Lehtovaara, Lauri; Havu, Ville; Puska, Martti

All-electron density functional theory and time-dependent density functional theory with high-order finite elements

Published in:
Journal of Chemical Physics

DOI:
10.1063/1.3176508

Published: 01/01/2009

Please cite the original version:
All-electron density functional theory and time-dependent density functional theory with high-order finite elements

Lauri Lehtovaara,1,a Ville Havu,1,2 and Martti Puska1
1Department of Applied Physics/COMP, Helsinki University of Technology, P.O. Box 110, FIN-02015 TKK, Finland
2Institute of Mathematics, Helsinki University of Technology, P.O. Box 110, FIN-02015 TKK, Finland

(Received 17 February 2009; accepted 23 June 2009; published online 3 August 2009)

We present for static density functional theory and time-dependent density functional theory calculations an all-electron method which employs high-order hierarchical finite-element bases. Our mesh generation scheme, in which structured atomic meshes are merged to an unstructured molecular mesh, allows a highly nonuniform discretization of the space. Thus it is possible to represent the core and valence states using the same discretization scheme, i.e., no pseudopotentials or similar treatments are required. The nonuniform discretization also allows the use of large simulation cells, and therefore avoids any boundary effects. © 2009 American Institute of Physics. [DOI: 10.1063/1.3176508]

I. INTRODUCTION

The density functional theory (DFT) has become the workhorse in electronic structure theory.1 Its success derives from the ability to produce accurate results with reasonable computational effort. Instead of solving for the many-body wave function it relies on the Hohenberg–Kohn2 theorem, which states that all ground-state properties—most importantly the total energy—are functionals of the electron density. Actually, the total energy functional is not exactly known, but there exists several approximations, the accuracy of which can be systematically improved according to the demands of the applications in question.3,4 The most important issue is that the number of dimensions in a problem does not depend on the number of electrons, and thus DFT scales much better than many-body wave function methods, up to hundreds or thousands of atoms on the present supercomputers.

The DFT is bound to the ground-state properties and cannot be used to explore excited states. This drawback can be overcome by using the time-dependent DFT (TDDFT).5 It is based on the Runge–Gross6 theorem, which states that (physically) different external potentials (e.g., those due to laser fields) lead to different time-evolutions of the density. The present functionals for TDDFT are known to be unable to describe certain phenomena, such as charge transfer excitations. However, in recent years it has been successfully applied to describe several other problems, for example, the optical absorption spectra of a broad variety of systems, the nonlinear optical response (e.g., harmonic generation) of atoms and molecules, and coherent control of molecules by laser fields.5

For numerical solution, the partial differential equations arising from DFT and TDDFT must be discretized in space. In the present-day codes, the most popular choices are atomic orbital bases,7–9 planewaves,10,11 and uniform real-space grids.12,13 In the atomic orbital bases the solution is represented as a linear combination of atomic solutions, which can be accurate (e.g., numerical atomic orbitals7) or approximate (e.g., Gaussians8). These bases are widely used and can be very fast and efficient. However, the atomic orbital bases are sensitive to the type of the problem in the sense that an efficient discretization for the ground-state properties is not well-suited for the calculation of optical absorption spectra. In particular, when the solution is not representable as slightly perturbed atomic solutions the atomic orbital bases become unfavourable. For example, this can happen in the case of nonlinear time-dependent phenomena.

The plane-wave bases and uniform real-space grids (i.e., the finite-difference method) are both uniform discretizations of the space and closely related to each other through the Fourier transform. These discretizations are not dependent on the type of the problem, but they require a large number of degrees of freedom (DOFs). Especially, the core regions around nuclei, where solutions have very sharp features, cannot be represented well by uniform discretization, but pseudopotentials14–16 or similar treatments (e.g., projector-augmented wave method17) must be employed. The pseudopotentials lead to additional parameters and may be hard to construct accurately for certain types of atoms, e.g., transition metals. Another drawback in uniform discretizations is their inability to adapt to the underlying geometry of the atoms. For example, sparse matter interstitial regions should require much less DOFs than regions near atoms. This is also the case in simulations of nonlinear time-dependent phenomena, where the distant regions in space should still be accounted for but the solution is smooth in this region so that the discretization can be coarse.

