Tunability of the optical absorption in small silver cluster-polymer hybrid systems

Laura Koponen,1 Lasse O. Tunturivuori,1 Martti J. Puska,1 and Y. Hancock1,2,a
1Department of Applied Physics, Aalto University School of Science and Technology, P.O. Box 11100, FIN-00076 AALTO, Finland
2Department of Physics, The University of York, Heslington, York YO10 5DD, United Kingdom

(Received 8 December 2009; accepted 14 April 2010; published online 1 June 2010)

We have calculated the absorption characteristics of different hybrid systems consisting of Ag, Ag2, or Ag3 atomic clusters and poly(methacrylic acid) using the time-dependent density-functional theory. The polymer is found to have an extensive structural-dependency on the spectral patterns of the hybrid systems relative to the bare clusters. The absorption spectrum can be “tuned” to the visible range for hybrid systems with an odd number of electrons per silver cluster, whereas for hybrid systems comprising an even number of electrons per silver cluster, the leading absorption edge can be shifted up to ~4.5 eV. The results give theoretical support to the experimental observations on the absorption in the visible range in metal cluster-polymer hybrid structures.

I. INTRODUCTION

When metal samples are reduced from bulk to nanometer dimensions, their optical properties become governed by surface plasmons. When the size is further decreased to few-atom clusters, the properties are again altered as discrete energy levels determine the electronic and optical behavior of the cluster. Applications in this size regime have become extremely important during recent years as advanced materials. Their high biocompatibility suggests great potential as functional components in biological nanomaterials, with possible applications in biosensing and optical data processing. Silver clusters readily oxidize, which can be a problem for some applications, and methods of increasing their stability against oxidation are actively being sought. From the theoretical perspective, the challenge of these systems lies in the filled d-electron levels of silver, which makes high requirements for modeling their electronic properties, and for determining their potential for application.

During the last two decades, both extensive experimental and computational studies have been done on small silver clusters (Agn) with less than a dozen atoms. Experimentally these clusters have been studied in stabilizing rare-gas matrices, as free silver clusters in the gas phase dissociate by fragmentation. Small silver clusters exhibit interesting luminescence and especially fluorescence properties that can be tuned by their size and chemical environment. Inter- esting, but not very well understood, experimental observations on the tunability of their optical properties as a function of the chemical environment have been reported. Díez et al., for example, have observed absorption in the visible range at ~500 nm (2.5 eV) from small silver clusters (n=1–4) stabilized by coils of poly(methacrylic acid) (PMAA) in the liquid phase. The photoabsorption spectrum of this system was found to redshift slightly when the polarity of the solvent decreased, and other interesting properties, such as strong fluorescence and electrochemiluminescence, were also observed. A similar synthesis was also carried out by Shang et al. who assumed that the measured absorption bands at 430 nm (2.9 eV) and 500 nm (2.5 eV) are due to Agn clusters with n=2–8. Their study also reported strong fluorescence.

On the computational side, methods used to model excited-state properties of nanosized structures include the coupled cluster method, ab initio configuration interaction (CI) approach, time-dependent density-functional theory (TDDFT), Hedin’s GW approach combined with the solution of the Bethe–Salpeter equation, and the quantum Monte Carlo method. The quantum chemistry community, in particular, Bonáčič-Koutecký et al., pioneered work on the absorption properties of silver clusters using ab initio CI, publishing many benchmark results. On the DFT side, Yabana and Bertsch were the first to use a real-time implementation of TDDFT to calculate the optical response of small silver clusters Ag1, Ag2, Ag3, Ag8, and Ag9 in the gas phase. A more systematic real-time TDDFT study of the optical properties of Agn with n=1–8 followed. Both of these studies showed good agreement with experimental results with a rather rigid difference of about 10% in the excitation energies. More recent TDDFT studies have been performed on larger Agn clusters with n ≥ 4.

A hybrid structure consisting of a silver cluster and an organic compound is of great interest as this is already a reliable model for a silver cluster that has been functionalized by its environment. Examples of studies on silver-cluster-organic-compound hybrid systems include silver-carboxylates for which DFT methods have been used to determine the shapes of the resulting silver nanoparticles.
The interaction with the organic compound can cause strong modifications to the optical properties of the cluster. For example, Mitrić et al. studied the absorption spectra of silver cluster-tryptophan hybrid systems using the TDDFT. They observed a strong size- and structural-dependence of the photoabsorption and photofragmentation in these systems. Other examples of recent TDDFT work on silver-cluster-organic-compound hybrid structures include a study of the enhancement mechanism in surface enhanced Raman scattering and the determination of the optical properties of silver-cluster-biomolecule-hybrids.

