$ has in-degree 1 in $H$. Finally, since $\mu$ assigns only in-arcs the underlying permutation $\sigma(\mu)$ is the identity permutation which has $\text{sgn}(\sigma(\mu)) = 1$ and $(-1)^{n-1-f(\sigma(\mu))} = 1$. Thus, each acyclic $H$ contributes to (6) through a single $\mu \in M$ with coefficient 1. The theorem follows.

## 3 Corollary for $k$-internal out-branchings

This section proves Theorem 2. We rely on a substitution idea of Floderus et al. [15, Theorem 1] to detect monomials with at least $k$ distinct variables.

Let $G$ be an $n$-vertex directed graph given as input together with a nonnegative integer $k$. Without loss of generality we may assume that $k \leq n - 1$. Iterate over all choices for a root vertex $r \in V$. Introduce an indeterminate $y_u$ for each vertex $u \in V$ and an
indeterminate $z_{uv}$ for each arc $uv \in E$. Introduce one further indeterminate $t$. Construct the symbolic Laplacian $L$ of $G$ given by (3) and with the assignment $x_{uv} = (1 + ty_{uv})z_{uv}$ to the indeterminate $x_{uv}$ for each $uv \in E$. Puncture $L$ at $r$ to obtain $L_r$. Using, for example, Berkowitz’s determinant circuit design [2] for an arbitrary commutative ring with unity, in time $O^*(1)$ build an arithmetic circuit $C$ of size $O^*(1)$ for det $L_r$. Viewing det $L_r$ as a multivariate polynomial over the polynomial ring $R[t,y_{uv},z_{uv} : u \in V, uv \in E]$ where $R$ is an abstract ring with unity, from Theorem 5 it follows that $G$ has a spanning out-branching rooted at $r$ with at least $k$ internal vertices if and only if the coefficient of $t^k$ in det $L_r$ (which is a polynomial that is either identically zero or both (i) homogeneous of degree $k$ in the indeterminates $y_{uv}$ and (ii) homogeneous of degree $n - 1$ in the indeterminates $z_{uv}$) has a monomial that is multilinear of degree $k$ in the indeterminates $y_{uv}$. Indeed, observe that the substitution $x_{uv} = (1 + ty_{uv})z_{uv}$ tracks in the degree of the indeterminate $y_{uv}$ whether $u$ occurs as an internal vertex or not; the indeterminates $z_{uv}$ make sure that distinct spanning out-branchings will not cancel each other.

To detect a multilinear monomial in $C$ restricted to the coefficient of $t^k$ we can invoke [11, Lemma 1] or [21, Lemma 2.8]. This results in a randomized algorithm that runs in time $O^*(2^k)$ and has a negligible probability of reporting a false negative. This completes the proof of Theorem 2.

4 Modular counting of Hamiltonian cycles

This section proves Theorem 3. Fix an arbitrary constant $0 < \lambda < 1$. Let $0 < \beta < 1/2$ be a constant whose precise value is fixed later. Let $p$ be a prime and let $G$ be an $n$-vertex directed graph with vertex set $V$ and arc set $E$ given as input. Without loss of generality (by splitting any vertex $u$ into two vertices, $s$ and $t$, with $s$ receiving the out-arcs from $u$, and $t$ receiving the in-arcs to $u$) we may count the spanning paths starting from $s$ and ending at $t$ instead of spanning cycles. Similarly, without loss of generality we may assume that $2 \leq p < n$. (Indeed, for $p \geq n$ the counting outcome from Theorem 3 is trivial.)

Sieving for Hamiltonian paths among out-branchings. Let $s, t \in V$ be distinct vertices. Let us write $hp(G, s, t)$ for the set of spanning directed paths that start at $s$ and end at $t$ in $G$. Recall that we write $V_{i} = V \setminus \{t\}$ for the $i$-punctured version of the vertex set $V$. Let us also write $V_{st} = V \setminus \{s, t\}$. For $O \subseteq V$, let $L_{s}^{O}$ be the matrix obtained from the Laplacian (3) by first puncturing at $s$ and then substituting $x_{uv} = 0$ for all arcs $uv \in E$ with $u \in V_{i} \setminus O$. Since a path $P \in hp(G, s, t)$ is precisely a spanning out-branching rooted at $s$ such that every vertex $u \in V_{i}$ has out-degree 1, we have, by Theorem 5 and the principle of inclusion and exclusion,

$$\sum_{P \in hp(G, s, t)} \prod_{uv \in E(P)} x_{uv} = \sum_{O \subseteq V_{i}} (-1)^{|V_{i}\setminus O|} \det L_{s}^{O}.$$ (7)

In particular observe that (7) holds in any characteristic.

