Giazotto, Fransesco; Pekola, J.P.

Josephson tunnel junction controlled by quasiparticle injection

Published in:
Journal of Applied Physics

DOI:
10.1063/1.1833576

Published: 01/01/2005

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Josephson tunnel junction controlled by quasiparticle injection

Francesco Giazotto Jukka P. Pekola

Citation: Journal of Applied Physics 97, 023908 (2005); doi: 10.1063/1.1833576
View online: http://dx.doi.org/10.1063/1.1833576
View Table of Contents: http://aip.scitation.org/toc/jap/97/2
Published by the American Institute of Physics
Josephson tunnel junction controlled by quasiparticle injection

Francesco Giazotto
National Enterprise for Nanoscience and Nanotechnology-Instituto Nazionale per la Fisica della Materia (NEST-INFM) and Scuola Normale Superiore, I-56126 Pisa, Italy

Jukka P. Pekola
Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 3500, FIN-02015 HUT, Finland

(Received 24 May 2004; accepted 18 October 2004; published online 23 December 2004)

A Josephson tunnel junction transistor based on quasiparticle injection is proposed. Its operation relies on the manipulation of the electron distribution in one of the junction electrodes. This is accomplished by injecting quasiparticle current through the junction electrode by two additional tunnel-coupled superconductors. Both large supercurrent enhancement and fast quenching can be achieved with respect to equilibrium by varying quasiparticle injection for proper temperature regimes and suitable superconductor combinations. Combined with large power gain, this makes the device attractive for applications where reduced noise and low-power dissipation are required.

INTRODUCTION

The control of Josephson currents as for the realization of efficient transistors has gained recently a rekindled interest.1 A development in mesoscopic superconductivity is indeed represented by controllable superconductor (S)-normal metal (N)-superconductor (S) metallic weak links,2 where supercurrent suppression is achieved by altering the quasiparticle distribution in the N region through current injection. So far there have been a few demonstrations of this operation principle.3 On the other hand, as recently proposed4 and experimentally demonstrated,5 a superconductor-insulator-normal metal-insulator-superconductor (SINIS) control line (where I is a tunnel barrier) is particularly suitable for tuning Josephson current, allowing both enhancement and suppression with respect to equilibrium. Operation of these devices is based on the modification of the quasiparticle distribution in the N region of the junction. In this work, we propose an all-superconducting tunnel junction device in which transistor effect is obtained by driving the electron distribution out of equilibrium in the superconductor. This is performed by voltage biasing a superconductor-insulator-superconductor (SISIS) line (see Fig. 1) where the interelectrode is one of the two terminals belonging to the Josephson junction.

THEORY

As compared to the hybrid devices above the present one benefits from the sharp characteristics due to the presence of superconductors with unequal energy gaps. We consider different superconductors S1 and S2 with energy gaps Δ1 and Δ2 (and critical temperatures Tc1,2), respectively, and we assume Δ2 >> Δ1.6,7 Under voltage bias Vc across the S1IS2IS1 line (see the inset of Fig. 1) the heat current from S2 to S1 is given by

\[P = \frac{2}{e^2 R_T} \int_{-\infty}^{\infty} d\epsilon \left(N_1(\epsilon) - N_2(\epsilon) \left[f_0(\epsilon, T_{c2}) - f_0(\epsilon, T_{c1}) \right] \right) \]

