Lee, Young Joo; von Boehm, J.; Nieminen, Risto

Simulation of the kinetics of oxygen complexes in crystalline silicon

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.66.165221

Published: 15/10/2002

Document Version
Publisher’s PDF, also known as Version of record

Please cite the original version:
Simulation of the kinetics of oxygen complexes in crystalline silicon

Young Joo Lee, J. von Boehm, and R. M. Nieminen
COMP/Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
(Received 28 March 2002; revised manuscript received 18 June 2002; published 31 October 2002)

The formation kinetics of thermal double donors (TDD’s) is studied by a general kinetic model with parameters based on accurate ab initio total-energy calculations. The kinetic model includes all relevant association, dissociation, and restructuring processes. The simulated kinetics agrees qualitatively and in most cases quantitatively with the experimentally found consecutive kinetics of TDD’s. It also supports our earlier assignments of the ring-type oxygen chains to TDD’s [Pesola et al., Phys. Rev. Lett. 84, 5343 (2000)]. We demonstrate with the kinetic model that the most common assumption that only the O₂ dimer acts as a fast diffusing species would lead to an unrealistic steady increase of the concentration of O₃. The neglect of restructuring processes leads to an anomalous increase of oxygen dimers and negligible concentrations of TDD’s. The capture of interstitial oxygens by diffusing oxygen chains and the escaping of interstitial oxygens from the chains fully dominate the formation kinetics.

DOI: 10.1103/PhysRevB.66.165221 PACS number(s): 61.72.Bb, 66.30.–h

I. INTRODUCTION

Thermal donor (TD) families appear in Czochralski-grown Si during annealing. It is commonly believed that TD’s grow by capturing supersaturated oxygen. The most studied TD family consists of up to 17 thermal double donors (TDD’s, TDD0–TDD16) that appear at 350–550 °C. TDD’s grow at an anomalously high formation rate with an activation energy of only 1.7 eV which is about 0.8 eV less than the activation energy of interstitial oxygen atom (O₁) hopping. A popular model used to describe the TDD formation assumes that oxygen dimers (O₂’s) act as fast diffusing species (FDS). In this model there is a common core to which O₂’s aggregate to form a series of closely related TDD’s. The TDD formation would then proceed as follows: O₂ + TDDn → TDD(n + 1). However, the problem with this model is that extremely high values of O₂ diffusivity are required to account for the formation of the initial TDD’s. To circumvent this problem, Murin and Markevich suggest that also oxygen trimers (O₃’s) should act as FDS. However, Åberg et al. conclude that the O₃ formation rate would be three orders of magnitude larger than any other reaction rate of O₂, and reject this possibility in their kinetic model. One could also allow all small TDD’s to act as FDS as suggested by Murin and Markevich. In this case the TDD formation would proceed as TDDn + O₁ → TDD(n + 1). However, Götz et al. argue that the formation and annihilation of TDD’s takes place at 550 °C without fast diffusion of oxygen at all. Thus there is a need for a general kinetic model not relying on any specific assumptions to see which of the all possible mechanisms is/are finally responsible for the formation and annihilation of TDD’s.

We summarize here briefly the main experimental results that a successful kinetic model should explain. The TDD’s appear consecutively. The infrared (IR)-absorption measurements by Åberg et al. offer more detailed quantitative data of this kinetics. The total TD formation rate and the O₁ loss rate show a maximum at 450–500 °C. The corresponding activation energy is 1.2 eV at low temperatures and 1.7–1.8 eV at intermediate temperatures. The experimental reaction order is 2 at 350–400 °C and increases to 3.5–4 at 450 °C.

The purpose of this paper is to introduce a general kinetic model and to apply it to the kinetics of oxygen complexes in silicon. The basic ingredients of the model are the activation energies for migration and restructuring as well as the formation and binding energies for various oxygen complexes. The model includes the most important processes: diffusion as well as association, dissociation, and restructuring reactions. All possible low-energy structures have to be considered because TDD’s are just one of these. The energies of this model are obtained from accurate total-energy calculations, based on the density-functional theory. Using the calculated total energies, we have been able to identify oxygen chain structures—consisting of one or more adjacent four-membered rings (R) and flanking O₁’s—as TDD0–TDD7. The R unit consists of two threefold coordinated O atoms bonded to two common Si atoms. (Another view would be to consider the inner chain structures to consist of a sequence of alternating Y-lid and up-side-down Y-lid units.)

The format of this paper is as follows. A short presentation of diffusion-limited reactions in solids is given in Sec. II. The kinetic model is presented in Sec. III and the parameterization of the model is given in Sec. IV. The results and comparison with experiments are given in Sec. V, and the properties of the kinetic model are considered in Sec. VI. The conclusions are drawn in Sec. VII. Some parts of this work have been published elsewhere as short reports.