Cancellation modulo a power of $p$. With foresight, select $k = \lfloor (1 - \lambda)(1/2 - \beta)n/p \rfloor$. Our objective is next to show that by carefully injecting entropy into the underlying Laplacian we can, in expectation and working modulo $p^k$, cancel all but an exponentially negligible fraction of the summands on the right-hand side of (7). Furthermore, we can algorithmically narrow down to the nonzero terms, leading to an exponential improvement to $2^n$.

Let us assign $x_{uv} = 1$ for all $uv \in E$ with $u \neq t$. Since no spanning path that ends at $t$ may contain an arc $tu \in E$ for any $u \in V_{i}$, we may without loss of generality assume that $G$ contains
all such arcs, and assign, independently and uniformly at random \(x_{tu} \in \{0,1,\ldots,p-1\}\). Thus, the summands \(\det L^O_{st}\) for \(O \subseteq V_t\) are now integer-valued random variables and (7) evaluates to \(|hp(G,s,t)|\) with probability 1.

Let us next study a fixed \(O \subseteq V_t\). Let \(F_O\) be the event that \(L^O_{st}\) has no more than \(k\) rows where each entry is divisible by \(p\). In particular, \(\det L^O_{st} \equiv 0 \mod p^k\) implies \(F_O\). To bound the probability of \(F_O\) from above, observe that \(L^O_{st}\) is identically zero at each row \(u \in V_{st} \setminus O\) except possibly at the diagonal entries. Furthermore, because of the random assignment to the indeterminates \(x_{tu}\), each diagonal entry at these rows is divisible by \(p\) with probability \(1/p\). Let us take this intuition and turn it into a listing algorithm for (a superset of the) sets \(O \subseteq V_t\) that satisfy \(F_O\).

**Bipartitioning.** For listing we will employ a meet-in-the-middle approach based on building each set \(O \subseteq V_t\) from two parts using the following bipartitioning. Let \(V^{(1)}_t \cup V^{(2)}_t = V_t\) be a bipartition with \(|V^{(1)}_t| = \lfloor n/3 \rfloor\) and \(|V^{(2)}_t| = n - \lfloor n/3 \rfloor\). Associate with each \(O_1 \subseteq V^{(1)}_t\) a vector \(z^{O_1} \in \{0,1,\ldots,p-1,\infty\}^{V_{st}}\) with the entry at \(u \in V_{st}\) defined by

\[
z^{O_1}_u = \begin{cases} \infty & \text{if } u \in O_1; \\ (x_{tu} + \sum_{w \in O_1} x_{wu}) \mod p & \text{otherwise.} \end{cases}
\]

Similarly, associate with each \(O_2 \subseteq V^{(2)}_t\) a vector \(z^{O_2} \in \{0,1,\ldots,p-1,\infty\}^{V_{st}}\) with the entry at \(u \in V_{st}\) defined by

\[
z^{O_2}_u = \begin{cases} \infty & \text{if } u \in O_2; \\ (-\sum_{w \in O_2} x_{wu}) \mod p & \text{otherwise.} \end{cases}
\]

Suppose now that we have \(O_1 \subseteq V^{(1)}_t\) and \(O_2 \subseteq V^{(2)}_t\) with \(O = O_1 \cup O_2\). We claim that \(F_O\) holds only if the vectors \(z^{O_1}\) and \(z^{O_2}\) agree in at most \(k\) entries. Indeed, observe that \(z^{O_1}_u = z^{O_2}_u\) holds only if both \(u \in V_{st} \setminus O\) and the \((u,u)\)-entry of \(L^O_{st}\) is divisible by \(p\). That is, \(z^{O_1}_u = z^{O_2}_u\) implies the entire row \(u\) of \(L^O_{st}\) consists only of elements divisible by \(p\). Thus it suffices to list all pairs \((O_1,O_2)\) such that \(z^{O_1}\) and \(z^{O_2}\) have at most \(k\) agreements.