where \(\epsilon = \epsilon - e V_c / 2 \), \(f_0(\epsilon, T) \) is the Fermi–Dirac distribution function, \(T_{c2} \) is the electron temperature in \(S_2 \), \(R_T \) is the normal-state resistance of each \(S_1IS_2 \) junction, and \(N_0(\epsilon) = |\text{Re}(\epsilon + i T_{d}) / \sqrt{\epsilon^2 + T_{d}^2} - \Delta_0^2| \) is the smeared BCS density of states of \(S_k \). Figure 1 shows the calculated heat current versus bias voltage \(V_c \) at constant bath temperature \(T_{\text{bath}} = 0.4 T_{c1} \) for different values of \(\Delta_2 / \Delta_1 \). \(P \) is symmetric in \(V_c \) and it is positive for \(V_c < 2|\Delta_1(T) + \Delta_2(T)| / e \) thus allowing heat removal from \(S_2 \), i.e., hot quasiparticle excitations are transferred to \(S_1 \); furthermore, the heat current is maximized at \(V_c = \pm 2|\Delta_1(T) - \Delta_2(T)| / e \), where the finite-temperature logarithmic singularity occurs8 (in a real situation it will be somewhat broadened by smearing in the den-
of states). From Fig. 1 it follows that a positive heat current from S_2 exists only if $\Delta_2(T) < \Delta_1(T)$ holds. The dash-dotted line represents the heat current in the system when S_2 is in the normal state. Notably, when S_2 is in the superconducting state \mathcal{P} can largely exceed that one in the normal state. Then, on approaching $V_C = \pm 2|\Delta_1(T) + \Delta_2(T)|/e$, a sharp transition brings \mathcal{P} to negative values. An additional superconducting electrode S_f is connected to S_2 through a tunnel barrier so as to realize a S_fS_2 Josephson junction. S_f is characterized by its own energy gap Δ_f (different in general from $\Delta_{1,2}$) with critical temperature $T_{c,f}$ and R_f is the normal-state resistance of the junction. As we shall prove this transistor operation relies on the quasiparticle distribution established in S_2 upon voltage biasing the control line.

We consider a transport regime where strong inelastic electron-electron interaction forces the system to retain a local thermal (quasi) equilibrium, so that the quasiparticle distribution in S_2 is described by a Fermi function at temperature T_{c2} differing in general from T_{c1}. In order to determine the actual T_{c2} upon biasing with V_C we need to include those scattering mechanisms that transfer energy in S_2. At the typical operation temperatures the predominant contribution comes from electron-phonon scattering that transfers energy between electrons and phonons. This heat flux is given by

$$\mathcal{P}_{c2:bath} = eV_C T_{c2} \frac{\Sigma}{T_{c2}^3},$$

where Σ is a material-dependent parameter and V is the volume of S_2. The temperature T_{c2} is then determined by solving the energy-balance equation

$$\mathcal{P}(V_C, T_{bath}, T_{c2}) + \mathcal{P}_{c2:bath} = 0.$$

The supercurrent (I_f) flowing through the S_fS_2 junction can be calculated from

$$I_f = -\frac{\sin \phi}{2eR_f} \int_{-\infty}^{\infty} d\epsilon \{f_2(\epsilon) \text{Re} \mathcal{F}_2(\epsilon) \text{Im} \mathcal{F}_j(\epsilon) + f_j(\epsilon) \text{Re} \mathcal{F}_j(\epsilon) \text{Im} \mathcal{F}_2(\epsilon) \},$$

(2)

where ϕ is the phase difference between the superconductors, $f_2(\epsilon) = \tanh[\epsilon/2k_{B}T_{c2,bath}]$, and $\mathcal{F}_2(\epsilon) = \Delta_{f2}/(\epsilon + i\Gamma_{f2})^2 = \Delta_{f2}^*$.

We note that a fixed phase difference across the junction can be experimentally achieved by embedding the junction itself in a superconducting quantum interference device (SQUID) loop. Another way to operate the device is to make the junction overdamped and current biasing it slightly above the critical current (see the inset of Fig. 1). In order to simulate a realistic structure we choose $R_f = 10^4 \Omega$, $R_f = 300 \Omega$, $\Gamma = 0.1 \mu m^2$, and $\Sigma = 10^{-5} W K^{-2} \mu m^{-3}$ (Ti). The solution of the balance equation for T_{c2} combined with Eq. (2) yields the dimensionless transistor output characteristic shown in Fig. 2(a), where I_f is plotted versus V_C at different bath temperatures, for $T_{c2} = 0.3 T_{c1}$ and $T_{c2} = T_{c1}$. For $T_{bath} < T_{c2}$, I_f first increases monotonically up to $eV_C = 2[\Delta_1(T_{bath}) - \Delta_2(T_{c2})]$, where the cooling power is maximized; then it starts to slightly decrease after which it is rapidly quenched at $eV_C = 2[\Delta_1(T_{bath}) + \Delta_2(T_{c2})]$. Namely, even at bath temperatures exceeding T_{c2} (i.e., for $T_{bath} \geq T_{c2}$ where I_f is zero at equilibrium), a finite supercurrent is obtained at a voltage for which S_2 is brought into the superconducting state, after which I_f is recovered up to a large extent. The influence of different S_f on the supercurrent is displayed in Fig. 2(b) that shows I_f vs V_C, calculated at $T_{bath} = 0.8 T_{c2}$ for different T_{c2}/T_{c1} ratios. As a consequence I_f is enhanced upon increasing Δ_f, being nearly doubled for $T_{c2}/T_{c1} = 10$.