II. DIFFUSION-LIMITED ASSOCIATION AND DISSOCIATION REACTIONS IN SOLIDS

The association reaction between the species A and B in a solid is limited by the fact that A and B must first diffuse sufficiently close to each other (typically one or two interatomic distances) to be able to react (see Fig. 1 which this is shown schematically). This state where A and B are weakly
bound is denoted by \{AB\}. A successful reaction (the box in Fig. 1) yields a product \(P\). Competing with this is the dissociation reaction where \(P\) splits via \{AB\} into the species \(A\) and \(B\) (the direction from the right to the left as seen in Fig. 1). The rate equation for the reaction then reads as

\[
\frac{d[P]}{dt} = k_a[A][B] - k_d[P],
\]

where \(k_a\) and \(k_d\) are the association and dissociation rate constants, respectively. According to Waite’s theory,\(^3\) \(k_a\) is given as

\[
k_a = 4\pi R_c (D_A + D_B),
\]

where \(R_c\) is the capture radius and the diffusivities of \(A\) and \(B\) are

\[
D_A = A_m^A \exp(-E_m^A/k_B T),
\]

\[
D_B = A_m^B \exp(-E_m^B/k_B T).
\]

\(A_m^A\) and \(A_m^B\) are preexponential factors, and \(E_m^A\) and \(E_m^B\) are activation energies for the migration of species \(A\) and \(B\), respectively. For \(k_d\) we use the expression

\[
k_d = \frac{A_d}{R_c^2} (D_A + D_B) \exp(-E_b/k_B T),
\]

where \(E_b\) is the binding energy of \(P\) against the dissociation into \(A\) and \(B\), and \(A_d\) is a dimensionless constant.

We note first that \(k_d\) is proportional to \(\exp(-E_b/k_B T)\) taking into account the splitting of \(P\) into \(\{AB\}\). Second, \(k_d\) is proportional to the effective diffusion coefficient \(D_A + D_B\) taking into account the diffusion of \(A\) and \(B\) in the state \{AB\} towards noninteracting species \(A\) and \(B\). Third, \(k_d\) is inversely proportional to \(R_c^2\). In the special case when \(O_2\) splits into two \(O_1\)’s, \(k_d\) is proportional to \(\exp(-E_m^A + E_b)/k_B T)\) in agreement with the coefficient \(k_{d,2}\) given in Ref. 12. Also, when one of the species, say \(A\), has a much larger diffusivity, \(k_d\) is proportional to \(\exp(-(E_m^A + E_b)/k_B T)\).

In other words, to get rid of \(B\), \(A\) must first overcome the binding energy \(E_b\) and then the activation energy for migration \(E_m^A\).

III. KINETIC MODEL FOR REACTIONS OF OXYGEN COMPLEXES IN SILICON

The reactions between oxygen complexes in silicon, including TDD0—TDD16, are much more complex than the simple reaction between \(A\) and \(B\) considered in the preceding section. In general, the reactions are of the type

\[
O_j + O_k \rightleftharpoons O_{j+k},
\]

where \(O_j\) denotes a complex containing \(j\) \(O\) atoms and where we neglect the differences between various structures of a certain \(O_j\) complex for a moment. The reactions of Eq. (3.1) show the following sequences:

\[
O_2 + O_1 \rightleftharpoons O_3, \quad O_3 + O_1 \rightleftharpoons O_4, \quad O_4 + O_1 \rightleftharpoons O_5,
\]

\[
O_2 + O_2 \rightleftharpoons O_4, \quad O_3 + O_2 \rightleftharpoons O_5, \quad O_4 + O_2 \rightleftharpoons O_6.
\]

The reactions in Eqs. (3.2) and (3.3) are parallel for \(O_1\) and \(O_2\). On the other hand, the reactions in Eqs. (3.2) and (3.3) are consecutive for \(O_1\), \(O_4\), \(O_5\), and so on. Generalizing the kinetic theory [Eqs. (2.1), (2.2), and (2.4) discussed in the preceding section], the rate equations for the reactions of oxygen complexes are given by

\[
\frac{d[O_k]}{dt} = \sum_{j=1}^{k-1} (k_a^j - [O_j][O_{k-j}]) - k_d^j [O_{k-j}]
\]

\[
+ \sum_{i=1}^k (1 + \delta_{k1})(-k_a^{k+i}[O_k][O_i]+k_d^{k+i}[O_{k+i}]),
\]

\[
k_a^j = \frac{4\pi R_c}{1 + \delta_{k1}} (D_k + D_i),
\]

\[
k_d^{k+i} = \frac{A_d^k}{R_c^2} (D_k + D_i) \exp(-E_k^i/k_B T),
\]

