Kopnin, N.B.; Volovik, G.E.

Kopnin and Volovik Reply to comment "invalidity of classes of approximate Hall effect calculations"

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.80.5026

Published: 01/01/1998

Please cite the original version:
Kopnin and Volovik Reply: In his Comment [1] to our paper [2], Ao points out the main reason why he thinks our calculations are not correct. The reason is not specific to the particular paper [2] but rather refers to all of our microscopic calculations (see also [3], etc.) of vortex dynamics. It is, as he claims, the incorrect use of the τ approximation. Ao agrees that the τ approximation works well for calculations of conductivity but states, strangely enough, that it fails when applied for calculating resistivity. Instead, Ao suggests to use the approach developed in Ref. [4]. Being intrigued by the possibility to discover the truth, we turn to Ref. [4] and find that the starting point is exactly the same as in all of our work on the subject: One looks for a response of the superconductor to a time-dependent displacement of the vortex; i.e., the problem looks for a response of the superconductor to a time-

Ao presents handwaving arguments that everything is wrong which is not as simple as he wants: (1) Experiments in which the forces on 3He vortices have been measured in a wide temperature range [7] are too complicated and thus can be wrong; (2) microscopic calculations using the Green function formalism [3] are wrong; (3) the spectral flow phenomenology in terms of the Landau-type theory for the Fermi system in vortex cores [8] uses τ approximation and thus is wrong, etc. Then there is a puzzle: Why do all three sources agree in the temperature dependence of both longitudinal and Hall conductivities?

The confusion regarding the transverse force on a vortex is typical for those who start to consider this problem. Here the simple results advocated by Ao can be dangerous: It is a strong temptation to take a simple formula and use it without precaution. But once the importance of the quasiparticle transport in the core and outside the core is realized, one can move further. One finds a lot of interesting things this way: Landau damping coming from the gapless excitations in d-wave superconductors [2]; rotational dynamics of the nonaxisymmetric vortices [9]; relation to event horizon [9]; mesoscopic effects and Zener tunneling in the core [10,11]; nonlinear transport, etc.

N. B. Kopnin and G. E. Volovik
Low Temperature Laboratory
Helsinki University of Technology
02150 Espoo, Finland
and Landau Institute for Theoretical Physics
117334 Moscow, Russia

Received 26 January 1998
PACS numbers: 74.60.Ge, 67.57.Fg