The finite-element basis18,19 is a linear combination of continuous, piece-wise polynomials and provides a nonuniform real-space discretization of the space. It inherits the good properties of the real-space methods, such as flexible boundary conditions and efficient parallelization via domain decomposition, while still allowing nonuniform discretization of the space. In this paper, we use high-order hierarchi-
cal finite elements, which (i) provide a better rate of convergence than low-order elements and (ii) result in better conditioned systems of linear equations than the nodal-based elements of the same order. As finite elements can adapt to the local feature size, they can be used to describe solutions of core and valence electrons equally well. Also naturally, they are adaptable to the geometry of the system to avoid overdiscretization. The finite-element basis is also variational, such as plane waves and atomic bases, which is not the case for finite-difference discretizations. The finite-element basis is extensively used in civil and mechanical engineering, and in many fields it has surpassed finite-difference methods.20 There exists several earlier implementations of the finite-element methodology to electronic structure calculations21–29 However, none of these uses high-order hierarchical elements on unstructured meshes or apply the method to TDDFT. The closest work to our approach is the spectral element method implementation of Batcho.22 The spectral element method uses high-order tensor product bases, which enable fast evaluation of matrix elements and provide good convergence rates. However, the element types are restricted to brick (i.e., parallelepiped) elements and mapped brick elements (i.e., coordinate transformations of brick elements).

The rest of the paper is structured as follows. In the next section, we briefly review the DFT, linear-response TDDFT, and finite-element method. We also describe our mesh generation algorithm. In Sec. III, we show several examples of applying our DFT and linear-response TDDFT method to small molecules (CO, Na2, C6H6) and discuss the convergence of the method. In the final section, we draw the conclusions and set directions for future research.

II. THEORY

A. DFT

In the DFT, the total energy \( E[n(r)] \) is a functional of the electron density \( n(r) \), and the ground state of the system is found by minimizing it. However, the functional is not known in general and must be approximated. This is usually done by employing the Kohn–Sham30 scheme where the functional is divided into four parts

\[
E[n] = T[n] + \int d^3r \rho(r) v_{\text{ext}}(r) + U[n] + E_{\text{xc}}[n],
\]

where \( T[n] \) is the kinetic energy of the noninteracting electron system with density \( n(r) \), \( \int d^3r \rho(r) v_{\text{ext}}(r) \) is the interaction energy with an external field (usually that due to the ions), \( U[n] \) is the mean electron-electron repulsion energy (Hartree energy), and \( E_{\text{xc}}[n] \) is the electron exchange-correlation energy functional. The first three parts are known but the last one, the exchange-correlation functional, is not, and the quality of its approximation is the key to accurate results. The Kohn–Sham30 scheme uses a set of orthonormal auxiliary functions \( \psi_k(r) \), i.e., the Kohn–Sham30 orbitals, which satisfy

\[
n(r) = \sum_{k=1}^{N_{\text{dists}}} f_k |\psi_k(r)|^2,
\]

where \( f_k \) are the occupation numbers, and \( N_{\text{dists}} \) is the number of occupied Kohn–Sham30 orbitals. By taking the functional derivative of the energy functional with respect to these functions, we obtain the Kohn–Sham30 equations

\[
\hat{H}_{\text{KS}} \psi_k(r) = \left[ -\frac{\hbar^2}{2m_e} \nabla^2 + v_{\text{ext}}(r) \right] \psi_k(r) = e_k \psi_k(r),
\]

where

\[
v_{\text{ext}}(r) = v_{\text{ext}}[n](r) + v_{\text{xc}}[n](r) + v_{\text{mol}}(r),
\]

is the effective potential, and

\[
v_{\text{H}}[n](r) = \frac{\epsilon^2}{4 \pi \epsilon_0} \int d^3r' \frac{n(r')}{|r-r'|},
\]

is the Hartree potential. Furthermore, \( v_{\text{xc}}[n](r) \) is the exchange-correlation potential, and \( v_{\text{mol}}(r) \) is the external potential, which is usually a sum of electron-nucleus interactions, i.e.,

\[
v_{\text{mol}}(r) = -\frac{e^2}{4 \pi \epsilon_0} \sum_{a=1}^{N_{\text{nuc}}} \frac{Z_a}{|r-r_a|},
\]

where \( Z_a \) is the atomic number and \( r_a \) is the position of the nucleus \( a \). \( N_{\text{nuc}} \) is the number of nuclei in the system. In the three-dimensional space \( \mathbb{R}^3 \), the Hartree potential can be rewritten as the solution of the Poisson equation

\[
\nabla^2 v_H(r) = -4 \pi \frac{e^2}{4 \pi \epsilon_0} n(r),
\]

where the boundary condition for isolated systems is \( v_H \to 0 \) when \( |r| \to \infty \). (Also periodic and other boundary conditions are possible but are not discussed in this paper.)