where the Kronecker delta \(\delta_{k1}\) is introduced to avoid double counting.\(^3\) \(k_d^{k+i}\) is the rate constant for the association reaction of \(O_k\) and \(O_i\) into \(O_{k+i}\). \(k_a^j\) is the rate constant for the dissociation reaction of \(O_{k-j}\) into \(O_j\) and \(O_{k}\). \(D_k\) denotes the diffusivity and \(E_k^i\) the activation energy for the migration of \(O_k\). \(E_k^i\) is the binding energy of \(O_{k+j}\) against the dissociation into \(O_j\) and \(O_{k-j}\). In Eq. (3.4), the two terms in the first sum on the right-hand side describe the association of \(O_j\)’s and \(O_{k-j}\)’s into \(O_k\) and the dissociation of \(O_k\) into \(O_j\)’s and \(O_{k-j}\)’s, respectively. The two terms in the second sum describe the association of \(O_j\)’s and \(O_{k-j}\)’s into \(O_{k+j}\)’s (decreasing \([O_k]\)) and the dissociation of \(O_{k+j}\)’s into \(O_j\)’s and \(O_{k-j}\)’s (increasing \([O_k]\)), respectively. Equations (3.4)–(3.7) are a generalization to the kinetic models by Murin and Markevich\(^1\) and Götz et al.\(^16\).
However, the final working equations still need refinements and are considered next. First, the different structures of a complex consisting of a certain number \(k \) of O atoms are labeled by an index \(\alpha \): \(O_\alpha^k \). Second, an expression for the restructuring rate \(V_r \)—taking into account the restructuring processes within a certain complex—must be added to the right-hand side of Eq. (3.4). \(V_r \) is given by

\[
V_r = \sum_{\beta \neq \alpha} (k^{\alpha k \beta} r[O_\beta^k] - k^{\beta k \alpha} r[O_\alpha^k]),
\]

(3.8)

\[
k^{\alpha k \beta} r = A_{\alpha k \beta} \exp(-E^{\alpha k \beta} / k_B T).
\]

(3.9)

\(k^{\alpha k \beta} r \) is the rate constant for the restructuring reaction from the \(O_\beta^k \) structure into the \(O_\alpha^k \) structure, and \(E^{\alpha k \beta} \) is the corresponding activation energy for restructuring. The two terms on the right-hand side of Eq. (3.8) describe the increase of \([O_\alpha^k]\) through restructuring from the other \(O_\alpha^k \) structures and the decrease of \([O_\beta^k]\) through restructuring to the other \(O_\beta^k \) structures, respectively.

IV. PARAMETERIZATION OF THE KINETIC MODEL

The binding energies \(E_b \) [Eq. (3.6)], the activation energies for migration \(E_m \) [Eq. (3.7)], and the activation energies for restructuring \(E_r \) [Eq. (3.9)] have been obtained from accurate total-energy calculations, based on the density-functional theory, and are given in Refs. 28,25. For the determination of the prefactors in Eqs (3.6), (3.7), and (3.9), we specify the labeling of the O complexes as follows. The most important association reactions are due to the processes where an oxygen chain migrating along a \([1 \bar{1} 0] \) axis captures an \(O_1 \), as is shown schematically in Fig. 2. An oxygen chain consisting of \((k - 1)\) O atoms may capture an \(O_1 \) on the \([1 \bar{1} 0] \) axis ("a" in Fig. 2), an \(O_1 \) in the nearest bond perpendicular to the \([1 \bar{1} 0] \) axis ("b" in Fig. 2), and an \(O_1 \) in a bond more distant but still within the capture radius of \(\approx 5 \) Å ("c" in Fig. 2). The products of these reactions are denoted by \(O_\alpha^k \) (an \(O_k \) chain), \(O_\alpha^k \) (a branched \(O_k \) chain), and \(O_\alpha^k \) (a branched \(O_k \) chain), respectively. The probabilities for the reactions \(a \), \(b \), and \(c \) are 1/13, 2/13, and 10/13, respectively, and are included as weighting factors in the association coefficients \(k_r \). The branched \(O_\alpha^k \) and \(O_\alpha^k \) chains have high activation energies for migration \(\geq 2.3 \) eV.\(^{25}\)

However, the branched \(O_\alpha^k \) and \(O_\alpha^k \) chains are important in increasing \([O_\beta^k]\) through restructuring. The calculated activation energies for the restructuring from the branched \(O_\alpha^k \) chains to the straight \(O_\alpha^k \) chains are 1.9–2.3 eV and those from the branched \(O_\alpha^k \) chains to the branched \(O_\alpha^k \) chains are 2.3–2.5 eV.\(^{25}\) The activation energies are thus relatively high. However, the restructuring processes turn out to take less time than the next capture of an \(O_1 \) by the migrating straight \(O_\alpha^k \) chain.

In our simulations, the oxygen dimer where the two O atoms are bonded to a common Si atom can appear either as the electrically inactive staggered \(O_2 \) structure or the electrically active \(O_2 \) structure.\(^{24,25}\) The \(O_3 \) chain can appear either as the electrically inactive staggered \(O_3 \) structure or the electrically active \(O_1 - O_2 \) structure.\(^{25,26}\) The \(O_4 \) chain can appear either as the electrically inactive staggered \(O_4 \) structure or as the more stable electrically active \(O_1 - O_2 - O_3 \) structure.\(^{24,26}\) The longer \(O_j \) chains \((j \geq 5)\) can appear either as the electrically inactive staggered \(O_j \) structure or as the more stable electrically active \(O_1 - O_2 - \ldots - O_n \) structure \((n = j - 2)\).\(^{24,26}\) We neglect the internal kinetics among various isomer structures within an oxygen dimer or any straight oxygen chain and assume that the thermal equilibrium prevails among the isomer structures. The relative Boltzmann factors \(g(\exp(-\Delta E/k_B T)) \) determine the relative abundances of the structures \((\Delta E \) is the energy difference between the formation energies of the two structures considered and \(g \) takes the degeneracy into account). (In the case of the \(O_4 \) chain the relative abundances \([O_2 - O_3]/[O_1 - O_2 - O_3] \) and \([O_1 - O_2 - O_4]/[O_2 - O_3] \) are used.) This assumption of thermal equilibrium may fail if the energy barrier between the structures is high and/or the temperature is low.

