Hekking, Frank; Niskanen, A. O.; Pekola, Jukka

Electron-phonon coupling and longitudinal mechanical-mode cooling in a metallic nanowire

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.77.033401

Published: 02/01/2008

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
https://doi.org/10.1103/PhysRevB.77.033401
Electron-phonon coupling and longitudinal mechanical-mode cooling in a metallic nanowire

F. W. J. Hekking,1 A. O. Niskanen,2 and J. P. Pekola3

1Laboratoire de Physique et Modélisation des Milieux Condensés, C.N.R.S. and Université Joseph Fourier, Boîte Postale 166, 38042 Grenoble Cedex 9, France
2VTT Technical Research Centre of Finland, Sensors, P.O. BOX 1000, 02044 VTT, Finland
3Low Temperature Laboratory, Helsinki University of Technology, P.O. BOX 3500, 02015 TKK, Finland

(Rceived 9 November 2007; published 2 January 2008)

We investigate electron-phonon coupling in a narrow suspended metallic wire, in which the phonon modes are restricted to one dimension but the electrons behave three-dimensionally. Explicit theoretical results related to the known bulk properties are derived. We find out that longitudinal vibration modes can be cooled by electronic tunnel refrigeration far below the bath temperature provided the mechanical quality factors of the modes are sufficiently high. The obtained results apply to feasible experimental configurations.

DOI: 10.1103/PhysRevB.77.033401 PACS number(s): 72.10.Di, 63.20.K−, 63.22.−m, 72.15.Jf

Electron-phonon coupling in metals, albeit extensively studied over several decades,1 is of utmost interest and importance in view of present day developments in nanoelectromechanics2,3 and in electronic cooling and sensing on nanoscale.4,5 A number of questions arise when the dimensionality of the phonons is reduced from the conventional bulk three-dimensional case.6–8 Recent experimental observations of metallic wires on thin dielectric membranes support the fact that reduction of phonon dimensionality leads to weaker temperature dependence of the heat flux between electrons and phonons.9 Very little is known about truly one-dimensional wires, where transverse dimensions are far smaller than the thermal wavelength of the phonons, although this regime is readily available experimentally at sub-Kelvin temperatures in wires whose diameter is of the order of 100 nm or less. Recently though, substantial overheating was conjectured to be the origin of excess low-frequency charge noise in a suspended single-electron transistor in this particular one-dimensional geometry.10 In this Brief Report we derive an explicit result for electron-phonon heat flux in a metallic wire in which electrons behave three-dimensionally but phonons are confined to one dimension, and relate this result to the standard bulk result for the corresponding metal. We present a scenario of tunnel coupling the metal electrons in a wire to a superconductor on bulk, whereby cooling of wire electrons can be realized. We demonstrate that the few available mechanical modes, i.e., discrete longitudinal phonons, can be cooled significantly by their coupling to the cold electrons in the wire. This occurs provided the mechanical modes are not too strongly coupled to the thermal bath, meaning that the mechanical Q value of the mode is sufficiently high. Recently, indirect experimental evidence of electronic cooling of phonons in a bulk system was put forward in Ref. 11.

To obtain results for the electron-phonon heat flux in a one-dimensional metallic wire (see Fig. 1 for the geometry and thermal model), we follow the standard procedure from the existing literature normally applied to the case of either bulk three-dimensional phonons1,12 or to the case where phonons are restricted to a semi-infinite bulk.6 The net heat flux from electrons into a discrete phonon mode μ at wave vector q is given by

$$
\dot{Q}_{e \rightarrow \mu}(q) = 2 \sum_k \hbar \omega_\mu [\Gamma^e(\mathbf{k} \rightarrow \mathbf{k} - \mathbf{q}) - \Gamma^a(\mathbf{k} \rightarrow \mathbf{k} + \mathbf{q})],$$

where phonon emission (e) and absorption (a) rates by the electrons with wave vector \mathbf{k} are obtained via the golden rule as

$$\Gamma^e(\mathbf{k} \rightarrow \mathbf{k} - \mathbf{q}) = \frac{2 \pi}{\hbar} |g_{\mu, \mathrm{q}}|^2 \left[n \left(\frac{\hbar \omega_\mu}{k_B T_e}\right) + 1\right] f(E_k)[1 - f(E_{k-q})] \delta(E_k - E_{k-q} + \hbar \omega_\mu)$$

and

$$\Gamma^a(\mathbf{k} \rightarrow \mathbf{k} + \mathbf{q}) = \frac{2 \pi}{\hbar} |g_{\mu, \mathrm{q}}|^2 n \left(\frac{\hbar \omega_\mu}{k_B T_e}\right) \delta(E_k - E_{k+q} + \hbar \omega_\mu).$$