In this paper, we study the effect of organic compounds on the photoabsorption spectra of silver cluster systems. For our model systems, we choose clusters consisting of one to three silver atoms attached to fragments of the PMAA polymer. This choice is motivated by recent experiments in Refs. 19, 20, and 40, where small silver clusters have been formed in the presence of PMAA in different solutions. In our calculations, we focus on the cluster-polymer system only and omit the solvent for simplicity. This approach has also been used by Mitrić et al. who calculated the excitation properties of interacting nanoparticle-biomolecule subunits.

The paper is organized as follows. The selected geometries for our systems are investigated and presented in Sec. II. The DFT and TDDFT methods are covered in Sec. III. Section IV contains the results and the analysis of the ground-state calculations and Sec. V contains the results of the optical absorption (excited-state) calculations. Finally, conclusions are given in Sec. VI.

II. STRUCTURES

In order to emphasize their essential features, a schematic representation of the structures we have studied is shown in Fig. 1. Full geometry optimizations on these systems have also been performed and the details of these calculations can be found in Sec. III. The acronyms used for these structures consist of a descriptive letter (P=polymer, M=monomer Ag, D=dimer, T=trimer) followed by a consecutive number. Our choice of systems for the hybrid structures is motivated by experimental evidence, which shows that carboxylate groups are capable of bonding with Ag ions in polyacids (see, e.g., Ref. 40 and references therein). Hence, in this work, our primary interest has been to study small (i.e., single atom and dimer) hybrids. For the monomer (M1-M8) and dimer (D1-D7) structures, a large variety of different geometries have been systematically studied, whereas only a few trimer structures (T1-T2) have been used to test whether the trends obtained for monomer atom and dimer structures can be extended for systems containing larger Ag clusters.

The pure polymer (P1-P4) and pure cluster (M1, D1, and T1) geometries are used as reference systems throughout this work. A simple, representative structure for a polymer-cluster hybrid system has one Ag cluster attached to the polymer-monomer unit, for example, R–COO–Ag (M2, D2, and T2). We also consider more complicated structures where the Ag cluster is between the carboxylate groups of two such polymer-monomers (M7 and D6). Here, the Ag cluster is bound to four oxygen atoms, which create a stabilizing environment for it.

The case of longer polymer chains bonded to Ag monomers and Ag2 dimers is also addressed. Two questions arise regarding the spectral properties of these systems. First, does the length of the polymer chain itself have an effect on the absorption characteristics of the Ag cluster (M2 versus M3 or M4, and D2 versus D3 or D4)? Second are the clusters attached to nearby branches of the system interacting with each other (M2-M4 versus M5 and M6 or M7 versus M8, and D6 versus D7)?

When considering longer polymer chains, the concept of tacticity plays an important role in determining the lowest-energy structures. For a pure polymer, both iso- (P3) and syndiotactic (P4) isomers were considered. A similar comparison can be made between M3 and M4 as well as between D3 and D4, even though the chain lengths are not equal. All of the structures with three polymer units in a row were chosen to be syndiotactic for two reasons. First, there is experimental evidence to suggest that the systems are likely to be syndiotactic. Second, isotactic polymer chains with Ag clusters attached to neighboring polymer units tend to aggregate to form larger clusters. Thus, isotactic polymer chains do not favor the formation of stable hybrid structures with the small Ag clusters that are studied here. In the case of...
Ag₂ clusters, the neighboring clusters aggregate even when they are attached to the next-neighbor polymer units for both iso- and syndiotactic polymers. The unstable structure D5 is shown in Fig. 1 as an example to highlight this point. In comparison, the structure D7 in which both dimers have stable anchorings to two polymer chains is found to be stable.

The relative energies of the different structures were not studied in detail as it is not possible to compare the energetics of systems having different numbers and types of atoms. A direct energy comparison can only be made between the structures M2 and D6, and between the structures M5 and D7. In these cases, the D6 and D7 structures are favored in energy by at least 1 eV per Ag atom.