Since it is very difficult to calculate preexponential factors we have resorted to experiments. The preexponential factors are determined as follows. We use for the prefactor \(A_B / R_c^2 \) [Eq. (3.6)] the value of 0.4717 \times 10^{15} \text{ s}^{-1} \) for the processes where one of the outermost \(O_1 \)\'s is moved away from the oxygen chain. This is the value obtained from the reorientation experiments for the well-dispersed oxygen by Stavola et al.\(^{33}\) In all other dissociation and restructuring processes, the common value of 0.8772 \times 10^{12} \text{ s}^{-1} \) is used for both prefactors \(A_B / R_c^2 \) [Eq. (3.6)] and \(A_B \) [Eq. (3.9)]. This is the experimental preexponential factor obtained by Stavola et al. for the as-provided silicon crystal.\(^{33}\) For the \(O_1 \) diffusivity we use the well-known experimental preexponential factor of \(A_B = 0.17 \text{ cm}^2 \text{ s}^{-1} \) [Eq. (3.7)] by Stavola et al.\(^{33}\) The preexponential factors \(A_m , A_m , \) and \(A_m \) for the diffusivities of the straight \(O_2 \), \(O_3 \), and \(O_4 \) chains, respectively, are obtained by fitting our calculated \([O_2]\) to the experimental concentration of the 1013-cm\(^{-1}\) band (see Refs. 28, 34) at 350 and 420°C by Åberg et al. (Figs. 1(a) and 1(d) in Ref. 11). For the longer chains the diffusivities are geometrically suppressed using the relation \(D_k = 0.95 D_{k-1} \) \((k > 4)\) at \(T = 450°C \) and electron chemical potential \(\mu_e = 0.45 \text{ eV} \) (n-type Si) because there is probably an “entropic bottleneck,” which will increasingly hinder the motion of the longer oxygen chains. The corresponding preexponential factors \(A_m \) are obtained using Eq. (3.7). The relation above is also introduced to keep the number of the fitting parameters small. The calculated
TABLE I. The fitted preexponential factors $A_m^{k_a}$ (cm2 s$^{-1}$). The electron chemical potential μ_e is 0.45 eV.

<table>
<thead>
<tr>
<th>k</th>
<th>$A_m^{k_a}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.17a</td>
</tr>
<tr>
<td>2</td>
<td>8.58\times10$^{-10}$ b</td>
</tr>
<tr>
<td>3</td>
<td>1.62\times10$^{-12}$ b</td>
</tr>
<tr>
<td>4</td>
<td>1.35\times10$^{-12}$ b</td>
</tr>
<tr>
<td>5</td>
<td>3.42\times10$^{-11}$ c</td>
</tr>
<tr>
<td>6</td>
<td>2.38\times10$^{-7}$ c</td>
</tr>
<tr>
<td>7</td>
<td>2.95\times10$^{-7}$ c</td>
</tr>
<tr>
<td>8</td>
<td>7.44\times10$^{-6}$ c</td>
</tr>
<tr>
<td>9</td>
<td>2.86\times10$^{-5}$ c</td>
</tr>
<tr>
<td>10</td>
<td>1.80\times10$^{-3}$ c</td>
</tr>
</tbody>
</table>

aExperimental value from Refs. 11, 33.

bObtained by fitting the calculated [O$_2$] to the experimental 1013-cm$^{-1}$ band at 350 and 420 °C (Ref. 11).

cObtained by using the equation $D_k=0.95D_{k-1}$ at 450 °C.

Prefactors $A_m^{k_a}$ used in our kinetic model are summarized in Table I.

