Korhonen, Esa; Tuomisto, Filip; Gogova, D.; Wagner, G.; Baldini, M.; Galazka, Z.; Schewski, R.; Albrecht, M.

Electrical compensation by Ga vacancies in Ga2O3 thin films

Published in:
Applied Physics Letters

DOI:
10.1063/1.4922814

Published: 01/01/2015

Please cite the original version:
Electrical compensation by Ga vacancies in Ga$_2$O$_3$ thin films

Citation: Appl. Phys. Lett. 106, 242103 (2015); doi: 10.1063/1.4922814
View online: http://dx.doi.org/10.1063/1.4922814
View Table of Contents: http://aip.scitation.org/toc/apl/106/24
Published by the American Institute of Physics

Articles you may be interested in

Oxygen vacancies and donor impurities in β-Ga$_2$O$_3$

Gallium oxide (Ga$_2$O$_3$) metal-semiconductor field-effect transistors on single-crystal β-Ga$_2$O$_3$ (010) substrates
Applied Physics Letters 100, 013504 (2012); 10.1063/1.3674287

Crystal Structure of β-Ga$_2$O$_3$
The Journal of Chemical Physics 33, 676 (2004); 10.1063/1.1731237

Electrical properties of β-Ga$_2$O$_3$ single crystals grown by the Czochralski method
Journal of Applied Physics 110, 063720 (2011); 10.1063/1.3642962

Intrinsic electron mobility limits in β-Ga$_2$O$_3$

Deep level defects throughout the bandgap of (010) β-Ga$_2$O$_3$ detected by optically and thermally stimulated defect spectroscopy
Electrical compensation by Ga vacancies in Ga$_2$O$_3$ thin films

E. Korhonen,1 F. Tuomisto,1 D. Gogova,2 G. Wagner,2 M. Baldini,2 Z. Galazka,2 R. Schewski,2 and M. Albrecht2

1Department of Applied Physics, Aalto University, 00076 Aalto, Finland
2Leibniz Institute for Crystal Growth, 12489 Berlin, Germany

(Received 10 April 2015; accepted 8 June 2015; published online 17 June 2015)

The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga$_2$O$_3$ thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga$_2$O$_3$ thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In$_2$O$_3$, where recent results show that n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as O$_2$.

Transparent semiconducting oxides (TSOs), such as In$_2$O$_3$, SnO$_2$, ZnO, and Ga$_2$O$_3$, combine electrical conductivity with optical transparency which makes them an important material category for electronics and optoelectronics. In highly doped and conducting form (transparent conducting oxides, TCOs), they have applications as transparent contacts in the fields of photovoltaic devices, liquid crystal displays, and light emitting diodes.

Ga$_2$O$_3$ has recently generated significant interest and high quality growth (both thin-film and bulk) has been achieved with several techniques. Its distinctive feature compared to other TSOs is the high transparency all the way to UV due to a wide optical band gap, thus it is a possible material for future UV devices. Ga$_2$O$_3$ may crystallize in several different lattice configurations, of which the monoclinic β-Ga$_2$O$_3$ is the most commonly considered due to its stability. In a perfect stoichiometric form Ga$_2$O$_3$ is an insulator. Extrinsic n-doping has been achieved with Sn, while undoped Ga$_2$O$_3$ thin films are n-type conductive when grown under low O$_2$ partial pressure. Oxygen vacancies have been suggested as the origin of intrinsic n-type conductivity, but recent theoretical calculations find V_{Ga} to be a deep donor, leaving this question open. Si has been predicted to be an efficient n-dopant and Si-doping has been successfully demonstrated with Ga$_2$O$_3$ bulk crystals. p-doping seems to still elude researchers, similarly to many other TSOs.

In order to use Ga$_2$O$_3$ as a semiconductor in electronics, detailed understanding and control of defects and doping is required. Positron annihilation spectroscopy is a powerful method for studying vacancy defects in semiconductors. In this work, we use positrons to investigate vacancy type defects in undoped and Si-doped Ga$_2$O$_3$. We find that the concentrations of Ga vacancy related defects are high enough to fully explain the electrical compensation.

A series of thin-film Ga$_2$O$_3$ samples were prepared using Metal-Organic Vapor Phase Epitaxy (MOVPE) in low pressure mode on both n-type conductive Ga$_2$O$_3$ (series G) substrates cut from Czochralski-grown bulk single crystals, and insulating Al$_2$O$_3$ (series A). All samples were grown at oxygen-rich conditions at 800°C, with trimethylgallium as Ga source, H$_2$O as oxygen source, and tetraethyloxysilicate as Si source. Growth on Al$_2$O$_3$ (0001) resulted in polycrystalline, yet epitaxial (relationship with the substrate but with in-plane tilt) growth. Homoeptaxial growth resulted in single crystalline material. Growth parameters, most notably Si concentration, were varied for different samples. Basic sample information can be found in Table I. The dopant concentration was measured using secondary ion mass spectrometry employing a Si implanted bulk β-Ga$_2$O$_3$ standard. Electrical properties were measured by Hall effect measurements. All thin-film samples were found to be electrically insulating, even the ones with heaviest Si doping.

