
Observation of a topological transition in the 3He-A vortices

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.65.3293

Published: 24/12/1990

Observation of a Topological Transition in the \(^3\)He-\(A\) Vortices

J. P. Pekola, K. Torizuka, A. J. Manninen, and J. M. Kynäräinen

Low Temperature Laboratory, Helsinki University of Technology, 02150 Espoo, Finland

G. E. Volovik
L. D. Landau Institute for Theoretical Physics, U.S.S.R. Academy of Sciences, 117334 Moscow, U.S.S.R.

(Received 9 August 1990)

Vortices in \(^3\)He-\(A\) in low magnetic fields \((H \leq 20 \text{ mT})\) have been studied by ultrasonics. A first-order phase change between two vortex types, with dissimilar sound absorption, has been found. The magnetic field at the transition is on the order of the dipolar field \(H_d\). The observed change occurs between continuous vortex textures with different topological charges in the \(\mathbf{d}\) field (where \(\mathbf{d}\) is the magnetic anisotropy vector).

PACS numbers: 67.50.-b

The unique property of superfluid \(^3\)He-\(A\) is its ability to sustain continuous vorticity. In this respect \(^3\)He-\(A\) differs from other known superfluids (\(^4\)He II, \(^3\)He-\(B\), and conduction electrons in superconductors) in which the superflow velocity \(v_s\) is potential and the vorticity \(\nabla \times v_s\) is concentrated in the hard cores of quantized vortices. Owing to a specific combination of spontaneously broken gauge and orbital symmetries, the vorticity of \(^3\)He-\(A\) can be distributed continuously within the texture of the orbital vector \(\mathbf{l}\), according to the Mermin-Ho relation

\[
(V \times v_s)_i = (h/4\pi m_1)\mathbf{l}_i \cdot (\mathbf{a}_i \times \mathbf{a}_i \mathbf{l}).
\]

Depending on external conditions, a variety of periodic vortex textures can arise in \(^3\)He-\(A\) under rotation. These differ from each other in their topology, symmetry, and number \(N\) of circulation quanta \(h/2m_1\) per elementary cell of the vortex lattice.\(^2,3\)

At a given temperature \(T\) and pressure \(p\) two more external parameters may affect the vortex textures: the angular velocity of rotation \(\Omega\), which determines the cross-sectional area per one quantum of circulation, \(S = h/4m_1\Omega\), and the magnetic field \(H_d\) which interacts with the magnetic anisotropy vector \(\mathbf{d}\). For the latter case the relevant free-energy term is \(F_{2d} = \frac{1}{2} (\chi_\perp - \chi_\parallel) (\mathbf{d} \cdot \mathbf{H})^2\), where \(\chi_\perp\) and \(\chi_\parallel\) are the transverse and longitudinal susceptibilities, respectively. In its turn, the spin-orbit dipole-dipole interaction couples \(\mathbf{d}\) and \(\mathbf{l}\): \(F_d = -g_d (\mathbf{d} \cdot \mathbf{l})^2\). As a result, the three length scales of importance are (1) dipolar length \(\xi \approx 10 \mu\text{m}\); (2) magnetic length \(\xi_H = \xi_d H_d/H\), where \(H_d\) is the (dipolar) field, at which \(F_{2d} = F_d\) are of the same size \((H_d = 2-5 \text{ mT})\); and (3) the "intervortex" distance \(r_0 = S^{1/2}\), which is in the order of \(100 \mu\text{m} \) at \(\Omega = 1 \text{ rad/sec}\).

Extensive NMR experiments on rotating \(^3\)He-\(A\) have been performed in the range of 15–60 mT,\(^4\) which is larger than \(H_d\) by a wide margin. In this region, where \(\xi_H \ll \xi_d \ll r_0\) and \(\mathbf{d}\) is practically forced into the plane perpendicular to \(H\), the so-called Seppälä-Volovik (SV) vortices were observed.\(^5\) These are continuous structures, each with \(N = 2\) quanta of circulation (4\(\pi\) vortices), for which all vorticity is concentrated in the soft core of radius \(\sim \xi_d\), so that SV vortices are well separated from each other in the vortex lattice since \(r_0 \ll \xi_d\) [see Fig. 1(a)]. Each SV vortex is characterized by the integer topological invariant of the \(\mathbf{l}\) field, viz.,

\[
\tilde{m}_l = (1/4\pi) \int \mathbf{l} \cdot (\mathbf{a}_i \times \mathbf{a}_i \mathbf{l}) \, dx \, dy.
\]

This winding number shows how many times \(\mathbf{l}\) covers the unit sphere when the elementary cell \(\sigma\) of the vortex lattice is swept. According to the Mermin-Ho relation, Eq. (1), \(\tilde{m}_l = N/2\) for a continuous vortex texture. Therefore, \(\tilde{m}_l = 1\) for the SV \(4\pi\) vortex, i.e., inside the soft core of the SV vortex the \(\mathbf{l}\) field sweeps the unit sphere once.

