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Doping and carrier transport in Ga ;_3,In3,N,As; _, alloys
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Si- and Be-doped Gag,InszN,As; ,(0<x<3%) layers are grown on GaAs substrates by gas-source
molecular beam epitaxy with a nitrogen radical beam source. The carrier concentration and mobility are
observed to decrease substantially with increasing nitrogen content ip-baialn-type GalnNAs films. After
rapid thermal annealing at 750 °C, the Be dopants are almost fully activapetyjpe material; yet only a small
fraction of the Si dopants are activatedrirtype GalnNAs films. At low temperature a broad photolumines-
cence band centered at 1.041 @bout 120 meV below the band gap observed im-type GalnNAs, which
suggests the possible compensating centers present in Si-doped GalnNAs.

DOI: 10.1103/PhysRevB.64.113308 PACS nuntber73.61.Ey, 81.15.Hi, 78.55.Cr

GalnNAs alloy containing a few percent of nitrogen hasmined using high-resolution x-ray diffraction on a GaAsN
received much interest both because of a practical and a fuepitaxial layer grown under the same conditigpsma cell
damental point of view™ Incorporation of nitrogen into operation, substrate temperafuand assuming that the N
GalnAs reduces the strain of InGaAs layers grown on GaAscontent is the same in the GaAsN and GalnNA layers. RTA
In addition, the band gap decreases as N is added due tow@s performed on these samples at 750 °C in a flowiag N
large band gap bowin§Recent advances in the GalnNAs/ @mbient in order to improve the crystalline quality of

GaAs material system has led to much progress on the api-containing material. The free carrier concentration and
plication of this material system for a variety of devices,mOb'“ty were determined from Hall effect measurements in

such as 1.3um vertical-cavity surface emitting lasers on th€ Van der Pauw geometry. The photoluminescence mea-

GaAs substratesand high efficiency multijunction solar cell Surements were performed using the 514.5 nm line of an Ar
as well as heterojunction bipolar transistdk$BT).5¢ Al- laser as the excitation source. A liquid-nitrogen-cooled Ge

though the optical properties of GalnNAs/GaAs heterostrucgetGCtor was used to Qetect t_he signal at the exit of a 59 cm
monochromator associated with a standard lock-in technique.

tures have been extensively studied, comparatively little is Figure 1 shows the hole concentrations and Hall mobility

known conceming the transport properties of GalnNAs Mor as-grown and annealed GalnNAs samples as a function
GaAs/® In this Brief Report, we report the transport proper-

ties of Si- and Be-doped Gas,In;, N, As, _, layers (0=x ~ 107

=<0.03) lattice matched on semi-insulating GaAs substrates. £ —Ab 30£K

The carrier concentration and Hall mobility are observed to z 10! ) )

decrease significantly with increasing the nitrogen content in 2

both p- and n-type GalnNAs films. After rapid thermal an- ‘g ol ¥ o Nt 6%

nealing (RTA) at 750 °C, the Be dopants are almost fully g0 | o N=0.2%

activated inp-type GalnNAs layers; yet only a small fraction ° o N=3%

of the Si dopants are activated mtype GalnNAs films. A 2 1016—8 1o 35 %5

broad photoluminescence band centered at 1.041 eV is ob- RTA fime (5)

served in annealed Si-doped material, which suggests the

possible compensating deep levels present nitype @

GalnNAs. _ 00K
0.5 um thick Si- and Be-doped Gas,Ing,N,As; _, lay- 2100 e, ]

ers lattice matched {400<Aa/a<400ppm) on semi- “g * o 0

insulating (100 GaAs substrates were grown by gas-source > o

molecular beam epitaxGSMBE). Group Il fluxes are pro- § 50} A e

duced by thermal effusion cells, group V flux is provided by E / B

a thermally cracking Ask} and reactive nitrogen is provided K M —o—N=1.6%

by a radio frequencyrf) plasma cell. The GalnNAs films 05 1o T 39

were grown at 440 °C to incorporate N into the GalnAs lay- RTA time (s)

ers. The free carrier concentration of unintentionally doped )
GalnNAs bulk layer was around >510°cm™2 of n-type

conduction. The detailed growth conditions were reported in  FIG. 1. Concentrationéa) and Hall mobility (b) of holes as a
Ref. 9. Silicon and beryllium were used as and p-type  function of RTA time for as-grown and annealed GalnNAs samples
dopant for GalnNAs, respectively. The N content was deterdoped with Be(X 10 cm™3).
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FIG. 3. Low-temperature photoluminescence spectra of Si- and
2 250 — 50K Be-doped GalnNAd{~1.6%) annealed at 750 °C for 10 sec.
€
< 200, ,\'j/' ]
£ A nificantly when only 0.2% of nitrogen incorporated. The
3 150 " y y 9 P
2 go——° electron concentrations are also reduced with increasing the
§ 100; o/ —a—N=16% || N content in then-type GalnNAs layer. After annealing at
8 50 D 750 °C only a small fraction of the Si dopants are activated in
5 T30 30 40 n-type films with higher N content. The higher the N con-
RTA time(s) centration is, the less the free electron concentration obtained
(b) in the annealed-type GalnNAs layers. In addition, the Hall