III. COMPUTATIONAL METHODS

The SIESTA program,¹¹ which implements the standard Kohn–Sham self-consistent density-functional method, was used in spin-dependent calculations for the geometry optimizations. The Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation,¹² Troullier–Martins pseudopotentials,¹³ and the double zeta plus polarization basis set were also used in this work. The SIESTA program optimizes the geometries of the systems through a series of atomic displacements, until the calculated forces on the atoms are minimized. Throughout this work, Hessian analysis was not used for the structural optimization. Hence, in this work, Hessian analysis was not used for the structural optimization. The SIESTA program,⁴¹ which implements the standard Kohn–Sham self-consistent density-functional method, was used in spin-dependent calculations for the geometry optimizations. The Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation,⁴² Troullier–Martins pseudopotentials,⁴³ and the double zeta plus polarization basis set were also used in this work. The SIESTA program optimizes the geometries of the systems through a series of atomic displacements, until the calculated forces on the atoms are less than 0.01 eV/Å. This is the standard procedure for geometry optimization using the SIESTA code, in which the numerical “noise,” e.g., due to the real-space grid in the potential calculation, prevents the geometry optimization from being stuck at high-symmetry saddle points. Hence, in this work, Hessian analysis was not used for the structural optimization.

The TDDFT program OCTOPUS (Ref. 44) (version 3.0.0/3.0.1) was applied in all further ground-state and excited-state calculations. Real-time TDDFT (RT-TDDFT) in its various flavors has been successfully used to determine the spectral properties of a large variety of both metal clusters and organic compounds.⁴⁵ Calculating optical absorption spectra by TDDFT and comparing them with the measured spectra has proven to be an efficient tool for determining cluster and molecule structures, and even distinguishing between different isomers (see, e.g., Refs. 46 and 47). In most cases, a good agreement with experiments up to a few tenths of an eV in spectral features is achieved.

In this work, we used the RT-TDDFT method as implemented in OCTOPUS to calculate the absorption spectra in the linear response regime. The RT-TDDFT implementation follows Ref. 48, where the system is instantaneously excited by applying an electric field, and the occupied Kohn–Sham orbitals are then propagated in time. The photoabsorption cross section follows from the induced dipole moments, and is calculated separately for each of the three spatial directions. The RT-TDDFT method should not be confused with linear-response TDDFT (LR-TDDFT) methods, such as the Casida method.⁴⁹ LR-TDDFT methods are superior for calculations of small systems. However, due to their poor scaling, the RT-TDDFT method becomes advantageous for large systems as it scales linearly with respect to the electron number. In this study, the Casida LR-TDDFT method within OCTOPUS was used to resolve the specific transitions contributing to the absorption spectra for systems M1, M2, D1, and D2.

The PBE exchange-correlation functional was used in the TDDFT calculations, except in the Casida calculations, where the available kernel in OCTOPUS corresponds to the local density approximation (LDA). Troullier–Martins pseudopotentials⁴³ were used in all of the TDDFT calculations in this work. The calculations in the OCTOPUS program are based on a real-space grid. We used a spacing of 0.23 Å for the real-space grid, and a simulation radius around each atom of 8 Å, which are typical values in real-space RT-TDDFT calculations. The validity of the grid-spacing was verified by reference calculations for the test structure M2 using grid-spacings of 0.17 and 0.20 Å. All three grid-spacings produced similar absorption spectra up to an accuracy of about 0.1 eV in the relevant low-energy region of about 0–7 eV. All relevant characteristics of the spectra were clearly resolved using this accuracy, as the low-energy excitations of small metal clusters are well-spaced. The obtained numerical accuracy is also within the general accuracy of a few tenths of an eV for this method.²³,⁴⁶ The time step for the calculation was 0.0025 h/eV and the number of time steps was 20 000 for the pure Ag₉ clusters and the PMAA-monomer structure and 15 000 for the rest of the structures, resulting in a total propagation time of 50 h/eV ≈ 33 fs/37.5 h/eV ≈ 25 fs. In the Casida calculations, the number of unoccupied states that were taken into account was 4.2 times the number of occupied states for the largest structure D2 and at least eight times the number of occupied states for the other structures. These numbers were considered adequate to produce reliable results for the D2 structure and high-quality results for all of the other systems.