Here $g_{\mu, \mathrm{q}}$ and $n \left(\frac{\hbar \omega_\mu}{k_B T_e}\right) = \exp \left[\frac{-\hbar \omega_\mu}{k_B T_e}\right] - 1$ are the electron-phonon coupling constant and the Bose distribution, respectively, of the phonon mode μ at angular frequency ω_μ and at temperature T_e, and $f(E) = [\exp \left(\frac{E}{k_B T_e}\right) + 1]^{-1}$ is the Fermi distribution of the electrons at temperature T_e.

FIG. 1. (Color online) The system under study. In (a) we show the suspended wire whose transverse dimensions are supposed to be smaller than the thermal wavelength of the phonons, λ_{thermal}. In this particular example the metal wire is connected to the bulk superconducting reservoirs via tunnel barriers to form a tunnel junction refrigerator. In (b) we show the relevant thermal model of the system.
We next evaluate $g_{\mu,q}$ using the standard results of deformation potential of the collective lattice vibrations.2 Let $w_\mu(r)$ be the displacement vector for mode μ normalized in the volume of the wire, V, such that $\int d^3 r w_\mu(r) \cdot w_\mu^*(r) = \delta_{\mu,\mu'}$. Then $g_{\mu,q}$ can be obtained from the divergence of $w_\mu(r)$,

$$g_{\mu,q} = \frac{2}{3} E_F \sqrt{\frac{\hbar}{2 \rho \omega_\mu}} \int d^3 r \Psi_k_{-q}(r) \Psi_k^*(r) \nabla \cdot w_\mu(r), \quad (4)$$

where $\Psi_k(r)$ are the electronic wave functions. Here E_F is the Fermi energy of the electrons and ρ is the mass density of the wire.

The thermal wavelength of phonons, $\lambda_{\text{thermal}} = \frac{\hbar c_i}{k_B T}$, at temperature T and mode velocity c_i is typically of order 1 μm at $T=100$ mK. In a wire whose length $L > \lambda_{\text{thermal}}$ and with transverse dimensions $a^2 \ll \lambda_{\text{thermal}}$, only modes with $q=(0,0,q)$ directed along the wire (z axis) appear relevant, since the ones with perpendicular q are too high in energy. There are basically four types of vibrations: longitudinal, flexural (two, with x and y polarizations), torsional, and shear modes.13 The last one has a gap and is therefore not excited at low temperatures. Of the remaining ones the torsional modes have no divergence, and essentially only the longitudinal modes couple to electrons in the long wavelength limit. Experimentally this seems to be the case in carbon nanotubes.14

We consider longitudinal modes with specific boundary conditions: the wire (or the three-dimensional body) is assumed to be clamped at the ends. As we will detail below, this corresponds to a feasible realization. Let the wire extend from $z=0$ to $z=L$. Then the normalized longitudinal eigenmodes of the beam are given by

$$w_\mu(r) = \sqrt{\frac{2}{V}} \sin(\mu \pi z/L) \mathbf{\hat{z}}, \quad \mu = 1, 2, 3, \ldots. \quad (5)$$

They are characterized by the linear dispersion relation $\omega_\mu = c_i \mu \pi / L$, where $c_i = \sqrt{E/\rho}$ is the longitudinal sound velocity (E is Young’s modulus). Assuming zero electronic boundary conditions along with equal electronic and phononic volumes we obtain again in the long wavelength limit

$$|g_{\mu,q}|^2 = \frac{1}{9} \frac{\hbar E_F^2 q^2}{\rho V \omega_\mu} \delta_{q,q_\mu} = M_{\mu}^2 q^2 \delta_{q,q_\mu}, \quad q_\mu = \mu \pi / L, \quad (6)$$

where $M_{\mu}^2 = \frac{\hbar c_i^2}{2 \rho \omega_\mu}$. The momentum q transferred between the electron and the vibrational modes of a clamped beam takes discrete values q_μ only and is by convention positive.

