Sillanpää, Mika; Lehtinen, Teijo; Paila, Antti; Makhlin, Yuriy; Hakonen, Pertti J.
Continuous-time monitoring of Landau-Zener interference in a Cooper-pair box

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.96.187002

Published: 01/01/2006

Please cite the original version:
Continuous-Time Monitoring of Landau-Zener Interference in a Cooper-Pair Box

Mika Sillanpää,1 Teijo Lehtinen,1 Antti Paila,1 Yuriy Makhlin,2,1 and Pertti Hakonen1

1Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland
2Landau Institute for Theoretical Physics, 119334 Moscow, Russia

(Received 9 December 2005; published 9 May 2006)

Landau-Zener (LZ) tunneling can occur with a certain probability when crossing energy levels of a quantum two-level system are swept across the minimum energy separation. Here we present experimental evidence of quantum interference effects in solid-state LZ tunneling. We used a Cooper-pair box qubit where the LZ tunneling occurs at the charge degeneracy. By employing a weak nondemolition monitoring, we observe interference between consecutive LZ-tunneling events; we find that the average level occupancies depend on the dynamical phase. The system’s unusually strong linear response is explained by interband relaxation. Our interferometer can be used as a high-resolution Mach-Zehnder-type detector for phase and charge.

DOI: 10.1103/PhysRevLett.96.187002

PACS numbers: 74.50.+r, 73.23.Hk

The Landau-Zener (LZ) tunneling is a celebrated quantum-mechanical phenomenon, taking place at the intersection of two energy levels that repel each other [1]. The LZ theory, developed in the early 1930s in the context of slow atomic collisions [2–4] and spin dynamics [5], demonstrated that transitions are possible between two approaching levels as a control parameter is swept across the point of minimum energy splitting. The asymptotic probability of a LZ-tunneling transition is given by [2–5]

\[P_{LZ} = \exp \left(-2\pi \frac{\Delta^2}{h\nu} \right), \tag{1} \]

where \(\nu \equiv d(e_1 - e_0)/dt \) denotes the variation rate of the energy spacing for noninteracting levels, and \(2\Delta \) is the minimum energy gap.

Yet for truly quantum-mechanical systems, more fundamental is the transition amplitude, which allows for interference. As two atoms collide, the wave-function phase accumulated between the incoming and outgoing traversals varies with, e.g., the collision energy giving rise to Stueckelberg oscillations in the populations [6]. Typically, however, the phase is large and rapidly varies with energy, which allows one to average over these fast oscillations [4,7], neglecting the interference.

Recently, quantum coherence in mesoscopic Josephson tunnel junctions has been investigated extensively [8–11]. In these artificial two-level systems, energy scales can easily be tuned into a range feasible for studies of fundamental phenomena. We used a charge qubit based on a Cooper-pair box (CPB) to obtain the first evidence of LZ-tunneling in nonatomic systems. A continuous nondemolition measurement developed by us [12], which provides minimal backaction to the qubit, allowed for monitoring the average level occupancies of the CPB and thus observation of the LZ interference.

Our CPB is a single-Cooper-pair transistor (SCPT) embedded into a superconducting loop. The island has the charging energy \(E_C = e^2/(2C) \sim 1 \) K, and the junctions have the Josephson energies \(E_J(1 \pm d) \), where \(d \) quantifies the asymmetry. The SCPT is equivalent to a CPB, but with a Josephson energy of 2\(E_J \cos(\phi/2) \) tunable by the superconducting phase across the two junctions, \(\phi = 2\pi\Phi/\Phi_0 \).

