Lin, Yung-Chang; Björkman, Torbjörn; Komsa, Hannu-Pekka; Teng, Po-Yuan; Yeh, Chao-Hui; Huang, Fei-Sheng; Lin, Kuan-Hung; Jadczak, Joanna; Huang, Ying-Sheng; Chiu, Po-Wen; Krasheninnikov, Arkady V.; Suenaga, Kazu

Three-fold rotational defects in two-dimensional transition metal dichalcogenides

Published in:
Nature Communications

DOI:
10.1038/ncomms7736

Published: 01/04/2015

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Three-fold rotational defects in two-dimensional transition metal dichalcogenides

Yung-Chang Lin1, Torbjörn Björkman2, Hannu-Pekka Komsa2, Po-Yuan Teng3, Chao-Hui Yeh3, Fei-Sheng Huang4, Kuan-Hung Lin4, Joanna Jadczak5, Ying-Sheng Huang4, Po-Wen Chiu3, Arkady V. Krasheninnikov6 & Kazu Suenaga1

As defects frequently govern the properties of crystalline solids, the precise microscopic knowledge of defect atomic structure is of fundamental importance. We report a new class of point defects in single-layer transition metal dichalcogenides that can be created through 60° rotations of metal–chalcogen bonds in the trigonal prismatic lattice, with the simplest among them being a three-fold symmetric trefoil-like defect. The defects, which are inherently related to the crystal symmetry of transition metal dichalcogenides, can expand through sequential bond rotations, as evident from in situ scanning transmission electron microscopy experiments, and eventually form larger linear defects consisting of aligned 8–5–5–8 membered rings. First-principles calculations provide insights into the evolution of rotational defects and show that they give rise to p-type doping and local magnetic moments, but weakly affect mechanical characteristics of transition metal dichalcogenides. Thus, controllable introduction of rotational defects can be used to engineer the properties of these materials.
Point and line defects strongly influence electronic, optical, thermal and mechanical properties of solids, either with overall detrimental (for example, defect-induced embrittlement of reactor steels) or beneficial (doping of semiconductors) effect on the materials characteristics, calling on careful investigations of their atomic structure. Aberration-corrected transmission electron microscopy (TEM) made it possible to study the structure and behaviour of defects on atomic scale in real time, and has provided many insights into defect dynamics. In sp^2-hybridized hexagonal carbon systems, for example, carbon nanotubes\(^1\) or graphene\(^2,3\), Stone–Wales transformations\(^4\) representing rotations of C–C bonds by 90° (Fig. 1a,b) have been observed. Such transformations can be regarded as an elementary step that not only gives rise to topological defects\(^5,6\), but are also responsible for plastic deformation\(^7,8\), rippling\(^9\) and grain boundary motion\(^10\).

In two-dimensional (2D) materials with trigonal symmetry, for example, h-BN\(^11–14\) or transition metal dichalcogenides (TMDs)\(^15–20\), point and line defects have been observed, but Stone–Wales rotational defects are not expected due to the polar nature of chemical bonds in such systems. On the other hand, a 60° rotation of three bonds centred on a metal atom, as schematically shown in Fig. 1e–g, would preserve the heteroatomic nature of bonding and the trigonal lattice symmetry, resulting in the formation a ‘trefoil’-shaped defect (Fig. 1h). This gives rise to the fundamental question: can such transformations occur in stoichiometric or atom-deficient 2D systems with trigonal symmetry, and if yes, what kind of defects they would produce and how would these defects affect the properties of the material.

In the following, we present observations of such rotational defects. By combing scanning TEM (STEM) experiments with first-principles calculations, we show that such rotational defects exist in chalcogen-deficient TMDs and that the trefoil defect (Fig. 1i) is the simplest example in a series of bond rotation-mediated transformations in the TMDs. By sequential rotations of metal–chalcogen (M–X) bonds, the rotational defects can expand in size and also migrate in the lattice, or form one-dimensional domain boundaries. The formation and evolution of the defects are mediated by chalcogen vacancies induced by the electron-beam irradiation.

Results

Atomic structure of rotational defects in TMDs. Figure 1i presents examples of trefoil defects in WSe\(_2\), which were found abundant at elevated temperatures. A comparison of the experimental STEM images with the simulated ones based on possible atomic structures (Supplementary Fig. 2) indicated that the system is Se deficient due to electron-beam irradiation. Similar trefoil-shaped defects also exist in graphene as reconstructed divacancies, but there the C–C bond is rotated by 90° as shown in Fig. 1c,d.