IV. GROUND-STATE RESULTS

The calculated bond lengths for the Ag containing structures are shown in Table I. In the case when the dimer is

<table>
<thead>
<tr>
<th>Structure</th>
<th>Even/odd</th>
<th>Ag–O</th>
<th>Ag–Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Odd</td>
<td>⋯</td>
<td>⋯</td>
</tr>
<tr>
<td>M2</td>
<td>Even</td>
<td>2.32–2.34</td>
<td>⋯</td>
</tr>
<tr>
<td>M3</td>
<td>Even</td>
<td>2.32–2.42</td>
<td>⋯</td>
</tr>
<tr>
<td>M4</td>
<td>Even</td>
<td>2.33–2.34</td>
<td>⋯</td>
</tr>
<tr>
<td>M5</td>
<td>Even</td>
<td>2.33–2.34</td>
<td>⋯</td>
</tr>
<tr>
<td>M6</td>
<td>Even</td>
<td>2.32–2.35</td>
<td>⋯</td>
</tr>
<tr>
<td>M7</td>
<td>Odd</td>
<td>2.25–2.27</td>
<td>⋯</td>
</tr>
<tr>
<td>M8</td>
<td>Odd</td>
<td>2.25–2.28</td>
<td>6.62</td>
</tr>
<tr>
<td>D1</td>
<td>Even</td>
<td>⋯</td>
<td>2.581</td>
</tr>
<tr>
<td>D2</td>
<td>Odd</td>
<td>2.27–2.32</td>
<td>2.709</td>
</tr>
<tr>
<td>D3</td>
<td>Odd</td>
<td>2.26–2.28</td>
<td>2.710</td>
</tr>
<tr>
<td>D4</td>
<td>Odd</td>
<td>2.27–2.28</td>
<td>2.709</td>
</tr>
<tr>
<td>D6</td>
<td>Even</td>
<td>2.17</td>
<td>2.781</td>
</tr>
<tr>
<td>D7</td>
<td>Even</td>
<td>2.17</td>
<td>2.786, 6.52</td>
</tr>
<tr>
<td>T1</td>
<td>Odd</td>
<td>⋯</td>
<td>2×2.644, 3.023</td>
</tr>
<tr>
<td>T2</td>
<td>Even</td>
<td>2.24–2.25</td>
<td>2×2.74, 2.723</td>
</tr>
</tbody>
</table>
V. EXCITED-STATE RESULTS

The absorption spectra for the pure polymer structures are given in Fig. 2. Each system shows a similar spectrum with an absorption edge above 4.5 eV. In the energy range of 4.5–7 eV, several peaks appear with slightly varying patterns depending on the type of structure. The spectra of structures P3 and P4, which differ only by tacticity, are almost identical in this energy range. The largest spectral strengths for these systems appear at higher energies ranging up to several tens of eV. This region, which is above the ionization energies of the polymer, is not included in this figure as it is beyond the range of application of the TDDFT method.

The absorption spectra corresponding to structures with monomers Ag₁, dimers Ag₂, and trimers Ag₃ are shown in Figs. 3–5, respectively. The pure Agₙ clusters, M1, D1, and T1, have their main lowest excitation energies at 3.8 eV, 3.0/4.5 eV and 2.5/2.8/3.3/3.6 eV, respectively, in excellent agreement with previous studies.²⁸,²⁹

The inclusion of the PMAA monomer in structures M2 and T2 causes only slight changes of a few tenths of an eV in the position of the lowest excitation and a slight decrease in its intensity relative to those of the Ag monomer M1 and trimer T1, respectively (cf. M1 and M2 in Fig. 3 and T1 and T2 in Fig. 5). In addition, the spectral features of the polymer above 4.5 eV appear in both the M2 and T2 cases. In con-
trast, for the dimer D2 in Fig. 4, the main low-energy excitations are perturbed with new excitations appearing at surprisingly low energies of 1.7 and 2.1 eV. From the individual directional components of the spectrum (not shown in the figure), it can be concluded that these two low-energy excitations are caused by charge oscillations in the dimer-axis direction, whereas the excitations at 2.7–4.5 eV are along all three spatial directions. To compare, the pure dimer D1 excitation at 3.0 eV stems from the dimer-axis direction, and the doubly intense excitation at 4.5 eV arises from the two other degenerate spatial directions perpendicular to the dimer axis. Hence, we conclude that both low-energy peaks in the pure dimer spectrum have been destroyed and are replaced by a new pattern of multiple low-energy peaks in the spectrum of the D2 structure. We conjecture that this change in the low-energy spectrum arises due to the odd number of electrons in the vicinity of the Ag$_n$ cluster corresponding to the perturbation in the electronic structure induced by the polymer. Such a perturbation is already reflected in the ground-state results, for example, in the widths of the HOMO-LUMO energy gaps.