We perform next the integration over electron energies in Eqs. (2) and (3) and insert the results in Eq. (1) obtaining

$$\hat{Q}_{\varepsilon\rightarrow\mu}(q_\mu) = \frac{2 \pi M_{\mu}^2 c_i^2 m N(E_F)}{\hbar k_F} \frac{\hbar c_i q_\mu}{k_B T_e} \left[\frac{\hbar c_i q_\mu}{k_B T_\mu} - n \left(\frac{\hbar c_i q_\mu}{k_B T_\mu} \right) \right]. \quad (7)$$

Here, m is the electron mass, k_F the Fermi wave vector, and $N(E_F)$ the electronic density of states at the Fermi energy. Three-dimensional distribution of electrons was assumed here, since we discuss only the case of ordinary metals, where $k_F^3 \ll 1$ nm, i.e., much smaller than any dimension of the system. Using the definition of M_{μ}^2 above, and $N(E_F) = \frac{m k_B^2}{2 \pi^2}$ and $E_F = \frac{k_F^3}{2 m}$ of the free electron gas, the prefactor in Eq. (7) can also be written in the form

$$\frac{2 \pi M_{\mu} c_i m N(E_F)}{\hbar k_F} = \frac{1}{18 \pi^2} \frac{k_B^2 c_i^2}{\rho}. \quad (8)$$

We obtain the continuum result for a long $L > \lambda_{\text{thermal}}$ one-dimensional (1D) wire by assuming a uniform density of modes with all of them at the same temperature $T_\mu = T_\mu'$. We then replace the sum by an integral, $\Sigma_{\mu} \rightarrow \frac{1}{\pi} \int_0^{\pi} dq$. After a straightforward integration we obtain

$$\hat{Q}_{\varepsilon\rightarrow\mu} = \Sigma_{1D} \left(T_e^3 - T_\mu^3 \right). \quad (9)$$

Here, Σ_{1D} is given by

$$\Sigma_{1D} = \frac{\zeta(3)}{3 \sqrt{2}} \frac{k_F^4 c_i^2}{18 \pi^2 \hbar c_i^2 \rho}. \quad (10)$$

It is instructive to compare this result to the celebrated result for longitudinal phonons in three dimensions (see, e.g., Ref. 12 and references therein),

$$\hat{Q}_{\varepsilon\rightarrow\mu} = \Sigma \left(T_e^5 - T_\mu^5 \right). \quad (11)$$

Here, the material specific prefactor Σ is given by

$$\Sigma = \frac{\zeta(5)}{3 \pi^2} \frac{k_F^4 c_i^2}{\hbar c_i^2 \rho}. \quad (12)$$

We conclude that Σ_{1D} is related to the known Σ of the bulk by

$$\Sigma_{1D} = \frac{\pi}{6} \frac{\zeta(3)}{\zeta(5)} \left(\frac{\hbar c_i}{k_F} \right)^2 \Sigma. \quad (13)$$

Note that Eq. (9) with the relation (13) between Σ_{1D} and Σ are quite general and do not depend on the choice of free electron gas parameters that lead to Eqs. (12) and (10). Equation (9) with the help of Eq. (13) and the experimentally determined Σ can then be used to assess electron-phonon coupling in one-dimensional wires. Equation (12) predicts the behavior of real metals rather well: the overall magnitude of Σ from Eq. (12) with parameters of usual metals is of order $\Sigma \sim 10^4$ W K$^{-5}$ m$^{-3}$, whereas measured values are typically around 10^5 W K$^{-5}$ m$^{-3}$. The deviation may be partly ascribed to the complicated structure of the Fermi surface in real metals.5

