Najafi Jabdaraghi, Robab; Meschke, Matthias; Pekola, J.P.

Erratum

DOI:
10.1063/1.4897989

Published: 06/10/2014

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:

R. N. Jabdaraghi,1,2,a) M. Meschke,1 and J. P. Pekola1
1O.V. Lounasmaa Laboratory, Aalto University School of Science, POB 13500, FI-00076 Aalto, Finland
2Faculty of Physics, University of Tabriz, Tabriz, Iran
(Received 23 September 2014; accepted 30 September 2014; published online 9 October 2014)

Fig. 3 in the original publication of this paper should be replaced with the following figure and caption. The figure labels in Figs. 3(c) and 3(d) were wrong and we omitted the information that sub-figures (a) and (b) show data from sample A (as defined in Table I) and that sub-figures (c) and (d) show data from sample B.

![Figure 3](image)

FIG. 3. (a) Current modulation $I(\Phi)$ of the NIS junction of sample A at different values of bias voltage applied to it at $T_{bath} = 50\, \text{mK}$. (b) A zoomed view for several values of V in the range $-340\, \mu\text{V} < V < 298\, \mu\text{V}$. (c) Measured flux-to-voltage $V(\Phi)$ curves at different magnitudes of current through the junction of sample B and (d) a zoomed image at some values of current in the range 0.18–$1.8\, \text{nA}$. The curves are not symmetric around $U = 0$ due to a constant offset flux bias. The suppression of hysteresis is visible in both $I(\Phi)$ and $V(\Phi)$ modulations. This happens as the Josephson inductance L_J exceeds the self-inductance of the superconducting ring.

a)Electronic mail: robab.najafi.jabdaraghi@aalto.fi

0003-6951/2014/105(14)/149903/1/$30.00

© 2014 AIP Publishing LLC