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We study a one-dimensional fixed-energy version~that is, with no input or loss of particles! of Manna’s
stochastic sandpile model. The system has a continuous transition to an absorbing state at a critical value of the
particle density, and exhibits the hallmarks of an absorbing-state phase transition, including finite-size scaling.
Critical exponents are obtained from extensive simulations, which treat stationary and transient properties, and
an associated interface representation. These exponents characterize the universality class of an absorbing-state
phase transition with a static conserved density in one dimension; they differ from those expected at a
linear-interface depinning transition in a medium with point disorder, and from those of directed percolation.
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I. INTRODUCTION

Sandpile models are the prime example of self-organi
criticality ~SOC! or scale invariance in the apparent absen
of tuning parameters@1–4#. SOC in a slowly driven sandpile
is associated with an absorbing-state phase transition in
corresponding nondriven or fixed-energy sandpile~FES!
@3–8#. While most studies of sandpiles have probed
slow-driving limit ~addition and loss of sand grains at a
infinitesimal rate!, there is great interest in understanding t
scaling properties of FES models as well@7,9–11#. In this
paper we present extensive numerical results on sca
properties, and the dynamics of an interface representa
of a particularly simple one-dimensional FES. For bac
ground on FES models in the context of absorbing-s
phase transitions we refer the reader to Ref.@12#; Ref. @13#
discusses the relation of sandpiles to driven interface mod

A central feature of sandpile models is the presence
conserved field, the density of particles. This field couples
the activity density, which is the order parameter. When,
in the case of FES, the conserved field is frozen in the
sence of activity, the critical behavior is expected to fall in
universality class distinct from that of directed percolati
@14#. @Directed percolation~DP! universality is generic for
continuous absorbing-state transitions in the absence
conservation law.# One motivation for the present study is
determine the critical behavior of a one-dimensional exam
of this recently identified class.

In sandpiles the configuration evolves through a serie
‘‘toppling’’ events, which may be either deterministic or st
chastic. The well-known Bak-Tang-Wiesenfeld~BTW! sand-
pile has a deterministic toppling rule, allowing man
stationary-state properties of the driven sandpile to be fo
exactly @15,16#. A less desirable aspect of the determinis
dynamics is that in the steady-state only a small subset o
possible configurations~determined by the initial state! are
visited @15#. This leads to strong nonergodic effects in t
1063-651X/2001/64~5!/056104~7!/$20.00 64 0561
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FES version of the BTW automaton@12#. Here we study a
stochastic FES that is expected to be ergodic.

We find that the model exhibits the hallmarks of a
absorbing-state critical point, including finite-size scalin
familiar from studies of directed percolation or the conta
process@17#. The one-dimensional Manna model defines
universality class different from that of DP, and that of t
linear-interface depinning transition model~LIM ! @18#. Con-
nections have been drawn between sandpile criticality
both DP~in a field-theoretical description@19#! and the LIM
~via an interface mapping@12,13#!. The balance of this pape
is organized as follows. In Sec. II we define the model a
our simulation procedure. Numerical results are analyzed
the contexts of absorbing-state phase transitions and
driven interfaces, in Sec. III. In Sec. IV we summarize a
discuss our findings.

II. MODEL

Our model, a variant of the Manna sandpile@20,21#, is
defined on a one-dimensional lattice ofL sites with periodic
boundaries. The configuration is specified by the numbe
particleszi50,1,2, . . . ateach site; sites withzi>2 are said
to be active. A Markovian dynamics is defined by the top
pling rate, which is unity for all active sites and zero for sit
with zi,2. When a sitei topples, it sends two particles t
adjacent sites (zi→zi22); the particles move independent
to randomly chosen nearest neighborsj and j 8 ( j , j 8P$ i
11,i 21%). ~Thus j 5 j 8 with probability 1/2.! The dynamics
conserves the number of particlesN, which is fixed by the
initial configuration.

For densitiesz5N/L<1 absorbing configurations exis
in which all sites havezi,2. But since the fraction of ab
sorbing configurations vanishes asz→1, it is reasonable to
expect a phase transition from an absorbing to an ac
phase at somezc,1. Simulations bear this out and show th
there is a continuous transition atzc.0.9488.
©2001 The American Physical Society04-1
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In most cases we use random sequential dynamics:
next site to topple is chosen at random from a list of act
sites, which is updated following each toppling. The tim
increment associated with a toppling isDt51/NA , whereNA
is the number of active sites just prior to the event. In t
way ^NA& sites topple per unit time, just as in a simult
neously updated version of the model.~In a simultaneous
dynamics all active sites topple at each update;Dt[1, re-
gardless of the number of active sites.! We expect the two
dynamics to be equivalent insofar as scaling properties
concerned; simultaneous updating was used in some o
interface representation studies discussed below.

