Rangel-Kuoppa, Victor-Tapio; Suihkonen, Sami; Sopanen, Markku; Lipsanen, Harri

Temperature dependence of current-voltage characteristics of Pt/InN Schottky barrier diodes

Published in:
Physics of Semiconductors

DOI:
10.1063/1.3295546

Published: 01/01/2009

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Temperature Dependence Of Current-Voltage Characteristics Of Pt / InN Schottky Barrier Diodes

Victor-Tapio Rangel – Kuoppa, Sami Suihkonen, Markku Sopanen and Harri Lipsanen

Micro- and Nanosciences Laboratory, Helsinki University of Technology
P.O. Box 3500, 02015 Helsinki, Finland

Abstract. The Current-Voltage (IV) measurements on Pt / InN Schottky barrier diodes in the temperature range 10 - 280 K were done. It was found that the contact was Schottky up to 280 K, becoming irreversible ohmic for higher temperatures. The ideality factor, the saturation current and the apparent barrier height were calculated by using the thermionic emission (TE) theory. The ideality factor is temperature dependent, while the saturation current and the barrier height are not. The non conventional Richardson plot exhibits good linearity, corresponding to an activation energy of 2.08 eV and a Richardson constant of 18.7 A m⁻² K⁻². The Cheung’s method to estimate the value of a possible series resistance R_S yields a negligible resistance. From reverse-bias IV analysis, it is found that the experimental carrier density (N_D) value increases with temperature.

Keywords: InN, Schottky contact, Pt contact, temperature dependence, IV, IVT, Richardson constant, electron affinity, carrier density,

PACS: 72.15 Eb, 72.80 Ey, 73.40 Sx, 73.61 Ey

INTRODUCTION

In this paper we continue a former work about Schottky contacts on InN [1]. Herein, we report the temperature-dependence Current-Voltage (IVT) of Pt Schottky contact on InN using thermionic emission theory.

FORWARD BIAS ANALYSIS

The measurements were done from 10 K to 290 K, with steps of 10 K. The Pt Schottky contact became irreversible ohmic at 290 K.

A negligible internal resistance in the order of $10^3 \ \Omega$ was found using the method of Cheung [2] et al and was totally discarded.

The forward bias current in a Schottky contact is modeled [3] according to

$$I = I_S \left[\exp \left(\frac{qV}{nkT} \right) - 1 \right].$$

The ideality factor n was also found using the method of Cheung [2] et al and the thermionic emission theory. As it is shown in Fig. 1, n followed the T_0 effect [4]

$$n(T) = n_0 + \frac{T_0}{T}$$

where n_0 and T_0 are constants with values 1.335 and 1450.16, respectively.

The expression for the saturation current I_S is [3]

$$I_S = A* A^{**} T^2 \exp(-q\phi_b/kT)$$

where A is the Schottky area (in this case 0.8 mm²), A^{**} the Richardson constant and ϕ_b the barrier height. This expression can be used to determine ϕ_b if A^{**} is
known. To our knowledge, there is no value for A^{**} in
the literature. Nevertheless, Eq. (3) can be rewritten as

$$ln(I_s/T^2) = ln(AA^{**}) - q\phi_B/kT$$ \hspace{1cm} (4)$$

and ϕ_B and A^{**} can be determined by a linear
fitting, in case the relation is lineal. In Fig. 2, the
variation of $ln(I_s/T^2)$ against $10^3/T$ and $10^3/(nT)$
are shown. The dependence of $ln(I_s/T^2)$ versus $10^3/T$
found to be non-linear; however, the dependence of
$ln(I_s/T^2)$ versus $10^3/(nT)$ gives a straight line.

The non-linearity of the conventional Richardson
plot is caused by the temperature dependence of the
ideality factor. Similar results have also been reported
by other authors [5]. Linearly fitting $ln(I_s/T^2)$ versus
$10^3/(nT)$, gives 18.7 A m$^{-2}$ K$^{-2}$ and 2.08 eV for A^{**}
and ϕ_B, respectively. Using the model for the Schottky
barrier [3], one can write

$$\phi_B = \phi_m - \chi$$ \hspace{1cm} (5)$$

where ϕ_m and χ are the metal work function and the
electron affinity for InN. To our knowledge, nobody has
reported χ for InN. Nevertheless, Neff [6] et al.
assumed a value of 4.25 eV in order to simulate their
solar cells. And values for GaN and BN are 4.1 and
4.5 eV at 300 K [7]. Using the value [3] of $\phi_m = 5.65$
eV for Pt and χ between 4.1 and 4.5 eV for InN, one
obtains ϕ_B between 1.15 and 1.55 eV, in reasonable
agreement with our value. On the other hand, if our ϕ_B
is correct, χ for InN should be 3.57 eV.

Regarding A^{**}, no value has been found in the
values of 13 and 26 A m$^{-2}$ K$^{-2}$ for A^{**} on their Pt
Schottky contacts on p- and n-type GaN, respectively.
Our value is between them.

REVERSE BIAS ANALYSIS

A reverse bias analysis yields the donor
concentration [3]. It is shown in Fig. 3. We use a
value of 1.35×10^{-10} F/m for ε_δ [7].

![Fig. 3. Donor concentration N_D as function of temperature.](image)

CONCLUSIONS

The IVT technique has been applied to Pt / InN
Schottky contacts. The ideality factor shows the T_0
effect. The Richardson plot of $ln(I_s/T^2)$ versus $10^3/(T)$
is not linear, due to the temperature dependence of the
ideality factor. Removing this temperature
dependence by plotting $ln(I_s/T^2)$ versus $10^3/(nT)$ yields
a Richardson constant of 18.7 A m$^{-2}$ K$^{-2}$ and a barrier
height of 2.08 eV. Using the metal work function of
5.65 eV for Pt, yields an electron affinity of 3.57 eV
for InN. To our knowledge, this is the first time the
Richardson constant and the electron affinity for InN
are reported. The reverse bias analysis yields a
temperature dependent donor concentration.

REFERENCES

1. V.-T. Rangel-Kuoppa, S. Suihkonen, M. Sopanen and H.
Suihkonen, J. Sormunen, V.-T. Rangel-Kuoppa, H.
(1986) 85.
3. S. M. Sze in *Physics of Semiconductor Devices*, Bell
Laboratories, Incorporated (John Wiley & Sons, USA,
3744.
5. S. Chand and J. Kumar: Semicond. Sci. Technol. 10
7. Zubrilov A. in *Properties of Advanced
Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe*.
Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S.,
9. M. Ali, V. Cimalla, V. Lebedev, H. Romanus, V. Tilak,
D. Merfeld, P. Sandvik and O. Ambacher: Sensors and

54