As the Hartree potential, the density and thus the Kohn–Sham30 wave functions vanish at the infinity (or in practice at the boundary \( \partial \Omega \) of the computational domain \( \Omega \)), the above Eqs. (3) and (7) can be cast into the weak variational formulation using integration by parts, i.e.,

\[
\langle \Phi | \hat{H}_{\text{KS}} | \psi_k \rangle = \int_{\mathbb{R}^3} \Phi(r) \left[ -\frac{\hbar^2}{2m_e} \nabla^2 + v_{\text{ext}}(r) \right] \psi_k(r) d^3r
\]

\[
= \int_{\mathbb{R}^3} \left[ \frac{\hbar^2}{2m_e} \nabla \Phi(r) \cdot \nabla \psi_k(r) + \Phi(r) v_{\text{ext}}(r) \psi_k(r) \right] d^3r,
\]

and

\[
\langle \Phi | \nabla^2 v_H | \rangle = \int_{\mathbb{R}^3} \Phi(r) \nabla^2 v_H(r) d^3r
\]

\[
= -\int_{\mathbb{R}^3} \nabla \Phi(r) \cdot \nabla v_H(r) d^3r,
\]
finite-element method, and in practice, $\Phi(r)$ will be a finite-element basis function [in the so-called Ritz–Galerkin method, see Eq. (21)].

As the Hartree potential for charged systems decays slowly as $r^{-3}$, we have applied counter charges to neutralize the density. The counter charges are added to the electronic density $n(r)$ in Eq. (9) and are then cancelled in Eq. (8) by the corresponding analytically calculated potential. This provides the $r^{-2}$ decay of the Hartree potential, which is sufficient for our purposes. However, if required, higher order (e.g., dipole and quadrupole) corrections can be applied as well.22

B. Linear-response TDDFT

In the TDDFT, there exists no variational principle, but the quantum mechanical action

$$A[\psi] = \int_{t_0}^{t_f} dt \langle \psi(t)|i\hbar \frac{\partial}{\partial t} - \hat{H}(t)|\psi(t)\rangle,$$  \hspace{1cm} (10)

provides an analogous quantity to the total energy of the ground-state DFT. The time-dependent Kohn–Sham \cite{20} Schrödinger equation reads as

$$i\hbar \frac{\partial}{\partial t} \psi(r,t) = \left[ -\frac{\hbar^2}{2m_e} \nabla^2 + v_{\text{eff}}(n)(r,t) \right] \psi(r,t).$$  \hspace{1cm} (11)

This equation is an initial value problem and can be solved using a time-propagation scheme.22 However, if the external perturbation is small, the density response of the system can be written as a series

$$n(r, \omega) = n^{(0)}(r) + n^{(1)}(r, \omega) + n^{(2)}(r, \omega) + \ldots,$$  \hspace{1cm} (12)

with the linear-response term

$$n^{(1)}(r, \omega) = \int d^3r' \chi(r, r', \omega) v^{(1)}(r', \omega).$$  \hspace{1cm} (13)

Above, $\chi$ is the linear-response function and $v^{(1)}$ is the external perturbation (e.g., a laser field). The transitions can be found by finding the poles of the response function $\chi(r, r', \omega).$ However, if we are interested only in the excitation energies and corresponding oscillator strengths, we can use the so-called Casida \cite{33, 34} method. He showed that the problem can be solved as an eigenvalue equation

$$\sum_{jk'k''} [\delta_{jk}\delta_{j'k''}\epsilon_j^2 + 2\sqrt{\overline{f}_{jk}\epsilon_j\epsilon_{j'}\epsilon_{j''}K_{jk,j'k''}}] \gamma_{jk''} = \Omega^2 \gamma_{jk},$$  \hspace{1cm} (14)

where $f_{jk} = f_{kj} - f_{j}$, $\epsilon_{jk} = \epsilon_j - \epsilon_k$, and the coupling matrix

$$K_{jk,j'k''}(\omega) = \int d^3r \int d^3r' \psi_j^*(r) \psi_k(r) \psi_{j'}^*(r') \psi_{k''}(r')$$

$$\times \left[ \frac{e^2}{4\pi\epsilon_0 |r - r'|} + f_{xc}(r, r', \omega) \right].$$  \hspace{1cm} (15)

Moreover,

$$f_{xc}(r, \omega, r', \omega') = \frac{\partial v_{xc}(r, \omega)}{\partial n(r', \omega')},$$  \hspace{1cm} (16)

is the exchange-correlation kernel. The oscillator strengths are then

$$f^{(m)}_{jk} = \frac{2m}{\hbar^2 e^2} \sum_{jk} (\mu_{jk})_{x^2/2z} (f_{k} - f_{j}) (\epsilon_j - \epsilon_k) f^{(m)}_{jk},$$  \hspace{1cm} (17)

where $(\mu_{jk})_{x^2/2z}$ is the $x/y/z$ component of the dipole moment vector between the Kohn–Sham \cite{30} states $k$ and $j$, and the index $(m)$ refers to the $m$th transition.

1. Confinement potential

The linear-response Kohn–Sham \cite{30} equations use the Kohn–Sham \cite{30} states as a basis. Above the ionization limit of the system, the spectrum becomes continuous causing numerical problems. The eigenvalues of the discretized problem bunch together just above the ionization limit. For a practical calculation this is not desirable because certain transitions have very many different contributions due to the eigenstates in the Kohn–Sham \cite{30} continuum and the importance of most of them is minor because the states have a relatively small amplitude near the molecule.