In most of our simulations, the initial condition is gene
ated by distributingzL particles randomly among theL sites,
yielding an initial ~product! distribution that is spatially ho-
mogeneous and uncorrelated. Once the particles have
placed, the dynamics begins.~We verified that allowing
some toppling eventsduring the insertion phase has no effe
on the stationary properties.!

III. SIMULATION RESULTS

A. Absorbing-state phase transition

We simulated the model on systems ranging fromL
5100 to about 104 sites.~Sincez5N/L with N andL inte-
gers, we are obliged to use different sets ofL values to study
different densitiesz.! In stationary-state simulations, we co
lect data over an interval oftm time units, following a relax-
ation period of t r . For small systems,tm and t r are
of the order of 103, but for our largest systems we use
t r>53106 and tm52.53106. We verified that our results
show no systematic variation with time fort.t r . In practice
tm is limited because forz.zc , the survival probability de-
cays sensibly over this time scale; in some cases only a
25% of the trials survive to timet r1tm . We average overNs
independent trials, each with a different initial configurati
with Ns ranging from 23105 for L5100, to 500 or 1000 for
L.104.

Figure 1 shows the overall dependence of the station
active-site density as a function ofz; the points represen
extrapolations of results forL5100–5000 to theL→` limit.
The data indicate a continuous transition from an absorb

FIG. 1. Stationary active-site density versus energy densitz.
The points represent extrapolations of data forL5100–5000 to the
L→` limit.
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state (ra50) to an active one atzc in the vicinity of 0.95.
Our first task is to locate the critical valuezc . To this end

we studied the stationary active-site densityr̄a and its sec-
ond momentr̄a

2 , anticipating that as in other absorbing-sta
phase transitions, the active-site density~i.e., the order pa-
rameter! will obey finite-size scaling@22#,

r̄a~D,L !5L2b/n'R~L1/n'D!, ~1!

whereD[z2zc andR is a scaling function.R(x);xb for
large x, since forL@j;D2n' we expectr̄a;Db (j is the
correlation length!. WhenD50 we haver̄a(0,L);L2b/n'.
For D.0, by contrast,r̄a approaches a stationary valu
while for D,0 it falls off as L2d. Thus in a double-
logarithmic plot ofr̄a versusL, supercritical values (D.0)
are characterized by an upward curvature, while forD,0
the graph curves downward~see Fig. 2!. Using this criterion
~specifically, zero curvature in the data forL>1000), we
find zc50.948 87(7), with the uncertainty reflecting the sca
ter in our numerical results for the curvature~see Fig. 2,
inset!. The associated exponent ratio isb/n'50.235(11). A
similar analysis of the data forr̄a

2 yields zc50.948 83(5)
with an exponent of 2b/n'50.483(18). We therefore adop
the estimateszc50.948 85(7) andb/n'50.239(11).

In order to characterize dynamical scaling, we studied
survival probabilityP(t), i.e., that there is at least one activ
site in the system. In systems with an absorbing state,
survival probability decays exponentially,P(t);e2t/t, with
the lifetime t;Lz at the critical point. Figure 3 shows th
typical behavior of the survival probability in relation to th
relaxation of the active-site densityr. We see that the latte
relaxes on a shorter time scale thanP(t), and that the sur-
vival probability does indeed decay exponentially in the s

FIG. 2. Stationary active-site density vs system size. From b
tom to top, z 5 0.948, 0.948 57, 0.948 64, 0.948 74, 0.948
0.948 92, 0.949, and 0.95. The inset shows the curvatureb of the
log-log plot as a function ofz for L>1000. The straight line is a
least-squares linear fit.
4-2
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tionary regime as is usual at an absorbing-state phase tr
tion @17#. Analyzing the lifetime in a series of studies atz
50.9488 for system sizesL51250, 2500, 5000, and 104, we
find z51.58; a similar series of studies atz50.948 92 yields
z51.70 ~see Fig. 4!. ~We generated 3000–5000 realizatio
for each system size.! Given our estimate forzc quoted
above, we conclude thatz51.63(7); therather large uncer-
tainty reflects the sensitivity of ourz estimates to smal
changes inzc . The scaling of the timetr for the active-site
density to attain its stationary value yields a similar resu