Elongating the polymer chain causes only minor changes in the spectra. For example, compared to the single polymer-monomer systems M2 and D2, the spectra for the corresponding asymmetric structures M3 and D3 containing chains of two polymer-monomers, and the structures M4 and D4 containing chains of three polymer-monomers, differ only slightly (see Figs. 3 and 4). Neighboring Ag$_n$ clusters do not significantly affect the spectrum either. This can be seen, for example, in Fig. 3 by comparing the spectrum of the M5 structure consisting of the syndiotactic chain of three polymer-monomers and the Ag atoms attached to next-neighbor polymer-monomers, with that of the structure M6 with the syndiotactic chain of three polymer-monomers and the Ag atoms attached to each of the polymer-monomers. Only a slight redshift of about 0.1 eV and an extra shoulder at about 2.7–2.9 eV are observed in the latter case. To summarize, adding polymer units or even Ag atoms in M3-M6 does not change the fundamental trends in the spectra compared to M2. The same holds for the dimer structures D2-D4.

When the Ag$_n$ clusters are surrounded by two PMAA chains, dramatic changes in the absorption spectra are observed. For example, the low-energy excitations of M7 and M8 correspond to the odd number of electrons per Ag$_n$ cluster in the hybrid structure. This is similar to the odd electron number effect seen in the D2, D3, and D4 systems, which resulted in low-energy excitations. For the Ag monomer structure M7 (Fig. 3), the main low-energy excitation appears at 2.2 eV. Thus, this excitation is about 1.3 eV lower in energy than the low-energy excitations in M2-M6. The structure M8, which contains two such clusters at a mutual distance of 6.6 Å, shows a moderate splitting and a slight redshift of the main excitation with respect to M7.

In the case of dimers that are surrounded by two polymer chains (D6 and D7, Fig. 4), an opposite effect is observed. Namely, the absorption edge is brought up to over 4 eV. The low-energy excitation of the pure Ag dimer D1 (Fig. 4) at about 3 eV in the dimer-axis direction is totally suppressed in the spectra for the D6 and D7 systems. The main excitations at about 5 and 6.5 eV for the D6 and D7 systems arise from the direction of the “bridges” between the two polymer chains. Thus, the presence of the polymer causes quenching of the low-energy absorption of the Ag$_2$ dimer. Because no quenching was observed when Ag$_n$ clusters were attached to single polymer chains (M2-M6, T2), we deduce that the formation of the symmetric structure of the Ag$_n$ cluster and the four oxygen atoms in the D6 and D7 systems plays a key role in the suppression of certain directional vibration modes.

To examine the origin of the shifts in the excitation spectra, the photoabsorption spectra of the smallest structures M1, M2, D1, and D2 were calculated using the Casida method. This enables us to determine which orbitals are involved in the excitations, as such information is not directly available from the RT-TDDFT calculations. The compositions of the main low-energy excitations of M2, D1 and D2 are shown in Figs. 6(a), 6(b), 7(a), 7(b), and 8(a). For the pure Ag monomer M1, the transition from the HOMO to the triply degenerate LUMO makes a 95% contribution to the low-energy excitation. Note that an almost constant shift of about 0.3 eV in transition energies between Figs. 3 and 4 and Figs. 6(a), 6(b), 7(a), 7(b), and 8(a) is caused by the use of the LDA kernel instead of the PBE kernel in the Casida calculations. To demonstrate the extent of the electronic perturbation induced by the polymer, the orbital illustrations of a few orbitals around the gap are also shown in Figs. 6(b), 7(a), 7(b), 8(a), and 8(b), where the orbitals are illustrated as constant-value surfaces of the electron wave functions.

Figure 6(a) shows that the main low-energy excitation in the absorption spectrum of M2 corresponds to the transitions from the HOMO-1 and HOMO-2 orbitals to the LUMO orbital. As shown in Fig. 6(b), these orbitals are localized over the carboxylate group and the Ag atom, and even over the carbon skeleton. This differs clearly from the pure Ag atom HOMO-LUMO excitation from the s-orbital to the triply degenerate p-orbital.