To spread the eigenvalue spectrum above the ionization limit, and to increase the relative importance of the relevant unoccupied states, we use a modified Kohn–Sham \cite{30} basis $\{\psi_\ell(r)\}$. The basis is constructed by applying an auxiliary confinement potential in the ground-state calculation. The choice of the potential is in principle arbitrary, but in order to fill the above requirements, we have chosen the form

$$v_{\text{conf}}(r) = \begin{cases} \frac{1}{2} k_c |r_{\text{min}}(r) - R_c|^2, & \text{if } r_{\text{min}}(r) > R_c, \\ 0, & \text{otherwise}, \end{cases}$$  \hspace{1cm} (18)

where $r_{\text{min}}(r) = \min_j |r_j - R_c|$ is the distance to the closest atom, and $k_c$ and $R_c$ are parameters to be chosen. Thus, the auxiliary potential is zero close to the atoms but becomes gradually more repulsive further away. Far away from the system, the auxiliary potential is a spherically symmetric harmonic potential. Now, all states are bound.

After the ground-state calculation with the auxiliary confinement potential the resulting Kohn–Sham \cite{30} states $\{\psi_\ell(r)\}$ are taken as the new basis, the auxiliary confinement potential is removed, and the ground-state calculation is repeated in the new basis. Finally, the linear-response calculation is carried out in the new basis.

Introducing the auxiliary confinement potential allows us to balance between the number of unoccupied states and the quality of the low energy part of the spectrum. We want to stress out that this is purely a mathematical trick in order to alter the basis of the linear-response calculation in such a way that the low energy transitions converge more quickly. The physics is not altered. The calculated linear-response spectrum with and without an auxiliary confinement potential should give the same result when all the Kohn–Sham \cite{30} states (occupied and unoccupied) are used as they span the same original finite-element space $V_R$. Also, as the confine-
eminent potential determines the linear-response basis, the final result of a converged calculation is independent of the original basis where the Kohn–Sham states were solved, e.g., converged atomic orbital and real-space calculations should give the same result.

The choice of the parameters $R_e$ and $k_c$ is not an obvious task and some testing is required to find appropriate values. However, the testing can be done as a linear problem by fixing the density, because the confinement should not change the ground-state.

C. Finite-element discretization

In the finite-element method the computational domain $\Omega$ is divided into small, polyhedral regions called elements. This division is denoted by $\mathcal{T}_h$. For our purposes it is sufficient to use tetrahedra. Other popular choices are hexahedra, pyramids, and prisms. The division of $\Omega$ is handled by an external mesh-generator that can either (i) generate the mesh for a given geometry or (ii) calculate the Delaunay tetrahedralization of a given set of points. We have chosen the latter option and the points for the mesh are generated as specified in Sec. II C 1.

Once the division of the domain $\Omega$ is complete the space of approximation, $V_h$, can be defined. For the finite-element method this is taken to be continuous, piecewise polynomial functions, i.e.,

$$V_h = \{ v_h \in C(\Omega) | (v_h)_{|K} \in \Pi_p \} \quad \forall \ K \in \mathcal{T}_h,$$

where $K$ is an element, $\Pi_p$ denotes polynomials of order $p$, $h$ refers to the size of the elements in the mesh, and $C(\Omega)$ refers to continuous functions in the domain. In general, the order $p$ can vary from one element to another as long as the continuity condition $v_h \in C(\Omega)$ is respected but in our calculations we choose to keep $p$ fixed throughout the mesh. The value of $p$ decides if the method is considered to be of high-order and the usual requirement is $p > 3$ for a high-order method. Also, if the convergence is obtained via increasing the order of polynomials rather than refining the mesh, the method is called the $p$-method. The mesh refinement approach gives an $h$-method and combining these approaches leads to an $hp$-method.35

Next, a basis for the space $V_h$ must be chosen. The canonical way for the high-order method is to divide the local basis functions of a single element into four disjoint sets: nodal functions, edge functions, face functions, and bubble functions. The nodal functions are first order polynomials that have a value of 1 at one of the vertices and 0 at others. The edge functions are polynomials up to an order $p$ and they are nonzero only on one of the edges of the element. The face functions are similar to the edge functions but they are in correspondence with the faces of the element. Finally, the bubble functions are zero on all the vertices, edges and faces of the element but nonzero inside the element. The actual basis functions are generated using products of one-dimensional integrated Legendre polynomials over the interval $[-1,1]$. Note that due to the continuity requirements the basis functions actually extend over several elements that share the same geometrical feature (see Fig. 1).