Equations (11) and (9) predict correctly the crossover between three-dimensional and one-dimensional behavior. To see this, let us look at the linearized heat conductance for a small temperature difference $\Delta T = T_e - T_\mu$ between electrons and phonons, such that $\hat{Q}_{\varepsilon\rightarrow\mu} \approx G_{\varepsilon\mu} \Delta T$. From Eq. (11), we obtain $G_{\varepsilon\mu}^{1D} = 5 \Sigma V T^3$, where we denote by T the (almost) common temperature of the two subsystems. Similarly from Eq. (9) we obtain $G_{\varepsilon\mu}^{3D} = 3 \Sigma V T^5$ L2 T. Now let us consider a wire whose square cross section is $w \times w$. The crossover between
3D and 1D behavior is expected to occur when the first longitudinal modes get occupied thermally within the cross section, i.e., when $\hbar c / w \sim k_B T$. Making use of the relation (13), and $\gamma = L w^2$, we then see that with the above condition the expressions of G_{ep} and G_{el} become identical in form, apart from numerical prefactors.

Next we demonstrate that variation of electron temperature in the wire leads to variation of the temperature of its vibrational modes. In particular, electron mediated mechanical mode cooling becomes possible. If we assume a highly underdamped mechanical mode whose quality factor $Q_\mu \gg 1$, we can obtain the heat flux from the thermal bath into the mode μ in a classical picture as

$$
\dot{Q}_{\text{bath} \rightarrow \mu} = \frac{k_B \omega_\mu}{Q_\mu} (T_{\text{bath}} - T_\mu).
$$

This result can be inferred as a solution of the Fokker-Planck equation of Brownian motion in the harmonic potential or by direct solution of the Langevin equation. We have assumed that the mode temperature is given by the equipartition principle via $k_B T_\mu = k(x^2)$ for the position x of the Brownian particle with spring constant k. Equation (14) is the high temperature limit of the quantum expression of heat flux

$$
\dot{Q}_{\text{bath} \rightarrow \mu} = \frac{\hbar c^2}{Q_\mu} \frac{\partial}{\partial q_\mu} \left[n \left(\frac{\hbar c q_\mu}{k_B T_{\text{bath}}} \right) - n \left(\frac{\hbar c q_\mu}{k_B T_\mu} \right) \right],
$$

which is identical in form with Eq. (7). We have again identified $\omega_\mu = c q_\mu$. One then finds a steady-state temperature of the mode μ by solving the balance equation (see Fig. 1),

$$
\dot{Q}_{\text{bath} \rightarrow \mu} + \dot{Q}_{\mu \rightarrow \text{bath}} = 0.
$$

There are some interesting limits: if $\frac{\hbar c^2}{Q_\mu} \ll \frac{1}{18 \pi} k_B T_\mu$, electrons cool efficiently and the mode temperature follows T_μ, whereas in the opposite limit the mode temperature stays at T_{bath}. Eliminating k_F in favor of experimentally determined Σ, we find that the temperature of the mechanical mode follows that of the electrons if $Q_\mu \gg \frac{12 c^5}{\pi^3} \frac{k_F}{\hbar c^3 \Sigma}$. With parameters of ordinary metals this leads to the condition $Q_\mu \gg 100$. Although the quality factors of longitudinal modes in nanomechanical devices are largely unknown, this seems like a very conservative requirement considering that in micro-electro-mechanical structures longitudinal acoustic modes can have very high Q factors. See, for instance, Ref. 16 where $Q = 180,000$ and $f = 12$ MHz for the lowest bulk acoustic mode at room temperature.

We conclude the formal part by obtaining a useful relation yielding the heat flux between electrons and the bath with the help of their respective temperatures, using Eqs. (7), (8), (15), and (16), and assuming that all the relevant modes have the same quality factor Q

$$
\dot{Q}_{e \rightarrow \text{bath}} = \frac{\pi^2}{12c(5)} \frac{(\hbar c e)^5}{k_B} \frac{\Sigma}{1 + \frac{\pi^2}{12c(5)} \hbar c^5 Q_\Sigma} \times \sum \frac{q_\mu^2}{Q_\mu} \left[n \left(\frac{\hbar c q_\mu}{k_B T_{\text{bath}}} \right) - n \left(\frac{\hbar c q_\mu}{k_B T_\mu} \right) \right].
$$

An expression of type (9) can be obtained in the continuum limit again, but here the factor Σ_{1D} must be replaced by $[1 + \frac{\pi^2}{12c(5)} \hbar c^5 Q_\Sigma]^{-1} \Sigma_{1D}$.