**Balanced and unbalanced sets.** To set up the listing procedure, let us now partition the index domain \(V_{st}\) of our vectors into \(b = \lfloor 3 \log_2 p \rfloor\) pairwise disjoint sets \(S_1, S_2, \ldots, S_b\) such that we have \(|(n-2)/b| \leq |S_i| \leq ((n-2)/b)|\).

Let us split the sets \(O \subseteq V_t\) into two types. Let us say that \(O\) is balanced if \((1/2 - \beta)n/b \leq |(V_{st} \setminus O) \cap S_i| \leq (1/2 + \beta)n/b\) holds for all \(i = 1,2,\ldots,b\); otherwise \(O\) is unbalanced. Recalling that \(\sum_{j=0}^\ell \binom{n}{j} \leq 2^{nH(\ell/n)}\) holds for all integers \(1 \leq \ell \leq n/2\), where \(H(\rho) = -\rho \log_2 \rho - (1-\rho) \log_2(1-\rho)\) is the binary entropy function, observe that there are in total at most

\[
2^{n+1-\min_i |S_i| b} \sum_{j=0}^{\lfloor (1/2-\beta)n/b \rfloor} \binom{n}{j} \cdot 2^{(n+b+2)j/2} 2^{nH(1/2-\beta)/b} \\
\leq 2^{n(1-(1-H(1/2-\beta))/b)+\gamma b}
\]

sets \(O\) that are unbalanced.

**Precomputation and listing.** Suppose that \(O_1 \subseteq V^{(1)}_t\) and \(O_2 \subseteq V^{(1)}_t\) are compatible in the sense that \(z^{O_1}\) and \(z^{O_2}\) agree in at most \(k\) entries. For \(S \subseteq V_{st}\) and a vector \(z\) whose entries
are indexed by \(V_s\), let us write \(z_S\) for the restriction of \(z\) to \(S\). If \(O_1\) and \(O_2\) are compatible, then by an averaging argument there must exist an \(i = 1, 2, \ldots, b\) such that \(z^{O_1}_{S_i}\) and \(z^{O_2}_{S_i}\) agree in at most \(k/b\) entries. In particular, this enables us to iterate over \(O_2\) and list all compatible \(O_1\) by focusing only on each restriction to \(S_i\) for \(i = 1, 2, \ldots, b\). Furthermore, the search inside \(S_i\) can be precomputed to look-up tables. Indeed, for each \(i = 1, 2, \ldots, b\) and each key \(g \in \{0, 1, \ldots, p - 1, \infty\}\), let us build a complete list of all subsets \(O_1 \subseteq V_i^{(1)}\) such that \(z^{O_1}_{S_i}\) and \(g\) agree in at most \(k/b\) entries. These \(b\) look-up tables can be built by processing in total at most

\[
\sum_{i=1}^{b} 2^{V_i^{(1)}} (p+1) |S_i| \leq 2^{n/3 + 2(n/((3\log p) + 2) \log_2(p+1)) \log_2 p} = O(2^{0.87n})
\]

pairs \((O_1, g)\). This takes time \(O^*(2^{0.87n})\) in total.

The main listing procedure now considers each \(O_2 \subseteq V_i^{(2)}\) in turn, and for each \(i = 1, 2, \ldots, b\) consults the look-up table for direct access to all \(O_1\) such that \(z^{O_1}_{S_i}\) and \(z^{O_2}_{S_i}\) agree in at most \(k/b\) entries. In particular this will list all compatible pairs \((O_1, O_2)\) and hence all sets \(O = O_1 \cup O_2\) such that \(F_O\) holds.

**Expected running time.** Let us now analyze the expected running time of the algorithm. We start by deriving an upper bound for the expected number of pairs \((O_1, O_2)\) considered by the main listing procedure. First, observe that the total number of pairs \((O_1, O_2)\) considered by the procedure with \(O = O_1 \cup O_2\) unbalanced is bounded from above by our upper bound (10) for the total number of unbalanced \(O\). Indeed, \(O_1 = O \cap V_i^{(1)}\) and \(O_2 = O \cap V_i^{(2)}\) are uniquely determined by \(O\).