In practice, the basis functions for an element $K$ in the mesh are generated using a reference element, $\hat{K}$, and (affine) mappings $F: \hat{K} \rightarrow K$. Then the basis functions on an element $K$ can be written as images of the basis functions on the reference element, i.e.,

$$\varphi(r) = \hat{\varphi}(F^{-1}(r)), \quad (20)$$

reducing the programming effort to $\hat{K}$.

Once the basis $\{ \phi_j \}_{j=1}^N_b$ for the space $V_h$ is ready for use an approximation to the Kohn–Sham30 orbitals can be looked for in the form $\psi_h(r) = \sum_{j=1}^N_b c_j \phi_j(r)$. There are many ways to find the coefficients $c_j$ but in the finite-element method the variational approach is used. This leads to an equation for the state $k$

$$\sum_{j=1}^{N_b} \langle \phi_i | \hat{H}_{KS} | \phi_j \rangle c_j^k = \epsilon_i \sum_{j=1}^{N_b} \langle \phi_i | \phi_j \rangle c_j^k, \quad i = 1, \ldots, N_b, \quad (21)$$

that reads in matrix form as

$$H_{kj} c^k = \epsilon_k S_{kj}, \quad (22)$$

where

$$H_{ij} = \langle \phi_i | \hat{H}_{KS} | \phi_j \rangle, \quad S_{ij} = \langle \phi_i | \phi_j \rangle = \int_{\mathbb{R}^3} \phi_i(r) \phi_j(r) dr. \quad (23)$$

A few observations are in order. First, since the finite-element basis functions are strictly localized in space the matrices $H$ and $S$ are sparse. This not only allows for, but also actually dictates the use of sparse matrix technologies. Second, if the domain $\Omega$ is large enough so that selecting the zero boundary conditions on $\partial \Omega$ is justified the variational formulation (21) holds and consequently the matrix $H$ is also symmetric. In this case the fact that the basis functions $\phi_i$ don’t have continuous derivatives across the element borders is not an obstacle since in Eq. (21) only a square integrable gradient is required for the basis functions [see Eq. (8)].

1. Mesh generation

The mesh is generated by merging structured atomic meshes to a molecular mesh. The nodes of atomic meshes consist of layers of vertices of polyhedra. The radius of the layer $r_k$ is changed as $r_k = \rho r_0$ with $r_0$ and $q$ as parameters, and $k \in \mathbb{Z} (-n \leq k \leq m; n, m \in \mathbb{N})$. The choice of polyhedra is arbitrary, but they should provide tetrahedra of good quality (our quality requirements are explained below in this section). We have chosen to use deltoidal icostetrahedron and its dual, rhombicuboctahedron, both shown in Fig. 2.
The zeroth layer is chosen relative to the size of the highest occupied atomic orbital \( r_0 = (2I)^{1/2} / 4 \), where \( I \) is the first ionization energy. The layers with negative indices are created until the radius of the layer is of the order of the lowest state \( r_{k_{\text{min}}} < Z_a^*/128 \). The factors 1/4 and 1/128 are somewhat arbitrary at the moment, but are sufficient for systems under study. If necessary one extra layer is added, as the last layer should be deltoidal icositetrahedron to ensure good quality of the elements around the nuclei. The inner part of the mesh is finalized by adding one node to the nucleus \( R_a \).

The nodes of the layers with positive indices are added only if the node is inside the atomic mesh region, i.e., not in the molecular mesh region. The node of atom \( a \) is in the molecular region if

\[
g_{ab} |R_b - R_a|/|R - R_a| < \beta(q - 1),
\]

for all other nuclei \( b \), where \( g_{ab} = r_0^b / (r_0^a + r_0^i) \) are the relative sizes with respect to the other nuclei, and \( \beta \) is chosen to be 1/3. In practice, this procedure creates an empty space between atoms, which reaches closer to smaller atoms than larger ones, and its thickness is proportional to the distance between the closest pair of atoms. For each pair of atoms the atomic regions are inside two halves of an elliptical hyperboloid.

The nodes for the molecular mesh region are then created by first adding a spherical layer of nodes around the center of atomic charges \( R_{cc} \). The layer forms the boundary of the simulation cell and has a radius equal to \( r_{\text{at}} = q \max_j |R_j - R_{cc}| \), the radius of the furthest node from the center of atomic charged multiplied by the layer ratio \( q \). Then an initial molecular mesh is created by a Delaunay tetrahedralization of the nodes (see Fig. 3). The molecular mesh is then refined by Delaunay refinement, i.e., by inserting nodes at the circumcenters (the center of circumsphere) of too large elements one at the time and repeating Delaunay tetrahedralization after each insertion. An element is deemed too large, if its longest edge is longer than the longest edge of an element in the atomic mesh with the same distance from the closest atom. Or, if its average edge length is longer than the average edge length of an element in the atomic mesh with the same distance from the closest atom. (Obviously, the elements, which are connected to the nuclei, are ignored.) After refining the mesh to fill the size constraints, the quality of the elements is ensured. All elements with too small a ratio \( s = \sqrt{3} r_{\text{at}} / r_{\text{circ}} \), where \( r_{\text{at}} \) is the radius of the inscribing sphere, and \( r_{\text{circ}} \) is the radius of the circumsphere, are Delaunay refined as above until no elements with low quality are present. Keeping the ratio \( s \) relatively close to one will ensure that all angles (dihedral and face) are neither too large nor too small. This is one of the standard measures for the quality of an element. The elements which are connected to the boundary nodes are not currently being refined. However, the quality of these elements is not very important because the solution is practically zero in this region.