One may construct a similar invariant for the \(\mathbf{d}\) vector field in the unit cell,\(^2\)

\[
\tilde{m}_d = (1/4\pi) \int \mathbf{d} \cdot (\mathbf{a}_i \times \mathbf{a}_i \mathbf{d}) \, dx \, dy,
\]

but, contrary to \(\tilde{m}_l\), \(\tilde{m}_d\) is not related to \(N\). In particu-
lar, \(\vec{m}_d = 0 \) for the SV vortex since \(\vec{d} \) is forced into the transverse plane.

The situation should be different when \(H < H_d \), where \(\xi_H \gg \xi_d \) and the \(\vec{d} \) field prefers to follow \(\vec{I} \), i.e., it is dipole-locked [see Fig. 1(b)]. We discuss only the two main dipole-locked textures that satisfy the Mermin-Ho relation, both with \(\vec{m}_i/N = \frac{1}{2} \). One is the lattice of Anderson-Toulouse (AT) \(4\pi \) vortices with \(\vec{m}_i = 1 \) and \(N = 2 \) per unit cell, the other is a lattice whose unit cell consists of four \(2\pi \) Mermin-Ho (MH) vortices with \(\vec{m}_i = 2 \) and \(N = 4 \). It is important to note that in both cases \(\vec{d} \) must follow \(\vec{I} \) and, therefore, for these dipole-locked vortex textures \(\vec{m}_d = \vec{m}_i \).

This means that at an intermediate field, \(H = H_i = H_d \), one should expect a phase transition between dipole-unlocked high-field vortices and dipole-locked low-field vortices. Since these textures have different topological charges \(\vec{m}_d \) per circulation quantum, the transition can be only of first order; \(\vec{m}_d/N \) changes discontinuously from \(\frac{1}{2} \) at \(H < H_i \), to 0 at \(H > H_i \). The critical field \(H_c \) should be virtually unaffected by \(\Omega \) as long as \(\xi_d < r_n \) (\(\Omega < 10^{-3} \text{ rad/sec} \)); experimentally the inequality is always fulfilled. We now discuss this topological transition as first observed in our ultrasonic experiment.

The measurements were carried out in Helsinki using our second rotating crystal ROTA2. We employed pulsed sound transmission techniques. Our experimental cell has two \(X \)-cut quartz crystals, \(L = 4 \) mm apart. The diameter of the cylindrical \(^3\)He volume is 6 mm and the fluid in the cell is in liquid contact with the main \(^3\)He reservoir through several \(1 \times 1 \) mm\(^2 \) holes at both ends of a quartz spacer. Sound pulses at \(f = 26.8 \) and 44.7 MHz frequencies were employed. A superconducting solenoid outside the sound cell provided an axial magnetic field \(H \). In a few runs, a transverse magnetic field was used, produced by a large saddle coil in the surrounding helium bath.

Expecting metastable effects in the predicted first-order textural transition, we started our experiments by applying the following sequence [see Fig. 2(a)]: Initially, the sample of \(^3\)He-\(^4\)He-A was cooled to \(T/T_c = 0.9 \) in a magnetic field of 2.2 mT. After stabilizing the temperature, the cryostat was set into rotation at \(\Omega = 0.3 \text{ rad/sec} \). Thereafter, \(H \) was linearly reduced from 2.2 mT to 0 in 8 min. In Fig. 2(b), the upper curve (labeled 1) shows the reduced sound amplitude \(A/A(|T_c|) \) at \(f = 26.8 \) MHz during this sweep; \(A \) is related to the attenuation \(a \) via the dependence \(A \propto \exp(-aL) \). Next, at \(t = 11 \) min, the cryostat was stopped and, after 1 min, reaccelerated to \(\Omega = 0.3 \text{ rad/sec} \). \(H \) was then swept from 0 to 2.2 mT, again in 8 min [see Fig. 2(a)]. During this sweep [curve 2 in Fig. 2(b)], \(A \) showed considerable hysteresis with respect to the signal obtained from the state that had been created in the 2.2-mT field.

This initial experiment already yielded important data on the existing vortex states in \(^3\)He-A: First, there seemed to be at least two types of vortices, separated by a transition at \(H \leq 2 \) mT. Second, the hysteresis implied that we are dealing with a first-order phase change, as expected.