Next, for a pair \((O_1, O_2)\) with balanced \(O = O_1 \cup O_2\) and \(i = 1, 2, \ldots, b\), let \(G_{O_1, O_2, i}\) be the event that \(z^{O_1}_{S_i}\) and \(z^{O_2}_{S_i}\) agree in at most \(k/b\) entries. We seek an upper bound for the probability of \(G_{O_1, O_2, i}\) to obtain an upper bound for the expected number of pairs with balanced \(O = O_1 \cup O_2\) considered by the main listing procedure. Let \(A_{O_1, O_2, i}\) be the number of entries in which \(z^{O_1}_{S_i}\) and \(z^{O_2}_{S_i}\) agree. We observe that \(A_{O_1, O_2, i}\) is binomially distributed with expectation \(|(V_i \setminus O) \cap S_i|/p\). Since \(O\) is balanced, we have \((1/2 - \beta)n/b \leq |(V_i \setminus O) \cap S_i| \leq (1/2 + \beta)n/b\). We also recall that \(k = \lceil (1 - \lambda)(1/2 - \beta)n/p \rceil\). A standard Chernoff bound now gives

\[
\Pr(G_{O_1, O_2, i}) \leq \Pr(A_{O_1, O_2, i} \leq k/b) \\
\leq \Pr(A_{O_1, O_2, i} \leq (1 - \lambda)(|V_i \setminus O) \cap S_i|/p) \\
\leq \exp(-\lambda^2(|V_i \setminus O) \cap S_i|/(2p)) \\
\leq \exp(-\lambda^2(1/2 - \beta)n/(2pb)).
\]

Recalling that \(b = \lceil 3\log_2 p \rceil\), the main listing procedure thus considers in expectation at most \(2^n \exp(-\lambda^2(1/2 - \beta)n/(2p(3\log_2 p)))\) pairs \((O_1, O_2)\) with \(O = O_1 \cup O_2\) balanced. Recalling our upper bound for the total number of unbalanced sets (10), we thus have that the main listing procedure runs in \(O^*(2^n \exp(-\lambda^2(1/2 - \beta)n/(2p(3\log_2 p))) + 2^n(1 - (1 - H(1/2 - \beta))/(3\log_2 p))^n)\) expected time. Recalling that precomputation runs in \(O^*(2^{0.87n})\) time, we thus have for \(\beta = 1/6\) that the entire algorithm runs in \(O^*(2^n(1 - \lambda^2(1/19p \log_2 p)))\) expected time and computes \(|h_p(G, s, t)|\) modulo \(p^{(1 - \lambda)n/(3p)}\). This completes the proof of Theorem 3.

5 Directed Hamiltonicity via quasi-Laplacian determinants

This section proves Theorem 4. Let \(G\) be a directed \(n\)-vertex graph given as input.
Finding a maximum independent set. Let $B \cup Y = V(G)$ be a partition of the vertex set into two disjoint sets $B$ ("blue") and $Y$ ("yellow") such that no arc has both of its ends in $Y$. That is, $Y$ is an independent set.

We can find an $Y$ of the maximum possible size as follows. First, in time polynomial in $n$ compute the maximum-size matching in the undirected graph obtained from $G$ by disregarding the orientation of the arcs. This maximum-size matching must consist of at least $\lfloor n/2 \rfloor$ edges or $G$ does not admit a Hamiltonian cycle. (Indeed, from a Hamiltonian cycle we can obtain a matching with $\lfloor n/2 \rfloor$ edges by taking every other arc in the cycle.)

Since for each matching edge it holds that both ends of the edge cannot be in an independent set, we can in time $O^*(3^{n/2})$ find a maximum-size independent set $Y$ of $G$. Furthermore, $\alpha(G) = |Y| \leq \lfloor n/2 \rfloor + 1$, so we are within our budget of $O^*(3^{n/2} - \alpha(G))$ in terms of running time. In fact, $|Y| \leq \lfloor n/2 \rfloor$ or otherwise $G$ trivially does not admit a Hamiltonian cycle.