Figure 2a–c shows the filtered annular dark-field (ADF) images of three different Se-deficient WSe\(_2\) structures. In Fig. 2a, one can
see two distinct image contrasts of the vacancies at the Se sites, corresponding to single Se vacancies (SV$_{\text{Se}}$, white polygon) and double vacancies (DV$_{\text{Se}}$, yellow polygon), respectively. At $t = 17$ s, a new WSe$_2$ defect of three-fold rotational symmetry, consisting of three eight-membered rings, resembling a trifoliate leaf, suddenly appears (Fig. 2b). We designate this three-fold symmetrical trefoil defect as the ‘first-order rotational defect’ or ‘T$_1$’ (with the lattice keeping the original symmetry being ‘T$_0$’). A model of the defect transformation from T$_0$ to T$_1$ is presented in Fig. 2d–f. The trefoil defects were always observed in W-centred configuration, but never in the equally possible Se-centred configuration, indicating the crucial role of the Se vacancies in the formation of the defect. We stress that the actual transformation mechanism may include not only bond rotations, but also the migration and rearrangements of Se atoms in the region with high vacancy concentration. By quantitative STEM simulations, the metal-centred T$_1$ defect with 3DV included (T$_1$(3DV)) is a best fit to the experimental results (Supplementary Figs 1 and 2 and Supplementary Note 1). We have also observed such defects in WS$_2$ and MoSe$_2$, but not in MoS$_2$.

The trefoil defects persist when the samples are cooled to room temperature (Supplementary Fig. 3 and Supplementary Note 2). We also found that trefoil defects can be produced directly at room temperature. However, in the latter case, the defects usually appear in asymmetric shapes with only two octagon leaves as shown in Supplementary Figs 4, 5 and 7, because the energy barriers for bond rotations are relatively high, and the multistep transformations may require longer times than at high temperatures.

To rationalize the experimental findings, we carried out first-principles calculations of the atomic structures and formation energies of the defect structures. We define the formation energy E_f of a defect in a TMD MX$_2$ as

$$E_f = E_{\text{conf}} + N_X \mu_X - E_0$$

where E_{conf} is the energy of the supercell with the defect, E_0 is the energy of the pristine supercell, N_X are the number of missing chalcogen atoms and μ_X their chemical potential with respect to X$_2$ molecule. Our calculations show that rotating three W–Se bonds by 60° after 3DV$_{\text{Se}}$ were created (Fig. 2e) lowers the energy of the system by 1.8 eV. Supplementary Table 1 lists the formation energies of the trefoil and various rotational defects in the S/Se-deficient MoS$_2$, MoSe$_2$, WS$_2$ and WSe$_2$ lattice, for convenience given as normalized per chalcogen vacancy. The T$_1$(3DV) has lower formation energy per S/Se vacancy than SV or other defect structures and in particular the T$_1$(3SV) defect is strongly unfavourable. For the MoS$_2$, the staggered DV line structure18 shows lower energy than the T$_1$(3DV) defect, which may explain that T$_1$(MoS$_2$) defect has not been found in our experiments.

Expansion of trefoil defects by multiple M–X bond rotations. Figure 2c shows a larger second-order rotational defect (T$_2$) in WSe$_2$. The T$_2$ defect has a triangular shape and is about twice the size of T$_1$ with each edge containing two octagons (six octagons in total, purple) as shown in the model in Fig. 2i. A model of the atomic rearrangement during the transformation from T$_1$ to T$_2$ is presented in Fig. 2g–i. When two more DV$_{\text{Se}}$ are created near the
T₁ (red crosses in Fig. 2g), the structure can be transformed into T₂ by rotating seven pairs of W–Se bond (Fig. 2h) around the three W rotation centres (green atoms in Fig. 2g). The reverse transformation that restores, for example, T₁/T₂ to T₀ by another set of M–X bond rotations was also observed (see Supplementary Movie 1). When the rotational defect transforms to a larger defect (for example, T₂ to T₃), a larger number of collective M–X bond rotations might require higher energy barriers, as a result, the transformation process is divided into more steps of M–X bond rotation (see Supplementary Figs 8 and 9, Supplementary Note 2 and Supplementary Note 3).