Positron annihilation spectroscopy is based on implanting the target with positrons and detecting the 511 keV gamma quanta produced by the subsequent electron-positron annihilation. Since positrons are repelled by the positive charge of the atom cores, neutral and negatively charged vacancy defects often act as positron traps. In a vacancy, both the electron density and average electron momentum are reduced compared to the lattice. A positron localized at a vacancy has an increased lifetime as well as an increased probability to annihilate with a low momentum valence electron compared to a delocalized positron. The change in the electron momentum distribution can be seen in the Doppler shift of the annihilation gamma spectrum. To describe the spectrum in a brief fashion, two parameters S and W are typically used. S is the relative number of counts in the central area of the peak and its value is usually close to 0.5. W is the relative number of counts in the high momentum areas on both sides of the peak. Typically, an increase in the value of S indicates an increase in open volume defects in the depth being probed, mainly due to the reduced overlap of the positron wavefunction with core electron wavefunctions when the positron is trapped in a vacancy. The value of W is more dependent on the type of atoms surrounding the annihilation site.

A variable-energy slow positron beam was used to measure the thin-film samples. The kinetic energy of the positrons was varied to probe varying depths in the samples. The results are shown in Figures 1 and 2 which show the S parameter as a function of implantation energy for most of the samples. The corresponding mean implantation depth is marked on the top axis.

Starting from the low energies, the values of the first two data points in the plots are heavily affected by the...
surface due to diffusion of thermalized positrons. At 3 keV most of the S-parameters reach their minimum values within the layer area and the surface contribution to the signal is low.

Between 3 and 6 keV the S-value increases slightly to a maximum value in several samples of the A-series. At 6 keV, the mean implantation depth (and the distribution width) is 120 nm. Consequently, a significant fraction of positrons reaches the region at the Ga$_2$O$_3$/Al$_2$O$_3$ heterointerface. This region is likely to contain a higher amount of defects compared to the layer, which is seen as a higher value of S. Other samples lack this effect; G1 and G2 do not even show any plateau in the S-value. The lack of a distinguishable interface state can be attributed to homoepitaxial growth.

The stationary positron diffusion equation was fitted with VEPFIT17 to the (S, E) and (W, E) data of samples G1 and G2 in order to extract the layer-specific parameters. A simple model with one layer on top of a substrate was applied. The fitting gave effective positron diffusion lengths of about 10 nm in the Ga$_2$O$_3$ thin films and about 100 nm in the substrate. G3 and G4 did not require fitting, as the layer-specific value could be read directly from the data.

Above 6 keV, a higher and higher fraction of positrons is implanted to the substrate. All of the data points eventually converge to either the Al$_2$O$_3$ or the Ga$_2$O$_3$ substrate value, 0.431 or 0.445, respectively.

For detailed analysis of the positron data, a data point $(S, W$-value pair) for a low defect density ($<10^{16}$ cm$^{-3}$ vacancies) crystal is very useful as a reference. A positron lifetime measurement13 is of particular use for determining this property and it requires a bulk crystal sample. Samples G1 and G4 served as the sample pair for the lifetime measurement with their Ga$_2$O$_3$ substrates. The result of the lifetime measurement was a single lifetime of 176 ps with a 260 ps FWHM spectrometer. A similar value has been reported earlier for a free positron in Ga$_2$O$_3$. Hence, it is likely that the Ga$_2$O$_3$ substrate produces S and W parameters representative of the Ga$_2$O$_3$ lattice and that these can be used as reference values. They are obtained by averaging the S and W data from the energy range (15–23 keV) in the sample G1, giving $S = 0.445$ and $W = 0.0497$. The long positron diffusion length of the substrate obtained above also supports this conclusion.