The symbolic quasi-Laplacian. We will first define the quasi-Laplacian and then give intuition for its design. Let us work over a field of characteristic $2$. For each $y \in Y$ introduce a copy $y_n$ and let $Y_n$ be the set of all such copies. Similarly, for each $y \in Y$ introduce a copy $y_{out}$ and let $Y_{out}$ be the set of all such copies. We assume that $Y_n$ and $Y_{out}$ are disjoint. For each $j \in Y_n \cup Y_{out}$ let us write $\bar{j} \in Y$ for the underlying element of $Y$ of which $j$ is a copy. Let $B_s$ be a set of $n - 2|Y|$ elements that is disjoint from both $Y_n$ and $Y_{out}$. For each $uv \in E$ and each $j \in B_s \cup Y_n \cup Y_{out}$, introduce an indeterminate $x_{uv}(j)$.

Select an arbitrary vertex $s \in B$ for purposes of breaking symmetry and let $I, O \subseteq B$. The quasi-Laplacian $Q_{I,O,s} = Q_{I,O,s}(G)$ of $G$ with skew at $s$ be the $n \times n$ matrix whose rows are indexed by $u \in B \cup Y$ and whose columns are indexed by $j \in B_s \cup Y_n \cup Y_{out}$ such that the $(u,j)$-entry is defined by

$$Q_{I,O,s}^{I,O,s} = \begin{cases} \sum_{w \in O, uw \in E, u \in I} x_{uw}(j) & \text{if } u \in B \text{ and } j \in B_s; \\ \sum_{w \in I, uw \in E, u \in O \setminus \{s\}} x_{uw}(j) & \text{if } u \in O \setminus \{s\} \text{ and } j \in Y_n \text{ with } u \bar{j} \in E; \\ x_{in}(j) & \text{if } u \in I \text{ and } j \in Y_{out} \text{ with } u \bar{j} \in E; \\ \sum_{w \in O, uw \in E} x_{uw}(j) & \text{if } u \in Y \text{ and } j \in Y_n \text{ with } u \bar{j} \in E; \\ \sum_{w \in I, uw \in E} x_{uw}(j) & \text{if } u \in Y \text{ and } j \in Y_{out} \text{ with } u \bar{j} \in E; \\ 0 & \text{otherwise.} \end{cases}$$

Let us next give some intuition for (11) before proceeding with the proof.

Analogously to the Laplacian (3), the quasi-Laplacian (11) has been designed so that the monomials of each row $u \in B \cup Y$ of $Q_{I,O,s}$ control the assignment of either an in-arc or an out-arc to $u$ in an incidence assignment, and the skew at $s$ is used to break symmetry so that $s$ is always assigned an in-arc to $s$. In particular, without the skew at row $s$ and with $I = O$, each column of $Q_{I,O,s}$ would sum to zero, in analogy with the (non-punctured) Laplacian.

Let us now give intuition for the columns $j \in Y_n$ and $j \in Y_{out}$. First, observe by (b) and (d) in (11) that selecting a monomial from column $j \in Y_n$ corresponds to making sure that the in-degree of $j$ is 1. Such a selection may be either a “quasi-diagonal” assignment of the in-arc $\bar{w} \bar{j}$ to $u = \bar{u}$ in $Y$ via (d) for some $w \in B$; or an “off-diagonal” assignment of the out-arc $\bar{u} j$ to $u \in B$ via (b). Second, observe by (c) and (e) in (11) that selecting a monomial from column $j \in Y_{out}$ corresponds to making sure that the out-degree of $j$ is 1. Thus, the columns $j \in Y_n \cup Y_{out}$ enable us to make sure that an incidence assignment has both in-degree 1 and out-degree 1 at each $u \in Y$ without the use of sieving. This gives us the speed-up from $O^*(3^n)$ to $O^*(3^{n - |Y|})$ running time. Observe also that the structure for the quasi-Laplacian
\( Q^{I,O,s} \) is enabled precisely because \( Y \) is an independent set and thus no arc contributes to both in-degree and out-degree in \( Y \).