The resulting molecular mesh is somewhat finer than the atomic meshes, but because the main interest is in the molecular region, we consider it justified to slightly overdiscretize this region. An example of a molecular mesh for benzene \( C_6H_6 \) with \( q = \sqrt{2}, s = \sqrt{1/3} \), and 15 outer layers is shown in Fig. 4. The diameter of mesh is 55 Å.

**D. Implementation**

Our current implementation is based on the ELMER finite-element software package, and the Delaunay tetrahedralization is done using TETGEN. The ground-state Kohn–Sham system was solved with the self-consistent iteration scheme. The locally optimal block preconditioned conjugated gradient method was applied to the linearized Kohn–Sham eigenvalue problem [Eq. (8)], and the convergence rate of the nonlinear system was enhanced with the Pulay mixing procedure for the density. The electronic charge was compensated by Gaussian countercharges at nuclei in the Poisson equation [Eq. (9)], and then a canceling potential for the counter-charges was added in the assembly of the Hamiltonian matrix [in Eq. (21)]. Preconditioner for the eigenvalue problem was chosen to be the incomplete Cholesky factorization for \( T + \alpha S \), where \( T \) is the kinetic energy operator and \( \alpha \) was chosen to be 13.6 eV.

---

**FIG. 2.** Polyhedra used in atomic meshes of (a) deltoidal icositetrahedron and (b) rhombicuboctahedron.

**FIG. 3.** Initial molecular mesh for the CO molecule before refinement and improvement. The elements of the molecular region are shown in pink.

**FIG. 4.** Cut plane of the molecular mesh of the \( C_6H_6 \) molecule with parameters \( q = \sqrt{2}, s = \sqrt{1/3} \), and 15 outer layers (see text): (a) the complete mesh (diameter of 55 Å), (b) the atomic mesh near a carbon nucleus, and (c) the close-up of the molecular region.
TABLE I. Total energies of H, C, and O atoms calculated using elements with degrees \( p = 2 \)–\( 4 \).

<table>
<thead>
<tr>
<th></th>
<th>( E_{\text{LDA}} ) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
</tr>
<tr>
<td>( p = 2 )</td>
<td>(-12.0509)</td>
</tr>
<tr>
<td>( p = 3 )</td>
<td>(-12.1245)</td>
</tr>
<tr>
<td>( p = 4 )</td>
<td>(-12.1271)</td>
</tr>
<tr>
<td>FHI-aims</td>
<td>(-12.127)</td>
</tr>
</tbody>
</table>

In the linear-response calculation, the main effort is in calculating the integrals of the matrix elements in Eq. (15). Each row of the matrix is independent of the other rows, and thus the problem is trivial to parallelize over the rows of the matrix. Also, some of the matrix elements (and rows) can be ignored beforehand as their eigenvalue difference is clearly outside the relevant energy interval, e.g., transitions from core states. The exchange-correlation kernel \( f_{\text{xc}}(r, r', \omega) \) requires the second functional derivative of the exchange-correlation functional with respect to the density. However, when the second derivative is not available, the finite-difference approximation

\[
\int d^3 \mathbf{r} \frac{\partial E_{\text{xc}}}{\partial n(r)} n(r) n(r') \Delta n_{ji}(r') = \lim_{\Delta \to 0} \frac{u_{\text{xc}}[n + \Delta n_{ji}](r) - u_{\text{xc}}[n - \Delta n_{ji}](r)}{2\Delta},
\]

(25)

can be used. Above,

\[
n_{ji}(r) = \phi_j^*(r) \phi_i(r),
\]

is the pair density.

III. RESULTS AND DISCUSSION

We demonstrate our ground-state DFT and linear-response TD-DFT methods by applying them to atoms and small molecules. We calculated hydrogen, carbon, and oxygen atoms, and hydrogen, carbon monoxide, and benzene molecules. We calculated optical absorption spectra for a beryllium atom, sodium dimer, and benzene molecule. The convergence properties are discussed in both cases.