RESULTS AND DISCUSSION

Figure 3(a) displays the transistor power dissipation $P = V_C I_f$, where I_f is the control current in the $S_fS_2S_1$ line, calculated for $T_{c2} = 0.3 T_{c1}$ and $T_{c2} = T_{c1}$ at different bath temperatures. The plot shows that at the lowest temperatures P obtains values of the order of some femtowatts in the regime of supercurrent enhancement while of some hundreds of femtowatt around the I_f quenching. This is because of the low control currents through the structure. As far as noise is concerned, the total input noise per unit bandwidth $\langle \delta I_f^2 \rangle$ (Ref. 12) in the control line can be expressed as

$$\langle \delta I_f^2 \rangle = \langle \delta I_f^2 \rangle - 2S_{I_f} \langle \delta P \delta I_f \rangle + S_{I_f}^2 \langle \delta P^2 \rangle,$$

(3)

where
2(b)] voltages allow a voltage gain \(G_V = V_{JJ}/V_i \sim \Delta_2/\Delta_1 \) so that with realistic parameters \(G_V \) is not much smaller than 1. The differential current gain, defined as \(G_I = dI/J/dV_C = (dI_c/dV_C)(dI_c/dV_C)^{-1} \), is plotted in Figs. 3(c) and 3(d) in two different bias ranges for some values of \(T_{\text{bath}} \). The figure shows that \(G_I \) obtains large values with some \(10^2 \) in the regime of supercurrent enhancement and several \(10^3 \) below the quenching. The corresponding input impedance ranges from hundreds of kilohm to tens of meagohm, respectively. In order to exploit the power gain \((G_P) \) the Josephson junction needs to be operated in the dissipative regime; in such a situation an estimate for the achievable power gain \(\xi \) yields \(G_P \sim 10^2 \cdots 10^3 \) depending on the operating \(V_C \) and bias current \(I_{JJ} \) across the junction (see Fig. 1). One should note that such a large power gain, not achievable, e.g., using a S/N-controlled superconductor-normal metal-superconductor (SNS) transistor in the same transport regime (i.e., the hot-electron regime that is addressed in the present analysis), is an additional advantage of the present scheme.

CONCLUDING REMARKS

An additional remark deserves attention. We note that throughout our analysis we neglected any charging effect on the central superconducting electrode. This is, however, a reasonable assumption given the above structure parameters. As a matter of fact, the latter allow large area and, consequently, large capacitance junctions thus yielding charging energies much smaller than temperatures that are relevant for an optimized device operation.

We conclude with some further benefits of our proposal. Due to the presence of the superconducting interelectrode, highly transmissive tunnel junctions are not necessary unlike in S/S/S devices. The device is also less sensitive to thermal fluctuations as compared to SNS junctions. Furthermore, it is easier to fabricate taking advantage of the well-established metal-based tunnel junction technology. A promising choice for transistor and switch implementations could be a combination of Al and Ti.

ACKNOWLEDGMENTS

The authors acknowledge the Large Scale Installation Program ULTI-3 of the European Union and the Academy of Finland (TULE program) for financial support, and D. Golubev, T. T. Heikkilä, A. M. Savin, and H. Seppä for fruitful discussions.

9 We assume throughout the paper a realistic smearing parameter $\Gamma_k = 10^{-4} \Delta_1$ [see Ref. 8].

11 T. T. Heikkilä (private communication).
12 We suppose each junction to contribute in an uncorrelated way to the total noise.