Migration of trefoil defects. During our STEM observations, not only the Se vacancies but also the trefoil defects were mobile (Supplementary Figs 6 and 10, Supplementary Movies 3 and 4 and Supplementary Note 4). The migration rate of the trefoil defects is much lower than that of SV or DV, presumably due to the collective rearrangement of a larger number of atoms. Figure 3a,b shows an example of in-plane gliding of T₁(WSe₂) by one lattice constant distance (see Supplementary Movie 5). Two Se divacancies, highlighted by yellow and blue polygons, were stable in the consecutive ADF images and acted as the reference. The initial and final locations of the trefoil defect are indicated by the red arrows that point to the corners of the octagons according to the yellow divacancy. Figure 3c–e shows an example of in-plane gliding of T₁(WSe₂) by one lattice constant distance (see Supplementary Movie 5). Two Se divacancies, highlighted by yellow and blue polygons, were stable in the consecutive ADF images and acted as the reference. The initial and final locations of the trefoil defect are indicated by the red arrows that point to the corners of the octagons according to the yellow divacancy. Figure 3c–e shows an atomic model of T₁ defect gliding. Five pairs of W–S bonds (marked by green circles in Fig. 3d) rotate collectively clockwise (red arrows in Fig. 3d) around five W rotation centres (green atoms in Fig. 2g). The reverse transformation process is divided into more steps of M–X bond rotation (see Supplementary Figs 8 and 9, Supplementary Movie 2 and Supplementary Note 3).

p-type doping and magnetism of large trefoil defect and 8–5–5–8 domain boundary. If the M–X bonds rotate further, the rotational defects can expand to even larger sizes. Figure 4a shows an ADF image of T₄(WSe₂) defect. According to the structural parameters for rotational defects listed in Table 1, the T₄ defect involves 36 pairs of M–X bond rotation around 16 W rotation centres, which leads to a large triangular shape and each edge contains four octagons sandwiched with a pair of pentagons, as illustrated in Fig. 4b. Note that the 8–5–5–8 edges form linear domain boundaries (8 boundary), which are further visualized in Fig. 4d (extracted from the T₆ defect). The calculated density of states from T₁, T₂, and T₃ defects in WSe₂ are shown in Fig. 4c. The additional states in the mid gap originate from the corners of the defect, whereas the states close to the valence band maximum and conduction band minimum can be traced to the edges (see Supplementary Figs 12 and 13). Interestingly, as the size of the defect increases, the Fermi-level moves closer to the valence band maximum, that is, the edge states of middle-sized defects essentially lead to p-type doping of the system. On the other hand, recent tight-binding transport calculations showed that the conductivity of MoS₂ sheets with large rotational defects and grain boundaries containing 8–5–5–8 rings is strongly reduced across such defects21. We did not observe any rotational defects in MoS₂, but their effects on the electronic transport in other TMDs we studied may be similar.

Figure 4e shows the electronic structure and the local density of states of the ideal 8 boundary in WSe₂. The electronic states localized to the boundary have now energies in the lower mid-gap region with very small dispersion and consequently large density of states. The conductivity along these boundaries will then strongly depend on the Fermi-level position within the gap. These states were also found to carry a magnetic moment. A similar behaviour was reported for the 5–7 dislocation22 and 8–5–5–8 boundary in MoS₂ (ref. 23) and epitaxial graphene on Ni(111)24.

Discussion
Calculating the elastic properties of pristine and defective WSe₂, we found that a Se vacancy concentration of 3%, in the range of the experimentally observed concentrations, decreases the bulk modulus by only about 4%. This indicates that inducing these defect structures only weakly deteriorates the mechanical properties of the system while giving rise to substantial changes in the electronic structure.
As shown in the present study by direct visualization of atomic-scale transformations, TMDs feature a rich variety of...
rotational defects, with the structures and their formation mechanisms related to the symmetry of the lattice but clearly distinct from those in other 2D materials such as graphene and h-BN. Phase transitions and inverse domains may be induced a posteriori, for example, by electron-beam irradiation, which leads to drastic changes in the material properties, for example, p-type doping and magnetism. The bond rotation mechanism reported here not only gives rise to a new class of defects, but also adds to the toolbox of available means for modifying the local properties of TMDs.