When \(E_C \gg E_J \), the Hamiltonian of the CPB is conveniently written in the eigenbasis \(\{|2n\rho\} \) of the island charge operator, taking only two charge states into account:

\[H = -\frac{1}{2} E_\sigma \sigma_y - \frac{1}{2} E_x \sigma_x = \begin{pmatrix} \epsilon(n_g) & -\Delta \\ -\Delta & -\epsilon(n_g) \end{pmatrix}, \tag{2} \]

where \(\epsilon = -\frac{1}{2} B_x = -2E_C(1 - n_g) \) and \(\Delta = \frac{1}{2} B_x = E_J \cos(\phi/2) \). The asymmetry \(d \neq 0 \) in Josephson energies would limit the minimum off-diagonal coupling \(|\Delta| \). The eigenvalues of Eq. (2), \(E_0(n_g, \phi) \) and \(E_1(n_g, \phi) \), are the two lowest bands as illustrated by Fig. 1(a). By \(|0\rangle = |1, 0 \rangle^\dagger \) and \(|1\rangle = |0, 1 \rangle^\dagger \), we denote the corresponding \((n_g, \phi) \)-dependent eigenfunctions. Far from the crossing, they are roughly charge eigenstates.

The Hamiltonian of Eq. (2) is similar to the original LZ problem, and the linearly growing band gap \(E_1 - E_0 = \epsilon_1 - \epsilon_0 = 4E_C(1 - n_g) \) has the minimum \(2\Delta \) at the charge degeneracy (avoided crossing) at \(n_g = 1 \). As \(n_g \) is swept through this point (similar to the interatomic distance during a collision), one obtains the asymptotic transition probability between levels 0 and 1 as in Eq. (1). This kind of incoherent limit of the LZ problem has also been observed in superconducting qubits [10].

More fundamentally, however, the asymptotic probability in Eq. (1) comes from the unitary transformation taking place at the avoided crossing [13,14]:

\[U_1 = \begin{pmatrix} \cos(\theta/2) \exp(i\phi_\delta) & i \sin(\theta/2) \\ i \sin(\theta/2) & \cos(\theta/2) \exp(-i\phi_\delta) \end{pmatrix}. \tag{3} \]

Here, \(\sin^2(\theta/2) = P_{LZ} \). The phase jump \(\phi_\delta = \phi - \pi/2 \) is due to the Stokes phase \(\phi_\delta \) related to the general Stokes phenomenon [15]. It depends on the adiabaticity parameter \(\delta = \Delta^2/h\nu \) [cf. Eq. (1)], viz., \(\phi_\delta = \pi/4 + \arg[\Gamma(1 - i\delta)] + \delta(\ln\delta - 1) \), where \(\Gamma \) is the Gamma function. In
Indeed, subsequent LZ-tunneling events with time interval relevant time scales, as suggested by Shytov tunneling is to repeat the level crossing faster than the gate charge sweep.

The transition amplitude $p_{AD} = \langle \Psi|1\rangle = \langle 0|U^+|1\rangle$ is the z projection of the Bloch vector. Evaluating Eq. (5) we find $p_{AD} = i \exp(\pm \frac{\varphi_R}{2}) \cos(\varphi_L/2 - \tilde{\varphi}_S) \sin(\theta)$, and the probability $P_{AD} = |p_{AD}|^2$ of reaching the point D:

$$|p_{AD}|^2 = 2P_{LZ}(1 - P_{LZ})[1 + \cos(\varphi_L - 2\tilde{\varphi}_S)].$$

It is easy to see in Fig. 1(b) that P_{AD} is generally maximized (constructive interference) when the z rotations bring the Bloch vector back to the starting meridian, for then the total x rotation is maximized. This is achieved when the total phase $\varphi_L - 2\tilde{\varphi}_S$ is a multiple of 2π. Under continuous driving, this has the obvious generalization which corresponds to the Bloch vector rotating stepwise around a fixed axis in the x-y plane; the condition

$$\varphi_L - 2\tilde{\varphi}_S = 2\pi$$

ensures constructive interference (50% time-averaged populations of both levels). For example, in the adiabatic limit, $\varphi_{L,R}$ have to be odd multiples of π. The resonance conditions in Eq. (7) are seen overlaid in Fig. 3 (see below) as the black solid and dashed lines.