_ N mobility of annealed samples decreases with N incorpora-

FIG._2. Concentra_‘uonea) and Hall mobility (b) of electrons as  tjon, which can be attributed to the strong alloy disorder
a function of RTA time fors as-grown and annealed GalnNAS gcatiering as well as to the enhanced electron effective mass
samples doped with Si(210cm™3). in these GalnNAs alloys.
of RTA time. Thep-type GalnNAs samples are doped with ~ The results presented above suggest the possible forma-
Be at the same level of 810 cm™3. With 0.2% of nitro- tion of N-related defects compensating the donors in an-
gen, the hole concentration and Hall mobility of GaNAs film nealedn-type GalnNAs. Further information on the low dop-
are found to be nearly the same as that of GaAs layer. Whiléng efficiency of Si donor in GalnNAs was obtained from
with further increasing of N concentrations up to 3%, thelow temperature PL measurements. In Fig. 3, a comparison is
hole concentration of the as-grown GalnNAs samples deshown between the PL of Si-doped and Be-doped GalnNAs
creases by about two orders of magnitude. The correspongamples after annealing at 750 °C. The curves were inten-
ing room temperature hole mobilities, as determined by thdionally offset alongy axis with respect to each other for
Hall measurements, are also reduced significantly as showwetter clarity. Forp-type GalnNAs, the PL emission has a
in Fig. 1(b). It is found that H atom is incorporated alongside asymmetric line shape with a sharp high energy cutoff and an
N in as-grown GalnNAs samples and dissociate from theexponential low-energy tail, which is attributed to the transi-
layer by annealing from secondary ion mass spectrometrtions between either acceptors or holes and photogenerated
(SIMS) measurements. Therefore, the free hole concentratioalectrons trapped by localized statesluced by alloy poten-
decreases with N incorporation mainly due to the formatiortial fluctuationg below the band edge. In contrast fetype
of H-N-Be complexes, which would passivate the acceptorsamples, however, it is found that the PL spectra line shape
in GalnNAs. Similar results are also reported in metalorganiof Si-doped samples consists of a high-energy luminescence
chemical vapor deposition and GSMBE-grown GalnNAspeak and a broad low-energy band centered at 1.041 eV
samples’:® about 120 meV below the band gap. The broad low-energy

In order to depassivate the acceptors and improve thband exhibits a strong dependence on measurement tempera-
crystalline quality of GalnNAs layet,RTA at 750°C was ture and excitation power. In particular, a temperature in
performed on the Be-doped samples. As shown in Fig. 1, the
depassivation of the Be acceptors has converted the as-grown CB
high-resistivity GalnNAs:Be intop-conducting materials,
and the acceptors are almost fully activated independent of Donor states\.-/
the N content of the material. The hole concentration and _—  N-induced
mobility increase rapidly in the initial stage of RTA. As the localized states
annealing continues, both the hole concentration and mobil- AN
ity reach constant values. The reduction of the Hall mobility
with N incorporation is mainly caused by the strong alloy
disorder scattering in GalnNAs alloys.

The transport properties aftype GalnNAs(doped with
Si at a level of 2 10'8cm™3) are also investigated as shown
in Fig. 2. In contrast t@-type GalnNAs, the electron mobil- FIG. 4. Proposed model of the luminescence-type GalnNAs
ity, as determined by the Hall measurements, is reduced sigayer.
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crease causes quenching of the PL intensity, accompanied by partly compensating the donors or by forming energeti-
a strong redshift of the PL maximum position. Therefore, thecally stable N-related complexes with Si donors.
appearance of this broad low-energy band in PL spectra of an In summary, Si- and Be-doped Ga,lInsN,As; (0
Si-doped sample suggests the possible existence of acceptesx<3%) layers are grown on GaAs substrates by gas-
like states below the bottom of the conduction band. source molecular beam epitaxy with a nitrogen radical beam

In order to explain the results mentioned above, we prosource. The carrier concentration and mobility are observed
pose a model as shown schematically in Fig. 4. The accefie decrease substantially with increasing nitrogen content in
torlike centers imn-type GalnNAs samples, we believe, are both p- and n-type GalnNAs films. After rapid thermal an-
probably related to N-induced localized states due to alloynealing at 750 °C, the Be dopants are almost fully activated
composition inhomogeneity. These localized states in thén p-type material; yet only a small fraction of the Si dopants
band gap act as acceptors to compensate the Si donors amne activated im-type films. At low temperature a broad
n-type material, while for p-type and semi-insulating photoluminescence band around 1.041 @@out 120 meV
GalnNAs they are in neutral charge statas expected for an below the band gaps observed im-type samples, probably
isoelectronic impurity. Moreover, the formation of these ac- related to N-induced localized states acting as acceptors to
ceptorlike centers can be enhanced due to the energy gainedmpensate Si donors.
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