**The quasi-Laplacian determinant sieve.** Recalling that we are working over a field of characteristic 2, let us study the sum

\[
\sum_{I \subseteq B \cap O = B} \det Q^{I,O,s} = \sum_{I \subseteq B} \sum_{O \subseteq B} \det Q^{I,O,s} = \sum_{\sigma : B \cup Y \rightarrow B \cup Y_{in} \cup Y_{out}} \prod_{\sigma \text{ bijective}} \sum_{I \subseteq B \cap O \subseteq B} \prod_{w \in B \cup Y} q_{u,v}^{I,O,s} . \quad (12)
\]

Observe that the first equality in (12) holds because \( Q^{I,O,s} \) has by (11) an identically zero row unless \( I \cup O = B \) and \( s \in I \); the second equality holds by definition of the determinant in characteristic 2 and changing the order of summation. From (11) and the right-hand side of (12) it is immediate that (12) is either identically zero or a homogeneous polynomial of degree \( n \) in the \( n|E| \) indeterminates \( x_{uv}^{(I)} \) for \( j \in B_s \cup Y_{in} \cup Y_{out} \) and \( uv \in E \). \(^4\) We claim that (12) is not identically zero if and only if \( G \) admits at least one spanning cycle. Furthermore, each spanning cycle in \( G \) defines precisely \( |B_s|! \) distinct monomials in (12).

To establish the claim, fix a bijection \( \sigma : B \cup Y \rightarrow B_s \cup Y_{in} \cup Y_{out} \). Let us write \( M(\sigma) \) for the set of all incidence assignments \( \mu : B \cup Y \rightarrow E \) that are proper in the sense that all of the following six requirements hold (cf. (11)):

- (s): \( \mu(s) \) is an in-arc to \( s \);
- (a): for all \( u \in B \) with \( \sigma(u) \in B_s \) it holds that \( \mu(u) \) has both of its vertices in \( B \);
- (b): for all \( u \in B \) with \( \sigma(u) \in Y_{in} \) it holds that \( \mu(u) \) is an in-arc to \( \sigma(u) \);
- (c): for all \( u \in B \) with \( \sigma(u) \in Y_{out} \) it holds that \( \mu(u) \) is an out-arc from \( \sigma(u) \);
- (d): for all \( u \in Y \) with \( \sigma(u) \in Y_{in} \) it holds that \( \mu(u) \) is an in-arc to \( u \) and \( \mu(u) = \sigma(u) \);
- (e): for all \( u \in Y \) with \( \sigma(u) \in Y_{out} \) it holds that \( \mu(u) \) is an out-arc from \( u \) and \( \mu(u) = \sigma(u) \).

Observe that each \( \mu \in M(\sigma) \) defines a collection of \( n \) arcs \( \mu(B \cup Y) = \{ \mu(u) : u \in B \cup Y \} \). Let us write \( Z_{in}^\mu \) (respectively, \( Z_{out}^\mu \)) for the set of vertices in \( B \cup Y \) with zero in-degree (out-degree) with respect to the arcs in \( \mu(B \cup Y) \). Since \( \sigma \) is a bijection and thus has a preimage for each \( j \in Y_{in} \cup Y_{out} \), from (a,b,c,d,e) above it follows that \( Z_{in}^\mu \subseteq B \) and \( Z_{out}^\mu \subseteq B \). Furthermore, from (a,b,c,d,e) it follows that for the arcs in \( \mu(B \cup Y) \) the sum of the in-degrees (and the sum of the out-degrees) of the vertices in \( B \) is \( |B| = |B_s| + |Y| \). Thus, we have that \( Z_{in}^\mu \) and \( Z_{out}^\mu \) are both empty if and only if for the arcs \( \mu(B \cup Y) \) both the in-degree and the out-degree of every vertex \( u \in B \cup Y \) is 1. (Note that the claim is immediate for \( u \in Y \) by (b,c,d,e) and bijectivity of \( \sigma \).