A. Ground-state DFT

We applied the local density approximation (LDA) functional with the Perdew–Wang parametrization in all calculations, and all results are for spin-compensated systems. In all calculations, the simulation cell diameter was approximately 50 Å, and the geometrical coarsening factor \( q = \sqrt{2} \).

The total energies of the atoms and molecules calculated with increasing polynomial degree are shown in Tables I and II, and the atomization energies of the molecules in Table III. We have used for \( \text{H}_2 \) and \( \text{CO} \) the bond lengths of 0.75 and 1.1 Å, respectively. \( \text{C}_6\text{H}_6 \) has a planar geometry with atomic positions of C: \((0.000, \pm 1.396)\) Å, \((\pm 1.209, \pm 0.698)\) Å, and H: \((0.000, \pm 2.479)\) Å, \((\pm 2.147, \pm 1.240)\) Å used. The \( \text{H}_2 \) mesh had \( 12 \times 10^3 \), \( 41 \times 10^3 \), and \( 96 \times 10^3 \) DOFs; the \( \text{CO} \) mesh had \( 14 \times 10^3 \), \( 46 \times 10^3 \), and \( 109 \times 10^3 \) DOFs; and the \( \text{C}_6\text{H}_6 \) mesh had \( 59 \times 10^3 \), \( 199 \times 10^3 \), and \( 470 \times 10^3 \) DOFs (DOFs), for element degrees \( p = 2 \), \( p = 3 \), and \( p = 4 \), respectively. The corresponding results calculated with very high accuracy (~1 meV) using the electronic structure program FHI-aims are shown on the last rows of the tables. As one can see, the total energy requires a high polynomial degree (\( p > 3 \)) to converge within an error below 100 meV. However, in practice one is interested in the atomization energy of the system, which is the difference of the total energies between the system and the corresponding isolated atoms. The cancellation of errors leads to a significant improvement in the accuracy, and already the 2nd and 3rd degree polynomials produce results with errors around 100 and 10 meV, respectively. The maximal cancellation was obtained by using the same mesh for isolated atoms as for the molecule, which can be considered as a kind of basis set superposition error (i.e., a counterpoise correction). The energies of the isolated atoms are lower in the molecular mesh than in the atomistic mesh. This is because the molecular mesh is denser than the atomistic mesh as one wants to guarantee the good description of the bonding regions. The total and atomization energies are well converged with respect to the simulation cell diameter. We found less than 1 meV difference in range from 21 to 151 Å for the CO molecule.

We performed nonrelativistic calculations for elements Zn, I, Hg, and At in order to test the quality of the discretization in the case of heavy elements. We found that elements with d-electrons perform relatively well, e.g., the atomization energy of the \( \text{I}_2 \) molecule (\(-2.400, -3.015\), and \(-3.031\) eV, for \( p = 2, 3, 4 \), respectively, and \(-3.037\) eV for FHI-aims) has approximately two to four times larger errors than the \( \text{C}_6\text{H}_6 \) molecule. Elements with f-electrons perform much worse, e.g., \( \text{At}_2 \) has one order of magnitude larger errors than \( \text{C}_6\text{H}_6 \) molecule. This is due to insufficient angular DOFs as the eigenvalues of the f-orbitals split (and d-orbitals split slightly) in energy, whereas p-orbitals do not. Our estimate is that one would need \(~2–4\) times more angular DOFs for

<table>
<thead>
<tr>
<th>( \Delta E_{\text{LDA}} ) (eV)</th>
<th>( \text{H}_2 )</th>
<th>( \text{CO} )</th>
<th>( \text{C}_6\text{H}_6 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p = 2 )</td>
<td>(-6.6838)</td>
<td>(-15.7573)</td>
<td>(-81.0894)</td>
</tr>
<tr>
<td>( p = 3 )</td>
<td>(-6.6996)</td>
<td>(-15.7162)</td>
<td>(-80.8599)</td>
</tr>
<tr>
<td>( p = 4 )</td>
<td>(-6.6999)</td>
<td>(-15.7114)</td>
<td>(-80.8541)</td>
</tr>
<tr>
<td>FHI-aims</td>
<td>(-6.700)</td>
<td>(-15.709)</td>
<td>(-80.852)</td>
</tr>
</tbody>
</table>
TABLE IV. Atomization energy of the CO molecule at different bond lengths calculated using elements with degrees $p=2$–4.

<table>
<thead>
<tr>
<th>$R_{\text{CO}}$ (Å)</th>
<th>$\Delta E_{\text{LDA}}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p=2$</td>
</tr>
<tr>
<td>0.8</td>
<td>0.1272</td>
</tr>
<tr>
<td>1.1</td>
<td>15.7584</td>
</tr>
<tr>
<td>1.2</td>
<td>15.6235</td>
</tr>
<tr>
<td>1.4</td>
<td>13.5165</td>
</tr>
<tr>
<td>1.8</td>
<td>8.5848</td>
</tr>
<tr>
<td>2.4</td>
<td>4.0303</td>
</tr>
</tbody>
</table>

TABLE V. Dipole moment of the CO molecule at different bond lengths calculated using elements with degrees $p=2$–4.