We also studied the autocorrelation function for the nu
ber of active sitesNa ,

C~ t !5
^Na~ t01t !Na~ t0!&2^Na&

2

^Na
2&2^Na&

2
~2!

in the stationary state. To obtain clean results forC(t) we
study surviving trials in relatively long runs~from tm
523105 for L5625, to 53106 for L5104; this obliges us
to reduce our sample to 200 surviving trials forL<2500 and
100 surviving trials forL>5000). Results forz50.9488 are
shown in Fig. 5:C(t) decreases monotonically, but does n
follow a simple exponential decay. To study the depende
of the relaxation time on system size, we determine the t

FIG. 3. Decay of the active-site densityr and of the survival
probability P in a system ofL55012 sites atz50.948 92.

FIG. 4. Lifetime t vs system size. Filled symbols,z50.9488;
open,z50.948 92. The straight lines are least-squares linear fit
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poral rescaling factorr required to obtain a data collaps
betweenC(t;L/2) andC(t/r ;L). A good collapse is possible
~see Fig. 5!, but the rescaling factor depends onL; for L
52n3625, we uset* 5t/r n with r 52.93, 2.91, and 2.89 for
n51, 2, and 3, respectively. The rescaling factorr appears to
approach a limiting (L→`) value of 2.80~5!, corresponding
to a relaxation time that scales ast;Ln uu /n' with n uu /n'[z
5 lnr/ln2.1.5. This value is consistent with that obtaine
from the lifetime analysis, but is less reliable, sinceC(t)
does not follow a simple exponential decay, and we have
extrapolate the rescaling factor toL→`.

Next we examine the stationary scaling of the order
rameter away from the critical point. We determined the s
tionary active-site densityr̄a(z,L) for z in the vicinity of zc
for system sizesL5100-5000. We analyze these data usi
the finite-size scaling form of Eq.~1!, which implies that a
plot of Lb/n'r̄a(D,L) versusL1/n'D should exhibit a data
collapse. We shift each data set~in a log-log plot ofLb/n'ra
versus L1/n'D) vertically by (b/n')ln L, using b/n'

50.239 as found above, and determine the horizontal sh
S(L) required for data collapse. The latter followS(L)
5n'

21lnL with n'
2150.553(3). That these values yield a

excellent data collapse is evident from Fig. 6. The slope
the scaling plot~linear regression using the 25 points wi
ln(L1/n'D).20.5) yields b50.410(4). This is somewhat
smaller than, but consistent with, the estimateb50.43(2)
obtained by combining n'

2150.553(3) and b/n'

50.239(11). We adoptb50.42(2) as our final estimate.

B. Interface representation

The interface representation is constructed by defin
height variablesHi(t) that count the number of topplings a
site i up to timet. The dynamics of the interface represen
tion is discussed in Refs.@12,13#; the latter reference de
scribes the discrete interface equation for the Manna mo
in greater detail.

In the interface description the system undergoes a de
ning transition at a critical force value equivalent toz5zc

FIG. 5. Inset: Stationary autocorrelation functionC(t) vs t at
z50.9488 for~left to right! L5625, 1250, 2500, 5000, and 104. In
the main graph the data are plotted vs a rescaled timet* defined in
the text.
4-3
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@23,24#. The interface behavior, assuming simple scaling
described by two exponents: the roughness exponenta and
the early-time exponentbW . Introducing the widthW as
usual,

W2~ t,L !5^@Hi~ t !2H̄~ t !#2& ~3!

@hereH̄(t) is the mean height#, these exponents are define
via

W2~ t,L !;H t2bW t!t3

L2a t@t3 ,
~4!

where the crossover timet3;Lz. Assuming that the correla
tions in the interface can be described by a single len
scale, we have the exponent relationbWz5a.

This scaling picture, familiar from the study of surfac
growth, was recently shown to apply in the case of a sim
absorbing-state phase transition@25#. For the one-
dimensional Manna model the situation is complicated
several factors. First, the noise appearing in the interf
description has two contributions: a columnar component
flecting the initial configuration and a noise field arising fro
the random redistribution of particles in toppling events@13#.
The interface dynamics will therefore exhibit a crossov
from a regime dominated by the initial configuration to
randomness-dominated regime. This effect also appear
higher dimensions, but ind51, due to the meager phas
space, relaxation is much slower and transient effects ma
much more severe.