V. RESULTS AND COMPARISON WITH EXPERIMENTS

Figure 3 shows the simulated annealing behavior in n-type silicon at 350 °C. All possible structures as well as all association, dissociation and restructuring (including the reorientation of O$_2$ and O$_3$) processes are included in the simulation. The simulated annealing behavior of the concentrations of the O$_2$-O$_2$, O$_1$-O$_2$, O$_1$-O$_3$-O$_1$, and staggered O$_3$ chains at 420 °C is given and compared with the IR-absorption experiments11 in Ref. 28. A more complete simulated annealing behavior also shows the concentrations of the O$_1$-O$_2$, and O$_1$-O$_4$-O$_1$ chains as well as of the O$_2$ dimer is given in Fig. 4. Figure 4 is also used as the reference to which various simulations performed under different conditions are compared in Sec. VI below. The concentrations of the branched O structures are small (Åberg et al. (Ref. 11) are shown for comparison. The simulated behavior (leading to branched structures) is significantly larger than that of the “head-on” ones, the restructuring reactions toward the (straight) O chains keep the concentrations of the branched structures relatively small. Only in the case of the oxygen dimer the concentration of O$_2^0$ (the skewed O$_2$) grows so high that it has been plotted. Also in this case the restructuring keeps [O$_2^0$] lower than the concentration of the staggered O$_2$ (Figs. 3 and 4). Both the staggered O$_2$ (the 1060- and 1012-cm$^{-1}$ IR-absorption bands) and O$_2^0$ (the 1105-cm$^{-1}$ IR-absorption band) have been observed simultaneously experimentally and theoretically$^{35-37}$ (for the assignments see Ref. 34). The formation energy of the metastable O$_2^0$ structure is 0.89 eV higher than that of the staggered O$_2$, which makes the concentration of O$_2^0$ negligible (the relative Boltzmann factor $\approx 3 \times 10^{-7}$)25.

At 350 °C the simulated concentration of the O$_1$-O$_2$ chains (TDD0) is small ($\approx 6 \times 10^{12}$ cm$^{-3}$) and is not plotted in Fig. 3. The simulated concentration of the O$_1$-O$_2$ chains remains still small at 420 °C (Fig. 4). The simulated behavior of the concentration of the staggered O$_3$ chains at 350 °C agrees closely with that of the experimental 1005-cm$^{-1}$ IR band (Fig. 3) confirming our assignment of the 1005-cm$^{-1}$ band to the staggered O$_3$ chain in Ref. 28 (see also Fig. 4).

We find that at 420 °C the simulated annealing behaviors of the concentrations of the O$_2$-O$_2$, and O$_1$-O$_2$-O$_1$ chains agree closely with those of the experimental 975- and 988-cm$^{-1}$ IR-absorption bands11 respectively, and assign the O$_2$-O$_2$, and O$_1$-O$_2$-O$_1$ chains to TDD1 (975 cm$^{-1}$) and TD2 (988 cm$^{-1}$), respectively28 (see also Fig. 4). However, the simulated O$_2$-O$_2$ concentration at 350 °C in Fig. 3 does not show any initial growth over the O$_1$-O$_2$-O$_1$ concentration in contrast to the experiment by Åberg et al.11 This difference is most probably due to the fact that we neglect the internal kinetics among the O$_2$-O$_2$, O$_1$-O$_2$, O$_1$-O$_3$-O$_1$, O$_2$-O$_2$, and staggered O$_4$ structures and weight these concentrations with the statistical Boltzmann factors. This approach neglects the energy barriers between the structures, which may lead to an erroneous behavior at low temperatures. In n-type silicon with $\mu_e=0.414$ eV the O$_2$-O$_2$, O$_1$-O$_2$-O$_1$, O$_2$-O$_2$, and staggered O$_4$ barriers are about 0.4 eV25.

If the barriers are taken into account, the concentration...
of the O$_2$-O$_2r$, and O$_2$-O$_2r$ structures (TDD1) increases while that of the O$_1$-O$_2$-O$_1$ structure (TDD2) may decrease. A second possible reason might be the different Fermi energies in the simulation and experiment. The simulated O$_1$-O$_2$-O$_1$ (TDD2) concentration agrees reasonably well with the experimental TDD2 (988 cm$^{-1}$) concentration in Fig. 3 for longer times ($t > 30$ h). And, already at 370 °C and especially at 390 and 420 °C the experimental TDD1 concentration remains below the TDD2 concentration from the beginning of the annealing. The kinetic model gives this behavior. Thus, despite the inconsistency at 350 °C we keep the kinetic model as working quite well even at 420 °C. The agreement found above with the IR-absorption experiments by Åberg et al. may be partially due to the fact that the parameters α_1, α_2, and α_3 are obtained from fitting to the 1013-cm$^{-1}$ band of the same experiment. Our kinetic model should therefore be compared also with independent experiments. Such a comparison is shown in Fig. 5, where the simulated behaviors of the concentrations of the oxygen chains are compared with the experiments by Claybourn and Newman at 450 °C. However, since different samples may show quite varying behavior the following comparison may only be qualitative or semiquantitative at best. We find that the joint simulated annealing concentration of the O$_2$-O$_2r$ and O$_1$-O$_2$-O$_1$ chains (containing mainly only
the latter — not shown in Fig. 5 — lies significantly above the experimental T_{DD2}, but this difference is not very meaningful because only an unknown proportion of TDD2’s was detected in Ref. 18. The simulated behaviors of the concentrations of the $O_{1}-O_{3}-O_{1}$ and $O_{1}-O_{4}-O_{1}$ chains in Fig. 5 compare rather closely with the corresponding experimental [TDD3] and [TDD4]. We further find that the simulated concentrations of the $O_{1}-O_{5}-O_{1}$ and $O_{1}-O_{6}-O_{1}$ chains behave qualitatively similarly to the corresponding experimental [TDD5] and [TDD6], but the simulated ones grow more steeply than the experimental ones. The reasons for these quantitative differences were considered in the preceding paragraph.