Let us now study the right-hand side of (12) for a fixed \( \sigma \). Using (a,b,c,d,e) and (11) to rearrange in terms of incidence assignments, we have

\[
\sum_{I \subseteq \mathcal{V}} \sum_{O \subseteq \mathcal{Y}} \prod_{w \in B \cup Y} q_{u,v}^{I,O,s} = \sum_{\mu \in M(\sigma)} \prod_{w \in B \cup Y} x_{\mu(u)}^{(\sigma(u))} \sum_{I \subseteq Z_{in}^\mu} \sum_{O \subseteq Z_{out}^\mu} 1 . \quad (13)
\]

Since we are working in characteristic 2, all other \( \mu \in M(\sigma) \) except those for which \( \mu(B \cup Y) \) is a cycle cover will cancel in the right-hand side of (13).

Take the sum of (13) over all bijections \( \sigma \). Consider an arbitrary cycle cover of \( B \cup Y \). Let \( C \) be a cycle in this cycle cover. Assuming that \( C \) does not contain \( s \), we can realize \( C \) in an incidence assignment \( \mu : B \cup Y \rightarrow E \) either using (1) or (2). If \( C \) contains \( s \) and \( \mu \) is proper, \(^4\) Our algorithm for deciding Hamiltonicity will naturally not work with a symbolic representation of (12) but rather in a homomorphic image under a random evaluation homomorphism.
only the realization (1) is possible by (s). To see that realization with a proper \( \mu \in M(\sigma) \) for some \( \sigma \) is possible, consider an arbitrary \( u \in B \cup Y \) and observe that each image \( \mu(u) \) by \( (b,c,d,e) \) uniquely determines the image \( \sigma(u) \in Y_{in} \cup Y_{out} \) when \( \mu(u) \) has one vertex in \( Y \); when \( \mu(u) \) has both vertices in \( B \), an unused \( \sigma(u) \in B_\ast \) may be chosen arbitrarily so that \( \mu \in M(\sigma) \). It follows that any cycle cover with \( c \) cycles is realized as exactly \( |B_\ast|! \) distinct monomials \( \prod_{uv \in B \cup Y} q^{\frac{1}{2}(\sigma(u) \cup (u))} \) in (12), each with coefficient \( 2^{-c} \). This coefficient is nonzero if and only if \( c = 1 \).

Completing the algorithm. To detect whether the given \( n \)-vertex directed graph \( G \) admits a Hamiltonian cycle, first decompose the vertex set into disjoint \( V = B \cup Y \) with \( Y \) an independent set of size \( |Y| = \alpha(G) \) using the algorithm described earlier. Next, in time \( O^*(1) \) construct an irreducible polynomial of degree \( 2\lfloor \log_2 n \rfloor \) over \( \mathbb{F}_2 \) (see e.g. von zur Gathen and Gerhard [23, §14.9]) to enable arithmetic in the finite field of order \( q = 2^{2\lfloor \log_2 n \rfloor} \geq n^2 \) in time \( O^*(1) \) for each arithmetic operation. Next, assign an independent uniform random value from \( \mathbb{F}_q \) to each indeterminate \( x_{uv}^j \) with \( j \in B_\ast \cup Y_{in} \cup Y_{out} \) and \( uv \in E \). Finally, using the assigned values for the indeterminates, compute the left-hand side of (12) using, for example, Gaussian elimination to compute each determinant \( Q^{(i)j} \) in \( O^*(1) \) operations in \( \mathbb{F}_q \). Let us write \( r \in \mathbb{F}_q \) for the result of this computation. In particular, we can compute \( r \) from a given \( G \) in total \( O^*(3^{|B|}) = O^*(3^{\alpha(G)} \alpha(G)) \) operations in \( \mathbb{F}_q \), and consequently in total \( O^*(3^{\alpha(G)} \alpha(G)) \) time. If (12) is identically zero, then clearly \( r = 0 \) with probability 1. If (12) is not identically zero (and hence a homogeneous polynomial of degree \( d = n \) in the indeterminates) then by the DeMillo–Lipton–Schwartz–Zippel lemma [14, 22, 25] we have \( r \neq 0 \) with probability at least \( 1 - d/q \geq 1 - n/n^2 \geq 1 - 1/n = 1 - o(1) \). Thus we can decide whether \( G \) is Hamiltonian based on whether \( r \neq 0 \). In particular this gives probability \( o(1) \) of reporting a false negative. This completes the proof of Theorem 4.

References