A special aspect of one-dimensional interface model
anomalous scaling, i.e., the two-point correlation function
the surface roughness scales with a different exponent,a loc ,
than the exponenta defined in Eq.~4!. For fundamental
reasons,a loc<1 @18,26#. The exponenta can attain larger
values; for example,a51.25 for the one-dimensional LIM
@18#. The exponents are related viaa5a loc1k, where k
measures the divergence of the height difference betw
neighboring sites with time. Thus, anomalous scaling imp
that the typical height difference between neighboring s

FIG. 6. Scaling plot of the active-site density versusD[z
2zc . Symbols: 1, L5100; d, L5200; 3, L5500; s, L
51000; h, L52000; L, L55000.
05610
s

th

le

y
e
-

r

in

be

is
f

en
s
s

increases without limit ast→`. Since larger systems have
longer lifetime, this has implications for the roughness
measured byWsat

2 5W2(tsat ,L), tsat being the time at
which the absorbing state is reached. The saturation w
Wsat scales asLa, with a related tobW andz as above. In
models exhibiting an absorbing state such as the contact
cess or a FES, the width saturates only because activity e
tually ceases; the width insurviving trials does not saturate
This is in marked contrast to interface models, in which t
width saturates due to the Laplacian term representing
face tension, since the noise is bounded. The interface
scription of the Manna model, like other absorbing-sta
phase transitions and their associated interface repres
tions @25#, includes a noise term whose strength grows wh
there is activity@13#.

Finally, in absorbing-state models, interface scaling
pears to be strongly linked to the approach to the station
state. In a model with simple scaling~i.e., unique diverging
length and time scales and no conserved quantities!, the
growth exponentbW is related to the critical exponentu
governing the initial decay of activity viabW1u51 @25#. In
the present case relaxation is complicated by effects that
mimic ~for a certain time! columnar disorder.

We studied the interface widthW2(t,L) in systems of size
L51253, 2506, 5012, 10 024, and 20 048, atz50.948 92.
The dependence of the saturation width on system size yi
a51.42(1). We then attempt to collapse the data f
W2(t,L) using this exponent and varyingz to obtain the best
collapse; in this way we findz51.65(2). Theresulting scal-
ing plot ~Fig. 7! of W̃2[W2/L2a versus t̃[t/Lz shows a
good collapse, and an apparent power-law growth in
roughness, following an initial transient. From the scali
relation bW5a/z we obtainbW50.863(13); a direct fit to
the time-dependent width data yieldsbW50.87(2). For
comparison, an independent series of studies atz50.9490
were performed to determinetsat and the saturation width
Wsat for L5400 to L56400. Power-law fits to these dat
yield essentially consistent results, i.e.,a51.48(2),

FIG. 7. Scaling plot ofW̃2[W2/L2a vs t̃[t/Lz for z50.9489,
using a51.41 and z51.645. System sizes~top to bottom! L
51253, 2506, 5012, 10 024, and 20 048.
4-4
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FIG. 8. Scaling plot of satura-
tion width vs lifetime in indi-
vidual trials, z50.9490, L
5400–6400.
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bW50.86(2), and z51.70(3). Figure 8 shows a clea
power-law dependence of the saturation width on the l
time in individual runs.

Similarly to the case of the LIM@18#, we find that there is
an independentlocal roughness exponenta loc that describes
the two-point kth order height-height correlation functio
Gk(r )5^uHi 1r2Hi uk&;r ka loc for r ,j(t);t1/z. We find
a loc50.59(3) fork51, . . . ,8.This shows that the interfac
is self-affine, not multifractal.

We note that the interface exponents of the Manna sa
pile arenot those of the one-dimensional LIM. This is mo
likely due to the fact that, perhaps differently from the tw
and higher-dimensional cases, here it is important that
noise termincreasesin strength with the propagation of th
interface, or with sustained activity. Thus the anomaly ex
nent k indicates an even stronger dependence of the
height onL at saturation than in the LIM. The same is al
true if the step height is considered as a function of time
t,tsat : we find kManna;0.82;kLIM 10.5.