<table>
<thead>
<tr>
<th>$R_{\text{CO}}$ (Å)</th>
<th>$\mu_{\text{LDA}}$ (eÅ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p=2$</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2454</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1390</td>
</tr>
<tr>
<td>1.1</td>
<td>0.0745</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0064</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.1330</td>
</tr>
<tr>
<td>1.8</td>
<td>-0.3792</td>
</tr>
<tr>
<td>2.4</td>
<td>-0.6084</td>
</tr>
</tbody>
</table>

FIG. 5. Optical absorption spectra of the beryllium atom calculated using elements with degrees $p=2$ (solid) and $p=3$ (dashed). The inset shows a magnification of the high-energy region.
The calculation included 250 states, and two different confinement potential parameters used, one with $R_c=4.0\text{a}_0$ and $k_c=10^{-2}E_h/a_0^2$, and one with $R_c=8.0\text{a}_0$ and $k_c=10^{-3}E_h/a_0^2$. The spectrum with the weaker confinement ($k_c=10^{-3}$) is not converged yet with 250 states, which corresponds already nearly 4 million matrix elements. The spectrum with the stronger confinement and 150 states is converged in the lower energy part of the spectrum, and reproduces correctly the main experimental peak around 7 eV. It also shows the beginning of a broad feature above 9 eV in agreement with the experiment.

C. Computational details

The ground-state DFT calculations were performed as serial calculations, and the time consumed ranged from minutes (hydrogen atom) to tens of hours (benzene with $p=4$). All calculations were done on 2.6 GHz AMD Opteron dual-core processors. As the systems were relatively small, the storage requirements of the matrices were much larger than those of the wave functions. The number of nonzero entries in the matrices ranged from $1 \times 10^5$ (H, $p=2$) to $4 \times 10^7$ ($\text{C}_6\text{H}_6$, $p=4$). The number of DOFs ranged from 5000 (H, $p=2$) to $5 \times 10^5$ ($\text{C}_6\text{H}_6$, $p=4$). The linear-response TDDFT was parallelized over the rows of the Casida matrix, and the absorption spectrum of benzene was calculated using several hundreds of processors.
We consider the performance attained adequate for an initial “proof-of-concept” implementation. Moreover, we expect to increase the speed substantially by employing more sophisticated methods. Especially, the preconditioning of the eigenvalue problem and improved initial guesses for Kohn–Sham wave functions are expected to result in remarkable improvements.

IV. CONCLUSIONS

We have described and implemented a high-order hierarchical finite-element method on unstructured meshes for all-electron DFT and TDDFT method. Our finite-element mesh generation scheme assures the quality of the elements in the mesh by merging high-quality, structured atomic meshes to an initial molecular mesh, which is then refined to meet the size and shape requirements by applying the Delaunay refinement method. The ground-state DFT calculations were performed using elements with degrees \( p = 2 \sim 4 \), which provide increasing levels of accuracy down to a few meVs.

We also described a flexible way to construct a basis for the finite-element linear-response TDDFT calculation. By applying an auxiliary confinement potential to the ground-state calculation, the basis can be tuned to balance between accuracy and computational cost. The convergence properties of the optical absorption spectrum were discussed in the cases of the beryllium atom, and the sodium dimer and benzene molecules.

The initial implementation has proved the applicability of the hierarchical finite-element method on unstructured meshes to all-electron DFT and TDDFT. However, there exist several open questions which must be further studied and improved, for example, the preconditioning of the eigenvalue problem. As the finite-element method is well-suited for the domain decomposition, the parallel implementation would provide access to much larger systems within reasonable execution times. As most of the applications do not need full all-electron solutions, the projector-augmented wave method or a similar treatment should speed up calculations remarkably in these cases. Magnetic fields, relativistic effects, and quantum mechanical forces for atoms will be implemented in order to broaden the applicability of the method. Finally, we believe that the most promising application areas for our method are beyond the ground-state and linear-response calculations, for example, in the time-propagation TDDFT scheme.

ACKNOWLEDGMENTS

This work was performed in COMP which is Center of Excellence of Academy of Finland, and was funded by a grant from CSC-IT Center for Science Ltd., AMD, and Cray. The calculations were performed using CSC’s resources. L.L. wishes to thank Mikko Lyly and the rest of CSC’s Elmer team for support with Elmer, as well as Harri Hakula for advices on mesh generation. ELMER is an open source finite element software for multiphysical problems developed and supported by CSC.

44. P. Pulay, Chem. Phys. Lett. 73, 393 (1980).