We then consider the overall behavior of simulated TDD’s. The calculated early formation rate of TDD’s, $d(\Sigma_{n}[TDDn])/dt$, and the corresponding loss rate of O_{1},

$$d[O_{1}]/dt,$$

are shown at different initial O_{1} concentrations $[O_{1}]_{o}$ as a function of annealing temperature in Figs. 6(a) and 6(b), respectively. The rates are calculated by using linear fits in the time intervals 0–5 h and 0–2 h for $T \leq 550 \degree C$ and $T > 550 \degree C$, respectively. The total TDD formation rates [Fig. 6(a)] and the O_{1} loss rates [Fig. 6(b)] are strongly correlated. The O_{1} loss rates are about 6.5 times the TDD formation rates. Thus we can conclude that TDD’s include about 6.5 O atoms on the average. Both maximum rates increase with increasing $[O_{1}]_{o}$ and shift to lower temperatures as it is natural to expect. The maxima in Fig. 6 are located slightly above 500 °C, which compares reasonably well with the experimental values of 450–500 °C.2,13,14,19

Figure 7 shows the calculated total TDD formation rate in
The corresponding experimental data points by Emtsev are from TDD2 to TDD3. Consistently with this, Emtsev finds at TDD2 and a growing shoulder at TDD3, indicating a shift shown in Figs. 9.

The reaction order n in the relation

$$
\frac{d}{dt} \sum_j [\text{TDD}_j] \sim ([O_1]_n)^n,
$$

is calculated from the simulations for various $[O_1]_n$ in the same manner as described in Refs. 19, 23. The calculated n is shown in Fig. 8. The value of n is seen to be 2 at 350–400 °C and to increase to 4 at 450 °C in close agreement with the experimental n found to be 2 at 350–400 °C and to increase to 3.5–4 at 450 °C. 19, 22, 23

To investigate the annealing time dependences of the TDD concentrations, simulations are carried out for 10 h at 450 °C. The results are shown in Fig. 9(a) for $[O_1]_n = 0.6 \times 10^{18}$ cm$^{-3}$ and in Fig. 10(a) for $[O_1]_n = 1.0 \times 10^{18}$ cm$^{-3}$. The corresponding experimental data points by Emtsev are shown in Figs. 9(b) ($[O_1]_n = 0.65 \times 10^{18}$ cm$^{-3}$) and 10(b) ($[O_1]_n = 0.8 \times 10^{18}$ cm$^{-3}$).

The simulated distribution in Fig. 9(a) has the maximum at TDD2 and a growing shoulder at TDD3, indicating a shift from TDD2 to TDD3. Consistently with this, Emtsev finds experimentally at later times the maximum at TDD3 [Fig. 9(b)]. Both Figs. 10(a) (simulation) and 10(b) (experiment) show the shift of the maximum from TDD2 to TDD3. Moreover, a growing shoulder at TDD4 is seen in the simulated distribution at 10 h in Fig. 10(a) indicating a further shift of the maximum from TDD3 to TDD4. The experimental relative distribution by Emtsev et al. 17 ($T = 450$ °C, $t = 10$ h) displays a distinct maximum at TDD3. Further, the experimental distribution by Götz et al. 8 at a slightly higher temperature of $T = 470$ °C and initial concentration of $[O_1]_n = 1.27 \times 10^{18}$ cm$^{-3}$ shows that TDD4 has grown almost as large as TDD3 already at $t = 3$ h. Thus, also these experiments indicate a similar consecutive shift of the maximum from TDD3 to TDD4. The kinetic model gives the same shift of the maximum from TDD3 to TDD4 for $t > 10$ h as is obvious from Fig. 4, where TDD4 grows significantly larger than TDD3. The simulated TDD5 grows later than TDD4 but the stronger growth of TDD6 seen already as a distinct shoulder in Fig. 10(a) shifts the maximum directly from TDD4 to TDD6. TDD6 grows significantly larger than TDD3.

Figure 11 shows the effect of temperature on the simulated [TDDn] distribution at 4 h. The main effect of increasing temperature is to increase all concentrations of TDD's. This is a direct consequence of the fact that the rate constants in Eqs. (3.4) and (3.8) increase proportional to a Boltzmann factor with increasing temperature. The relatively rapid...
growth of the concentration of the \(\text{O}_3 \) trimers, Åberg in our kinetic simulation in Fig. 4. Due to the anomalous energy than the previous \(\text{O}_1-\text{O}_5 \) diffusivities except for fast diffusing species. This is achieved simply by setting all concentration of the staggered \(\text{O}_3 \) chains—a feature not present in Fig. 12 is the anomalous steady increase of the concentration is due to the fact that the corresponding \(\text{O}_1-\text{O}_6 \) or longer chains can be formed. This should be contrasted to the behavior in Fig. 4 where the several TDD’s have developed consecutively within the same time. Thus, the simultaneous inclusion of fast diffusion of all \(\text{O} \) chains is essential. It has been noticed earlier\(^{10,11}\) that the use of only \(\text{O}_2 \) as a fast diffusing species in a kinetic model would require unreasonably high diffusivities of \(\sim 10^6 \text{D}_1 \) for \(\text{O}_2 \) if the behavior matches the effective oxygen diffusivities of \(\sim 10^4 \text{D}_1 \) determined from precipitation\(^{39,40}\) and out-diffusion\(^{41,42}\) experiments.