Our experimental scheme is illustrated in Fig. 2. The weak, continuous measurement signal tracks the time average, subject to a strong LZ drive, of the Josephson capacitance of a CPB: $C_{eff} \propto \frac{2E_i(n_{eq})}{\Delta^2/\hbar v}$. probed at $f_0 = 803$ MHz. The scheme is discussed in detail in Ref. [12]. The difference in C_{eff} for the levels 0, 1 allows us to determine the average state of the CPB (see the discussion below).

We made extensive scans of the CPB reflection by varying the LZ-drive frequency f_{eff} = 0.1–20 GHz and its amplitude $\delta n_{eq} = 0$–3 electrons, as well as the qubit bias n_{eq} and φ. We observe a clear interference pattern (Fig. 3) whose main features confirm the coherent LZ-tunneling picture: (1) onset of the interference speckles where the rf drive just reaches the avoided crossing, with

FIG. 2 (color online). Schematics of our experiment. (a) The resonant frequency $f_0 \sim 800$ MHz of the lumped-element LC circuit is tuned by the Josephson capacitance C_{eff} of the CPB shown in the scanning electron micrograph. The maximum CPB Josephson energy $2E_J = 12.5$ GHz could be tuned down to 2.7 GHz by magnetic flux Φ. The total junction capacitance amounts to $C_J = C_1 + C_2 \sim 0.44$ fF, yielding a Coulomb energy of $e^2/(2C_J + C_C) = 1.1$ K. (b) C_{eff} calculated for the two lowest levels of our CPB with $E_J/E_C = 0.27$ and asymmetry $d = 0.22$, at $\phi = 0$.

187002-2
were calculated by the strong rf drive. The theory grids in Figs. 3(a) and 3(b) do not allow a clear verification of such a small effect. We attribute the slight asymmetries in the data with respect to \(n_g = -1 \) and the rf amplitude; (2) the density of the dots is proportional to \(1/f_{\text{rf}} \) in the direction of \(n_{g0} \) as well as \(\delta n_{\text{rf}} \); (3) the pattern loses its contrast below a certain drive frequency, here at \(f_{\text{rf}} \sim 2 \text{ GHz} \), due to the loss of phase memory over a single LZ cycle. Note also the destructive interference dots at high drives, where the qubit remains basically on the low-

According to Eq. (7), the phase difference \(\phi_+ \equiv \phi_L - \phi_R \equiv 2\pi \frac{4E_y(n_{g0} - 1)}{\hbar \omega_{\text{rf}}} \) is a multiple of \(2\pi \) at resonances, implying the location of the population peaks on the lines of fixed rf amplitude with spacings \(\Delta n_{g0} = \hbar \omega_{\text{rf}}/(2E_y) \). We observe the expected linear frequency dependence, as illustrated in Fig. 3(c).

The magnitude of the response in Fig. 3 forces one to study a complicated relation between the relevant time scales. \(C_{\text{eff}}(n_{g0}) \) generally has contributions from how both the energies and populations depend on \(n_g \). Furthermore, one has to time average over the strong LZ swing in \(n_g(t) \). Therefore, we have

\[
C_{\text{eff}}(n_{g0}) \propto \left\langle \frac{d^2}{dn_g^2} \left[p_0(n_g)E_0(n_g) + p_1(n_g)E_1(n_g) \right] \right\rangle. \tag{8}
\]

The dominant contribution is determined by the relative magnitude of the time scales of the LZ drive \(1/f_{\text{rf}} \), time of the measurement swing \(1/f_0 \), and the relaxation time \(T_1 \) (we suppose \(f_{\text{rf}} \gg f_0 \)). (a) Long relaxation time, \(T_1 \gg 1/f_0 \). During the measurement swing, populations do not relax into their quasiequilibrium values, \(d^2/dn_g^2(p_0(n_g)) = 0 \) and \(C_{\text{eff}} \) is small. (b) A short relaxation time, \(T_1 \ll 1/f_0 \). The populations follow \(p_{01}(n_g) \) according to the instantaneous ac gate charge due to the