C. Initial relaxation

At the critical point of a simple absorbing-state mod
such as the contact process, starting from a uniform in
condition with activity densityra.0, ra exhibits an initial
power-law decay,ra;t2u, followed by a crossover to the
quasistationary valuer̄a;L2b/n' @17#. As noted above the
growth exponent is related to the activity-decay exponent
u1bW51 if only one time scale is present@25#. A plot of
Lb/n'ra(t) versust/Lz yields a data collapse to a scalin
function that is independent ofL. In the present case~Fig. 9!,
we see that the collapse is imperfect and that the form
ra(t) changes withL. Herez was chosen so as to optimiz
the collapse at long times, yieldingz51.75(3). For large
systems, the active-site density exhibits three distinct
05610
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gimes before reaching the quasistationary state: an in
power-law decay~I!, followed by a crossover to a slowe
power-law regime~II !, and finally a rapid approach~III ! to
the stationary state. ForL520 048, the exponents associat
with regimes I and II are 0.163 and 0.144, respective
While the latter exponent is in reasonable agreement with
scaling relationbW1u51, it is clear that relaxation to the
stationary state is more complicated for the sandpile than
say, the contact process, which presents a unique power
regime. A qualitative explanation may be found in the inte
face representation: the short-time dynamics is dominated
relaxation of the initial configuration, which in the interfac
language means that at short times, columnar noise do
nates.

A related facet of the relaxation process is the approac
the mean height to its global valuez at a site with initial

FIG. 9. Scaled active-site density vs scaled time forz50.9489,
system sizesL51253, . . . , 20 048 asindicated.
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RONALD DICKMAN et al. PHYSICAL REVIEW E 64 056104
heightz(0). In Fig. 10 we plot the mean height^z(t)uz(0)&
in at system of 1400 sites atzc , averaged over 2000 trials
The inset shows that the asymptotic approach toz is approxi-
mately power law,u^z(t)uz(0)&2zu;t2f, with f.0.46,
0.45, 0.47, 0.50, and 0.53 forz(0)50, 1, 2, 3, and 4, respec
tively. All of these exponents are close tof51/2, the value
expected for uncorrelated diffusion.

IV. DISCUSSION

We studied the scaling behavior of a one-dimensio
fixed-energy sandpile with the same local dynamics as
Manna model. The model exhibits a continuous phase t
sition between an absorbing state and an active one
critical particle densityzc50.948 85(7). The phase transi-
tion in the one-dimensional stochastic sandpile is charac
ized by the critical exponentsb50.42(2) andn'51.81(1),
which differ significantly from those associated with direct
percolation (b50.2765,n'51.0968) and linear-interface de
pinning @b50.25(3),n'.1.3#. While absorbing-state phas
transitions are expected to fall generically in the direc
percolation universality class@27,28#, it is reasonable to ex
empt the Manna model from this rule due to local conser
tion of particles; this conservation law is expected to alter
universality class. In fact, studies of various models with
same local conservation law as the Manna sandpile, in
mensionsd.1, indicate a common universality class f
models sharing this feature@12,14,29#.

Studying the interface representation of the model,
obtain the roughness exponenta51.48(2) and growth expo
nent bW50.86(2), which should be compared wit
a51.33(1), bW50.839(1) for DP anda51.25(1), bW
50.88(2) for LIM. Study of the height-height correlatio
function yields the local roughness exponenta loc50.59(3);
the corresponding DP value is 0.63(3)@25#.

Given the discrepancy between sandpile and LIM ex
nents found here, the apparent agreement between thes
of exponents in two dimensions suggests that either the
merical equivalence is fortuitous, or that the noise in

FIG. 10. Mean height̂ z(t)uz(0)& of sites with initial height
z(0), in a system of 1400 sites atzc , averaged over 2000 trials
From bottom to top:z(0) 5 0, 1, 2, 3, and 4. The inset is a plot o
lnu^z(t)uz(0)&2zu vs ln t.
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interface equation has a fundamentally different structure
pending on the dimension. It is worth remarking that o
result for roughness exponent is rather close toa53/2, the
value one expects if only the columnar component of
noise is relevant@30#. The other exponents, however, see
to be far from the columnar-disorder universality class~i.e.,
n'52, z52, b51, andbw53/4) @30#. In linear interface
models, translational invariance of the noise can be use
derive the scaling relation (22a)n'51 @31#. Our results do
not satisfy this relation.