We consider next a situation where both \(\text{O}_2 \) and \(\text{O}_3 \) act as fast diffusing species.\(^{12}\) At \(420 \, ^\circ\text{C} \) all dissociation processes (such as \(\text{O}_4 \rightarrow \text{O}_3 + \text{O}_1 \) and \(\text{O}_4 \rightarrow \text{O}_2 + \text{O}_2 \)) can be neglected at least up to 60 h as will be discussed later in this paper. A simulation at \(420 \, ^\circ\text{C} \) is expected to lead to the following behavior. Owing to its high mobility \(\text{O}_3 \) can now capture \(\text{O}_1 \)'s and \([\text{O}_3] \) is not expected to grow anomalously any more. However, the concentrations of the staggered \(\text{O}_4, \text{O}_2-\text{O}_2 \) (TDD1), and \(\text{O}_1-\text{O}_2-\text{O}_1 \) (TDD2) chains are now expected to grow anomalously like \([\text{O}_3] \) in Fig. 12 because these \(\text{O}_4 \) chains are not able to capture \(\text{O}_1 \)'s due to their low diffusivities \(\text{D}_4 = \text{D}_1 \). But this kind of anomalous growth of \([\text{O}_4] \), [TDD1] or [TDD2] has not been observed experimentally.

To see the effect of restructuring from branched \(\text{O} \) chains to straight \(\text{O} \) chains, we have performed a simulation neglecting all restructuring [i.e., the restructuring constants \(k_r \) in Eq. (3.8) are set equal to zero]. The result of the simulation is shown in Fig. 13. The concentrations of the weakly bound \(\text{O}_5^{\text{c}} \) and \(\text{O}_2^{\text{c}} \) dimers (\(\text{O}_5^{\text{b}} \) is the skewed \(\text{O}_1-\text{Si-Si-}\text{O}_1 \) structure\(^{26}\)) are seen to increase anomalously due to the \(\text{O}_1-\text{O}_1 \) collisions. There are two reasons for this increase. First, the \(\text{O}_5^{\text{c}} \) and \(\text{O}_2^{\text{c}} \) dimers have high activation energies for increase is due to the fact that the \(\text{O}_3 \) chains can capture almost no \(\text{O}_1 \)'s due to their very low diffusivity \(\text{D}_3 = \text{D}_1 \). Thus, practically no \(\text{O}_4 \) or longer chains can be formed. This

VI. PROPERTIES OF THE KINETIC MODEL

Since the simulated results above agree quite closely with experiments and since the kinetic model is fairly general including all association, dissociation, and restructuring processes, we are able to investigate the effects caused by the assumptions used in the other models. The simulated annealing at \(T = 420 \, ^\circ\text{C} \) of Fig. 4 is used here as the representative reference.

First, we study the case where only the \(\text{O}_2 \) dimer acts as a fast diffusing species. This is achieved simply by setting all diffusivities except for \(\text{D}_2 \) equal to \(\text{D}_1 \) (from Table I \(\text{D}_2 = 1850\text{D}_1 \) at \(T = 420 \, ^\circ\text{C} \), and \(\text{D}_2 \) is thus much larger than \(\text{D}_1 \)). The result is shown in Fig. 12. The most striking feature in Fig. 12 is the anomalous steady increase of the concentration of the staggered \(\text{O}_3 \) chains—a feature not present in our kinetic simulation in Fig. 4. Due to the anomalous growth of the concentration of the \(\text{O}_3 \) trimers, Åberg et al.\(^ {11}\) rejected this possibility from their kinetic model. This in-

FIG. 10. (a) Simulated concentrations of thermal double donors as a function of annealing time at \(450 \, ^\circ\text{C} \) for \([\text{O}_1]_0 = 1.0 \times 10^{18} \, \text{cm}^{-3} \). \(\mu_r = 0.38 \, \text{eV} \). TDD0, TDD1, and TDDn \((n > 1) \) correspond to the \(\text{O}_1-\text{O}_2, \text{O}_2-\text{O}_2, \) and \(\text{O}_1-\text{O}_n-\text{O}_1 \) \((n > 1) \) chains, respectively. (b) The experimental concentrations by Emtsev (Ref. 38) at \(450 \, ^\circ\text{C} \) for \([\text{O}_1]_0 = 0.8 \times 10^{18} \, \text{cm}^{-3} \).