FIG. 3 (color online). Interference patterns, measured via the microwave phase shift. (a) \(f_{\text{rf}} = 4 \text{ GHz} \) and phase \(\phi = 0 \) (i.e., level repulsion \(2A = 2E_y = 12.5 \text{ GHz} \)). The color codes indicate the equivalent capacitance obtained using standard circuit formulas. Around \(n_{g0} = -1 \), the conditions of constructive Landau-Zener interference are illustrated: \(\phi_L = 2\phi_S \) (solid lines) and \(\phi_R = 2\phi_S \) (dashed line) are multiples of \(2\pi \) [see Eq. (7)], with the \(\nu \)-dependent Stokes phase \(\phi_S \). The highest (red) population of the upper state is expected when both conditions are satisfied. The equivalent capacitance contour \(C_{\text{eff}} = 0 \) around \(n_g = 1 \), obtained from the simulation of the Bloch equations (Fig. 4), agrees well with the predicted resonance grid and with the data. (b) The corresponding measurement with \(f_{\text{rf}} = 7 \text{ GHz} \). (c) The average gate spacing between the central interference peaks [see (a)], for the phase bias 0 (square) and \(\pi \) (circle). The expected linear behavior yields a fit \(E_c = 1.1 \), about 25% higher than we obtained by rf spectroscopy [12].

We observe the slight asymmetries in the data with respect to \(n_g = \pm 1 \) to background charge drift caused by the strong rf drive. The theory grids in Figs. 3(a) and 3(b) were calculated by the \(\nu \)-dependent Stokes phase \(\phi_S \). However, since the Stokes phase amounts typically only to a 10%-20% shift of the grid, roughnesses in the data do not allow a clear verification of such a small effect.

The patterns are \(2e \) periodic in \(n_{g0} \) at weak rf excitation. At stronger excitation on the order of \(e/2 \), an additional, shifted pattern makes the signal almost \(e \) periodic [Fig. 3(a)]. The origin of these odd sectors can be understood from the energy diagram in Fig. 1: When the rf drive brings the system past a crossing point of \(E_1 \) and \(E_0^{\text{odd}} \), it becomes energetically favorable to enter an odd particle-number state [19], resulting in a shift by \(e \) in the interference pattern.
As two partial waves, AOBOD, the translation is seen to reproduce the major features of the measured pattern. This corresponds at the degeneracy point to the imaginary part Qg 0.0309049. To obtain the ridges in Bloch simulations, we have to put the imaginary part Ceff = Q−1 Q+0.0135 Q−0.0135. The resulting capacitance at f = 4 GHz is illustrated in Fig. 4. The values α = 0.04 and δnac = 0.03 were taken in order to match the measured pattern. This corresponds at the degeneracy point to 0.5 ns which is close to other estimates. The calculation is seen to reproduce the major features of the measured interferograms [22].

The LZ interference in Fig. 1(a) can also be interpreted as two partial waves, AOBOD and AOCOD, similarly to an optical Mach-Zehnder interferometer [23]. We propose to apply the LZ interferometry for sensitive detection of phase and charge [12,24–26], where it can be viewed as integrating phase amplifier for the superconductor phase φ across the device. The interferometer transforms tiny changes of φ (or magnetic flux Φ) into a huge modulation of the wave-function phase ϕ by basically integrating the hatched area [11] in Fig. 1, but with a limitation on the measurement signal amplitude.

Fruitful discussions with R. Fazio, M. Feigelman, T. Heikkilä, F. Hekking, M. Paalanen, and A. Shnirman are gratefully acknowledged. This work was financially supported by the Academy of Finland, the National Technology Agency, and the Vaisala Foundation of the Finnish Academy of Science and Letters.

FIG. 4 (color online). Calculated Ceff, using Bloch equations and linear-response theory, with α = 0.04, δnac = 0.06σ pp. The inclined white lines indicate the threshold of the LZ tunneling, where the driving signal n(t) touches, but does not cross, a degeneracy point. The comparison with data in Fig. 3 is performed by the equicapacitance contours for Ceff = 0 fF.