For the Ag dimer D1, the LUMO is an anti-bonding orbital and the degenerate LUMO+1 and LUMO+2 are π-bonding orbitals as can be seen in Fig. 7. A similar pattern with a clear interaction between the Ag dimer and the carboxylate group is seen in the orbitals of the D2 structure in Fig. 8. The difference between D1 and D2 is that D2 has an odd number of electrons, and a net spin resulting in an absorption spectrum with several excitations at lower energies.
Previous results by Mitrić et al.35 for Ag\textsubscript{n} cluster-tryptophan structures show similar features to our findings. For the Ag dimer attached to the carboxylate group of a tryptophan molecule, an excitation at an anomalously low energy of about 2.3 eV was observed.35 This effect was associated with a HOMO-LUMO transition that is similar to the one described above for our system, D2.

Next, we consider the quenching of the lowest excitation peak when moving from the dimer D1 to structures D6 and D7 (see Fig. 4). The increase in the bond length between the Ag atoms is far too small to explain the quenching. Instead, we note that the HOMO-LUMO transition makes a 94\% contribution (Fig. 7) to this excitation. The quenching that is observed is therefore due to the destruction of the \(\sigma \) shape of the HOMO, which happens already in the D2 structure as seen in Fig. 8.

Finally, we want to consider the charge transfer as a possible source of error in our calculations. The effect of charge transfer can lead to errors of several eV in excitation energies for the commonly used (semi)local functionals such as PBE.53 The hybrid functionals such as B3LYP do not perform much better. To probe the reliability of the PBE functional in our calculations, we have used the criterion by Peach et al. to estimate the amount of charge transfer.53 In this criterion, Peach et al. define the spatial overlap \(\Lambda \) as attaining values between 0 and 1, so that large values correspond to low charge transfer. According to Peach et al., the PBE results are predicted to be reliable for \(\Lambda > 0.4 \). We found that for the structure M2, \(\Lambda \) is for the lowest energy excitation within the range of 0.50–0.54. For the structure D2, the \(\Lambda \) values for the five low-energy excitations shown in Fig. 8(a) are in the order of increasing excitation energy, within the ranges of 0.71–0.73, 0.60–0.63, 0.60–0.62, 0.43–0.46, and 0.61–0.64, respectively. The uncertainty in these values is due to the inclusion of a limited number of orbitals in the calculation of \(\Lambda \). From these values and the orbital illustrations in Figs. 6 and 8, we conclude that the character of the transitions is mainly local, and that the PBE functional can be safely used to study the main features of the excitations in these systems. To see whether the same conclusion can be drawn for our larger systems, we have examined the electronic structure of M5. We observe that the orbitals near the gap of this system have shapes similar to those of M2 (see Fig. 6). Moreover, each of the orbitals of M5 is totally or mainly localized in the vicinity of one Ag atom only. Supported by the previous result that the photoabsorption spectra changed only slightly with the chain length, we can conclude that the excitations of M5 are also local in character. Using the structure D2 as a reference, a similar analysis was also performed for D6, which yielded the same result. As the rest of the structures have a strong resemblance to these test cases, we do not expect the charge transfer to be a major source of error in any of the excitations in the studied structures.
lowered by almost 1.5 eV resulting in absorption in the visible range. Suppression of the lowest excitations is observed when an Ag\(_n\) cluster with an even number of electrons, such as Ag\(_2\) is surrounded by two carboxyl groups, so that the cluster is bonded to four oxygen atoms.

Our results reveal that the absorption features of the smallest Ag\(_n\) clusters are very sensitive to their chemical environment. This suggests that these clusters are viable candidates for materials with tailored optical properties. Already, there exists experimental evidence on the ability to tune the absorption and emission spectra of small Ag\(_n\) cluster-polymer hybrid systems. The results presented here give theoretical confirmation of those findings; thus showing such systems to be promising candidates for developing functional nanomaterials with adjustable properties.

ACKNOWLEDGMENTS

This research is supported by the Academy of Finland through the Centers of Excellence Program (2006–2011). CSC, the Finnish IT Center for Science is acknowledged for providing computer resources (Project No. tkk2035). We thank Robin Ras and Isabel Díez for introducing us the experimental motivation of this study and Risto Nieminen for discussions.