FIG. 11. Simulated concentration of thermal double donors at different temperatures at 4 h annealing. The initial concentration of \(\text{O}_1 \) is \(1.0 \times 10^{18} \, \text{cm}^{-3} \) and the electron chemical potential \(\mu_r = 0.38 \, \text{eV} \). TDD0, TDD1, and TDDn \((n > 1) \) correspond to the \(\text{O}_1-\text{O}_2, \text{O}_2-\text{O}_2, \) and \(\text{O}_1-\text{O}_n-\text{O}_1 \) \((n > 1) \) chains, respectively.
Second and more important, \(O_2 \) is not allowed to restructure into the staggered \(O_2 \) dimer. Therefore, there are no mechanisms that would decrease diffusion of \(O_1 \) except for \(D_2 \) equal \(D_1 \). TDD0 denotes the \(O_1\)-\(O_2 \)-chain. The bunch of lines below \(2 \times 10^{14} \text{ cm}^3 \) includes the \(O_2\)-\(O_2 \) (TDD1) and \(O_1\)-\(O_1\)-\(O_1 \) (TDDn) \((n>1)\) chains, the staggered \(O_3 \) chains, as well as the branched structures.

Migration and are not able to capture \(O_1 \) 's to form \(O_3 \) complexes. Second and more important, \(O_2^b \) and \(O_2^c \) (via \(O_2^b \)) are not allowed to restructure into the staggered \(O_2 \) dimer. Therefore, there are no mechanisms that would decrease \([O_2^c]\) and \([O_2^b]\). At the same time the concentration of staggered \(O_2 \) cannot increase via restructuring, and therefore \([O_2]\) remains significantly lower than \([O_2^c]\) and \([O_2^b]\) in Fig. 13, whereas in the full simulation including restructuring \([O_2]\) is significantly larger than \([O_2^c]\) and \([O_2^b]\) (Fig. 4). The staggered \(O_2 \) dimers may capture \(O_1 \) 's to form mainly branched \(O_3^c \) and \(O_3^b \) trimers and to less extent straight \(O_3 \) trimers. The branched \(O_3^c \) and \(O_3^b \) trimers have high activation energies for migration and cannot restructure into straight \(O_3 \) trimers. Since only a small amount of straight \(O_3 \) trimers may further capture \(O_1 \) 's on their axis, the total concentration of the \(O_3 \) chains for \(k \approx 4 \) (including the later TDD's) remains less than \(2 \times 10^{14} \text{ cm}^3 \). Again, this behavior should be contrasted with the full simulation in Fig. 4 where restructuring is included, and where several TDD's have developed consecutively within the same time. Thus, the head-on collisions alone are not sufficient to develop the TDD series, but restructuring from branched structures into chains (included in Fig. 4) is crucial.

Dissociation is often neglected in kinetic models. We have studied the contributions of all association and dissociation reactions where \(O_1 \) is not involved, i.e., the reactions

\[
O_j + O_k \rightleftharpoons O_{j+k}, \quad j, k > 1
\]

by neglecting these reactions in the simulation. The result of the simulation at \(420 \degree C \) including only the captures and escapes of \(O_1 \) (as well as restructuring) gives virtually the same result that is obtained with the full simulation (Fig. 4). This shows that the captures and escapes of \(O_1 \) 's fully dominate the consecutive reactions of the TDD formation.

VII. SUMMARY AND CONCLUSIONS

The formation kinetics of thermal double donors is studied by a general kinetic model, which is based on accurate \textit{ab initio} total-energy calculations. The kinetic model includes all relevant association, dissociation, and restructuring processes. We give a brief summary of the main simulated results compared with experiments in Table II.

The simulated kinetics agrees qualitatively and in most cases quantitatively with the experimentally found consecu-
ductive kinetics of thermal double donors, supporting at the same time our earlier assignments of the ring-type oxygen chains to thermal double donors. Due to the generality of the kinetic model, we were able to study some of the most common assumptions used in other kinetic models. We demonstrate that the popular assumption that only the O$_2$ dimer acts as a fast diffusing species leads to an unrealistic steady increase of [O$_3$]. The neglect of the restructuring of branched oxygen chains leads to an anomalous increase of the weakly bound O$_2$ dimers and the skewed O$_2$-Si-Si-O$_2$ (O$^\text{2+}$) dimers, and to negligible concentrations of other oxygen chains (and thus TDD’s). The neglect of dissociation works at low temperatures (350–420 °C) where the formation processes are dominating, but at higher temperatures the dissociation processes become increasingly important. Finally, we demonstrate that the captures of interstitial oxygens by oxygen chains and the escapes of interstitial oxygens from oxygen chains (as well as restructuring) fully dominate the formation kinetics of the thermal double donors.

ACKNOWLEDGMENT

This work has been funded by Academy of Finland through the Center of Excellence Program (2000-2005). The authors would like to thank Dr. M. Pesola, Professor M. J. Puska, and Professor V. V. Emtsev for valuable discussions. In addition, the authors would like to thank Professor V. V. Emtsev for giving us unpublished experimental data as well as for the permission to refer to it. We acknowledge the generous computing resources of the Center for the Scientific Computing (CSC), Espoo, Finland. Y. J. Lee would like to thank Mr. O. Jääskeläinen for his generous support in computation.

38 V. V. Emtsev (private communication).