We next apply the results above to determine the performance and mechanical mode cooling in a suspended electron refrigeration. Note that overheating of a suspended wire, or a single-electron transistor, can be analyzed similarly as our example of cooling below: heat currents and temperature drops are simply inverted. In a hybrid tunnel junction configuration (SINIS), with a metal island (N) and superconducting leads (S), the electron system in N can be cooled far below the bath temperature by applying a bias eV of the order of the superconducting gap Δ over each tunnel junction (I) between S and N. This SINIS refrigeration technique based on energy filtering of the tunneling electrons due to the gap in the superconductor has been applied extensively over the past decade, for a review see Ref. 4, but not yet in suspended wires to the best of our knowledge. Here we propose its use in connection with the one-dimensional phonon system. It is possible to cool not only the electrons in the wire but also the vibrational modes in it by coupling them to the cold electrons. Figure 2 shows numerically calculated results for the minimum electron temperature reached as a function of the bath temperature: at the optimum bias voltage of the junctions heat is removed from the wire at a rate $\dot{Q} \sim \Delta^2 / (e^2 R_T)(T_c / T_c)^{3/2}$. In steady state this heat flux is balanced by the heat flux from the phonon modes. We assume that all the relevant modes have the same quality factor $Q_m = Q$. The collection of results in Fig. 2 shows that if Q is large, strong suppression of electron temperature can be achieved. The saturation of the temperature with low T_{bath} is caused by the ohmic heating in the refrigerating junctions with leakage parameter γ, which has been chosen to correspond to typical experimental conditions: γ equals the low temperature zero bias conductance of a junction normalized by the value of conductance at large voltages, and it can be conveniently included in the (normalized) density of quasi-particle states of the superconductor at energy E as $n_0(E) = |\text{Re} \left(\frac{E - E_F}{(E - E_F)^2 + \gamma^2} \right)|$. The cooling effect of the suspended structure differs from that of the result of the three-dimensional model; specifically the results of the one-dimensional model, valid when $w \ll \lambda_{\text{thermal}}$, do not depend on the transverse dimensions of the wire, whereas the results of the three-dimensional model are determined by these dimensions as well via the dependence on volume in Eq. (11). Also the vibrational modes involved are cooled: this is demonstrated in Fig. 3, where we plot the population of the lowest mode, $n = 1$, under the same conditions as in Fig. 2. The corresponding mode occupations in the absence of electron
value we assume that the nonideality parameter of the junctions has a
width and thickness are both assumed to be 30 nm,

electron-phonon coupling, and the coupling to the bath, de-
cooling is determined by the interplay of the cooling power,
cooling are shown for reference. The magnitude of the mode
low mode populations, in particular when
quantum limit is a feasible option, manifested by the very
electron-mediated cooling of the vibrational modes into the

In summary, we derived the basic relations governing
cooling are shown for reference. The magnitude of the mode
cooling is determined by the interplay of the cooling power,
electron-phonon coupling, and the coupling to the bath, de-
determined by Q. From our example it seems obvious that
electron-mediated cooling of the vibrational modes into the
quantum limit is a feasible option, manifested by the very
low mode populations, in particular when Q is large.

We thank the NanoSciERA project “NanoFridge” of the
EU and the Academy of Finland for financial support.

2 A. N. Cleland, Foundations of Nanomechanics (Springer, Berlin,
2003).
5 O.-P. Saira, M. Meschke, F. Giazotto, A. M. Savin, M. Mttnen,
6 S.-X. Qu, A. N. Cleland, and M. R. Geller, Phys. Rev. B 72,
224301 (2005).
(2007).
11 S. Rajauria, P. S. Luo, T. Fournier, F. W. J. Hekking, H. Courtois,
(1994).
14 S. Sapmaz, P. Jarillo-Herrero, Y. M. Blanter, C. Dekker, and H. S.
15 See, e.g., F. Reif, Fundamentals of Statistical and Thermal Physi-
18 A. Schliesser, P. DelHaye, N. Nooshi, K. J. Vahala, and T. J.
20 K. R. Brown, J. Britton, R. J. Epstein, J. Chiaverini, D. Leibfried,