Methods

Material synthesis and sample preparation

Single crystal of MoS2, MoSe2, WS2 and WSe2 were grown by chemical vapour transport method using either Br2 as a transport agent at 950 °C. Ten grams of 99.99% purity of Mo or W, and S or Se elements with 5 mg cm−3 of Br2 were cooled in a quartz tube ampoule with liquid nitrogen and sealed in vacuum (≈1 × 10⁻³ Torr)26,27. Single-layer TMDs were mechanically exfoliated from synthesized crystals using Scotch tape and transferred to 300 nm SiO2/Si substrate. To grow WSe2 by chemical vapour deposition, WO3 and Se powders were, respectively, used as the tungsten and selenium sources, which were placed in two separate quartz boats located in upstream of a gas flow. The temperatures of the WO3 and Se powders were set at 850 and 250 °C, respectively. The sapphire substrates where the WSe2 flakes were deposited at

Table 1 | Structural parameters for trefoil-like defects.

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Tn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation centre (Rc) for expansion</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>∑2n−1</td>
</tr>
<tr>
<td>Pairs of M-X bond rotation (RP)</td>
<td>3</td>
<td>10</td>
<td>21</td>
<td>∑4n−1</td>
</tr>
<tr>
<td>Octagons</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>3n</td>
</tr>
<tr>
<td>Pentagons</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>6(n-1)</td>
</tr>
<tr>
<td>DV(M/Se)</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>(2n+1)</td>
</tr>
<tr>
<td>Defect size (Aₙ)</td>
<td>12A₀</td>
<td>25A₀</td>
<td>42A₀</td>
<td>(2n²+7n+3)A₀</td>
</tr>
<tr>
<td>Rc and Rp for migrating a lattice constant</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>4n+1</td>
</tr>
</tbody>
</table>

Unit cell size A₀ = 9.37 Å².
750°C were placed at the downstream side with WO3 and Se vapours being transported by an Ar/H2 flowing gas (Ar = 60 s.c.c.m. and H2 = 3 s.c.c.m.). During the growth, the pressure of reaction chamber keeps constantly at 70 Torr. The specimens were transferred to TEM microgrid and heated in the TEM chamber (vacuum level of ~1.8 × 10⁻⁵ Pa) at 500°C in a JEOl heating holder.

STEM-ADF imaging experiments. STEM-ADF imaging was performed using an aberration-corrected JEOL-2100 F equipped with a DELTA corrector and cold field-emission gun. The microscope was operated at an accelerating voltage of 60 kV. The effective convergence semi-angle was set to 35 mrad, and the inner acquisition semi-angle was 79 mrad. The probe current was 10–15 pA. The sequential ADF images were recorded with 512 × 512 pixels and acquired with 16–64 s dwell time. The ADF images in Figs 1–3 have been processed by low-pass filter to enhance the contrast. False-colour images and the image alignment were processed using ImageJ.

Computational details. Density functional theory calculations were carried out with the PAW method as implemented in the VASP software package,28,29 using the PBE exchange-correlation functional.30 The defects were modelled in periodically repeated 10 × 10 supercells of the primitive trigonal lattice with the sheets separated by 1 Å of vacuum. A single k-point was used for PBE integration and the plane-wave basis set cutoff was 300 eV. For a few selected structures, the supercell size was increased to 14 × 14 and the energy cutoff increased to 400 eV, which produced an error of at most 0.1 eV, which is our estimated numerical accuracy. Calculations for ideal boundaries were carried out in the ribbon geometry with five MX2 units on each side of the boundary and with fully chalcogen passivated edge structures, as shown in Fig. 4d. Twelve k-points along the ribbon were sufficient for convergence results. Robustness of the semiconducting-to-metallic phase transition in single-layered MoS2. Nature Nanotechnol. 9, 391–396 (2014).

Acknowledgements

Y.-C.L. and K.S. acknowledge support from JST Research Acceleration Program. A.V.K. also acknowledges financial support from the Academy of Finland through Project No. 263416 and H.-P.K. and T.B. further thank the Academy of Finland for the support through its Centres of Excellence Programme (2012–2017) under Project No. 251748. Y.-S.H. acknowledges the support of the National Science Council of Taiwan (projects NSC 100-2121-M-011-004-MY3 and NSC 102-2811-M-011-002). P.-W.C. also acknowledges financial support from the Academy of Finland through its Centres of Excellence Programme. We also thank CSC-IT Center for Science Ltd. for generous grants of computer time.

Author contributions

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permissions information is available online at http://npg.nature.com/permissions.

How to cite this article: Lin, Y.-C. et al. Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat. Commun. 6, 6736 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/