In order to analyze in detail the differences in annihilation parameters in the Ga$_2$O$_3$ layers between different samples, an S–W-plot is shown in Fig. 3. One point was drawn for each sample. These layer (S, W)-value pairs are determined either by taking the corresponding average from the energy range of 2–6 keV, although the exact range was varied from sample to sample to take into account the different layer thicknesses, or from fitting the stationary positron diffusion equation. The error bars indicate the statistical uncertainty within the selected energy range. Thus, these values best represent the positron state in the thin-layer. In Fig. 3, the points lie on a line with the bulk point on the one end and with samples A1 to A4 on the other. The bulk point has the

Table I. Sample thicknesses and dopant concentrations.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>d (nm)</th>
<th>[Si] (cm$^{-3}$)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>262</td>
<td>1.0×10^{16}</td>
<td>...</td>
</tr>
<tr>
<td>A2</td>
<td>260</td>
<td>2.2×10^{16}</td>
<td>...</td>
</tr>
<tr>
<td>A3</td>
<td>251</td>
<td>1.1×10^{17}</td>
<td>...</td>
</tr>
<tr>
<td>A4</td>
<td>261</td>
<td>2.5×10^{17}</td>
<td>...</td>
</tr>
<tr>
<td>A5</td>
<td>256</td>
<td>3.5×10^{17}</td>
<td>$P_{\text{base}} = 10$ mbar</td>
</tr>
<tr>
<td>A6</td>
<td>290</td>
<td>10^{17}–10^{18} cm$^{-3}$</td>
<td>...</td>
</tr>
<tr>
<td>G1</td>
<td>200</td>
<td>...</td>
<td>$P_{\text{base}} = 10$ mbar</td>
</tr>
<tr>
<td>G2</td>
<td>200</td>
<td>...</td>
<td>Ann. in 1 atm O2 at 950 °C, $P{\text{base}} = 10$ mbar</td>
</tr>
<tr>
<td>G3</td>
<td>200</td>
<td>...</td>
<td>Ann. in 1 atm O$_2$ at 950 °C</td>
</tr>
<tr>
<td>G4</td>
<td>290</td>
<td>10^{17}–10^{18} cm$^{-3}$</td>
<td>...</td>
</tr>
</tbody>
</table>

FIG. 1. S parameter as a function of implantation energy for a selection of samples grown on Al$_2$O$_3$. The substrate and layer areas are clearly distinguishable. The range marked as “selected area” is used for calculating the layer values for Fig. 3.

FIG. 2. S parameter as a function of implantation energy for samples grown on Ga$_2$O$_3$. The solid curves are obtained by fitting the stationary positron diffusion equation to the data.
lowest S and highest W-values due to positrons annihilating mostly in the free state in the bulk.

A linear change in (S, W) is usually the case when positron trapping is dominated by one defect type. The vacancy in question must be Ga-related since single oxygen vacancies are too small to trap positrons in addition to usually being positively charged. The simplest explanation is that single gallium vacancies (V_{Ga}) are detected, although complexes of V_{Ga} with V_O are possible as well.

Several of the samples in the heteroepitaxial A series (A1–A4) form a tight cluster near the low right corner with $S = 0.471–0.475$ and $W = 0.038$. Changing the Si-doping concentration has very little effect on the positron results as long as other growth parameters are kept constant. It is likely that the cluster of points represents the vacancy state with all positrons being trapped to vacancies in the corresponding samples. Comparing the S and W-values of this state ($S_D, W_D = [0.474(2), 0.038(1)]$ with those of the bulk state ($S_B, W_B = [0.445(1), 0.050(1)]$ gives the characteristic value $S_D/S_B = 1.066(6)$ and $W_D/W_B = 0.76(2)$. Similar values (1.058 and 0.76) have been measured for V_{Ga} in GaN, but were grown in different batches. Finally, G4 is a homoepitaxial version of A6 and is located a bit further down the line. The vacancy concentration of these samples can be estimated by comparing the annihilation parameters to those of the defect and the defect-free lattice as in Ref. 21. In G1, the concentration is 1×10^{17} cm$^{-3}$, in G2 and G3 5×10^{17} cm$^{-3}$, and finally in A5, A6, and G4 in the $1–2 \times 10^{18}$ cm$^{-3}$ range. Both annealing in O$_2$ and Si doping strongly increase the concentration of Ga vacancies in the samples.

All thin-film samples were found to be electrically insulating despite significant Si-doping. The Ga vacancy concentration is highest in the samples A1–A4 that were Si-doped from 10^{16} to 10^{17} cm$^{-3}$. This is less than the estimated Ga vacancy concentration ($> 5 \times 10^{18}$ cm$^{-3}$). Theoretical calculations predict that the V_{Ga} should be in a negative charge state for Fermi levels in the upper half of the band gap, compensating for n-type doping. Hence, the observed Ga vacancy concentrations in the Ga$_2$O$_3$ films fully account for the compensation of Si doping. In addition, the n-type conductive substrate does not contain a significant concentration of Ga vacancies, in line with this conclusion.

In summary, homo- and heteroepitaxial undoped and Si-doped Ga$_2$O$_3$ thin films were studied using positron annihilation spectroscopy. All samples show a significant (above 10^{17} cm$^{-3}$) concentration of Ga vacancies, enough to fully explain the electrical compensation. Interestingly, this finding is opposite to that in In$_2$O$_3$, where n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as O$_2$. This work was supported by the Academy of Finland.