Figure 3 shows data at \(f = 26.8 \) MHz from a measurement to investigate the stability of the low-\(H \) vortex at \(p = 26.7 \) bars and \(T/T_c = 0.9 \). The inset in Fig. 3(c) illustrates the measuring sequence on the \((H, \Omega)\) plane. Initially, the sample was accelerated at \(H = 0 \) to a rotation velocity \(\Omega_0 \) (0–3.5 rad/sec). Following this, a small axial magnetic field, \(H_{ref} = 0.5 \) mT, was applied and the sound amplitude \(A_{ref} \) was measured. Next, \(H \) was swept up to \(H_{max} \) and then back to \(H_{ref} \) while the cryostat was continuously rotated at \(\Omega = \Omega_0 \). A new measurement of \(A \) at \(H_{ref} \) then yielded information on the persistence of the low-field vortices: If the signal remained the same, the low-field vortices were still present in the experimental chamber, but if \(A \) had changed, they had lost their stability against high-field vortices during the field sweep. Figure 3 shows that a different signal appeared, at all experimentally used speeds of rotation, when \(H_{max} \) exceeded \(H_{c1} = 4 \) mT, i.e., \(H_{c1} \) is the catastrophe field at which the low-field vortices become unstable.

The opposite check, a test for the stability of high-field vortices, was done as follows: The reference sound amplitude was first measured when high-field vortices were created at \(H = 2.5 \) mT. This value was then compared with \(A \) obtained after successive sweeps of \(H \) from 2.5
mT to zero and back to 2.5 mT, during continuous rotation. No change in A was observed, which demonstrated the stability of the high-field vortices down to $H = 0$. In this experiment, $f = 44.7$ MHz was used because at this frequency the attenuation levels of the low- and high-field vortices at $H = 2.5$ mT were more clearly different than at $f = 26.8$ MHz.

The true thermodynamic transition curve $H_c(\Omega)$ was found by the experimental sequence shown in the inset of Fig. 4(c). Initially, the cryostat was set into rotation at $H = H_c$. The field was then swept to $H = H_{\text{ref}} = 0.5$ mT. A series of measurements of A at H_{ref}, with different values of H_c, then allowed us to determine the true H_c. If $H_1 < H_c$, only the low-field vortices existed during this procedure. If $H_1 > H_c$, high-field vortices were created initially and, since they are metastable at low fields, they persisted during our experimental procedure. Figure 4 shows that the sound amplitude at H_{ref} is different for H_1

below and above $H_c \approx 1.5$ mT. The transition is not as sharp as in the measurement of Fig. 3, because the low-field state ($H_1 \leq 1.5$ mT) can be a mixture of low- and high-field vortices.

The amplitudes of low- and high-field phases in Fig. 4 equal those of Fig. 3 (A is not directly shown in Fig. 3), thus showing that we are dealing, in both cases, with the same states. The magnetic field separating them, $H_c \approx 1.5$ mT, was the same for all experimental values of Ω (0.15–3.5 rad/sec). This independence on Ω is what was expected for the critical field H_c of the topological transition. A measurement where H_1 was perpendicular to the propagation direction \hat{q} of the ultrasound is shown in Fig. 4(c); the result is similar to that of parallel orientation in Fig. 4(a).

We are now ready to sketch, in Fig. 5, the phase diagram of the vortex textures in 3He-Λ in low and intermediate magnetic fields. When $H \leq H_c$, the low-field
vortex is stable. At $H_o < H < H_{c1}$, both kinds of vortices can exist, but the low-field vortex is metastable. When $H > H_{c1}$, only the high-field vortex is present. The open square in Fig. 5, at $H=0$, marks a critical rotation speed at which we have observed a sudden increase in sound absorption upon accelerating the cryostat. This may be attributed to a transition between different types of dipole-locked vortices.

The magnetic-field dependence of the AT vortex core size provides us with qualitative understanding of the observed attenuation levels. In the stationary state a magnetic field $\mathbf{H} \perp \hat{z}$ orients $\mathbf{I} \parallel \hat{z}$. In this case we denote $A = A_\perp$. Owing to the anisotropy of sound propagation, any deviation from this "planar" texture yields, under these conditions, higher attenuation, i.e., lower A. The difference $A_\perp - A$ is proportional to the area where vector \mathbf{I} deviates from the transverse plane and, therefore, to the relative cross-sectional area of the soft cores. For the dipole-locked AT vortices, $A_\perp - A$ is proportional to $(\xi_H/r_o)^2 = (\xi_d/r_o)^2 (H_d/H)^2$ at $\xi_d < \xi_H \ll r_o$ and saturates at $\xi_H \sim r_o$. This behavior is different for dipole-unlocked SV vortices, which have the core size of order ξ_u, thus yielding a smaller value of $A_\perp - A$, in agreement with Figs. 2 and 4. A detailed numerical analysis of the AT and SV vortex structures in the whole experimental range of magnetic fields is needed before one can make quantitative comparisons of the attenuation levels.

We thank O. V. Lounasmaa and M. M. Salomaa for useful discussions. This work was supported by the Academy of Finland and by the U.S.S.R. Academy of Sciences through project ROTA, and by the Körber-Stiftung of Hamburg, Germany. One of us (A.J.M.) acknowledges a scholarship from the Emil Aaltonen Foundation.

\begin{thebibliography}{9}
\bibitem{9}M. M. Salomaa (to be published).
\end{thebibliography}