We determined the dynamic exponentz using several dif-
ferent approaches:~1! scaling of the lifetime at the critica
point @z51.63(7)#; ~2! from the temporal rescaling require
for a data collapse of the interface width,W2(t) @z
51.65–1.70#; ~3! from a data-collapse analysis of the initi
decay of the activity@z51.70(5)#. Pooling these results we
have z51.66(7), which rules out the LIM value ofz
51.42(3)@18#. In the context of interface depinningz can be
linked to the other exponents via the scaling relationz
5b/n'1a @31#. Inserting the values ofb, n' , anda mea-
sured in our simulations, we obtainz51.7, consistent with
our result forz.

We note that the present model does not exhibit the str
nonergodic effects observed in the fixed-energy version
the BTW sandpile. The relaxation of the mean height^zi(t)&
from its initial value to the average,z, follows a power law
with an exponent'1/2. We find good evidence for finite
size scaling, in contrast with most driven sandpiles@32–34#.
In summary, we have identified a one-dimensional sand
model that exhibits an absorbing-state phase transition as
relevant temperaturelike parameter~the energy density! is
varied. It appears to be the ‘‘minimal model’’ for absorbin
state phase transitions belonging to a recently identified
versality class associated with a conserved density. Prel
nary studies indicate that the driven version of the mo
exhibits scale-invariant avalanche statistics@3,35#. We may
therefore hope that analysis of the driven model, and
spreading of activity at the critical point of the fixed-ener
system, will permit us to establish detailed connections
tween scale invariance under driving and the underly
absorbing-state phase transition.

Let us stress, finally, that while in higher dimensions t
linear-interface depinning universality class appears to c
cide with that of an absorbing-state phase transition in
presence of a conserved static field, our present results s
that this equivalence is violated ind51. It will be interesting
to study other one-dimensional systems with absorbing st
and an order parameter coupled to a static conserved
@4,14,29# in order to compare the critical exponents a
anomalies with those reported in this paper.
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@9# M.A. Muñoz, R. Dickman, A. Vespignani, and Stefano Za

peri, Phys. Rev. E59, 6175~1999!.
@10# A. Chessa, E. Marinari, and A Vespignani, Phys. Rev. Lett.80,

4217 ~1998!.
@11# A. Montakhab and J.M. Carlson, Phys. Rev. E58, 5608

~1998!.
@12# A. Vespignani, R. Dickman, M.A. Mun˜oz, and S. Zapperi,

Phys. Rev. E62, 4564~2000!.
@13# M. Alava and K.B. Lauritsen, Europhys. Lett.53, 569 ~2001!;

e-print cond-mat/0002406.
@14# M. Rossi, R. Pastor-Satorras, and A. Vespignani, Phys. R

Lett. 85, 1803~2000!.
@15# D. Dhar, Physica A263, 4 ~1999!, and references therein.
@16# V.B. Priezzhev, J. Stat. Phys.74, 955 ~1994!; E.V. Ivash-

kevich, J. Phys. A27, 3643 ~1994!; E.V. Ivashkevich, D.V.
Ktitarev and V.B. Priezzhev, Physica A209, 347 ~1994!.
05610
,

v.

@17# J. Marro and R. Dickman,Nonequilibrium Phase Transitions
in Lattice Models~Cambridge University Press, Cambridg
1999!.

@18# H. Leschhorn, Physica A195, 324 ~1993!.
@19# M. Paczuski, S. Maslov, and P. Bak, Europhys. Lett.27, 97

~1994!; 28, 295 ~1994!.
@20# S.S. Manna, J. Phys. A24, L363 ~1991!.
@21# S.S. Manna, J. Stat. Phys.59, 509 ~1990!.
@22# M. E. Fisher, inFenomini Critici, Proceedings of the Interna

tional School of Physics ‘‘Enrico Fermi,’’ Course LI, Varenna
1970 ~Academic Press, New York, 1971!; M.E. Fisher and
M.N. Barber, Phys. Rev. Lett.28, 1516 ~1972!; Finite Size
Scaling, edited by J. Cardy,~North-Holland, Amsterdam,
1988!.

@23# A.-L. Barabási and H. E. Stanley,Fractal Concepts in Surface
Growth ~Cambridge University Press, Cambridge, 1995!.

@24# T. Halpin-Healy and Y.-C. Zhang, Phys. Rep.254, 215~1995!.
@25# R. Dickman and M.A. Mun˜oz, Phys. Rev. E62, 7632~2000!.
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