Boldt, Robert; Seppä, Mika; Malinen, Sanna; Tikka, Pia; Hari, Riitta; Carlson, Synnöve

Spatial variability of functional brain networks in early-blind and sighted subjects

Published in:
NeuroImage

DOI:
10.1016/j.neuroimage.2014.03.058

Published: 01/01/2014

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Spatial variability of functional brain networks in early-blind and sighted subjects

Robert Boldt a,b,c,⁎, Mika Seppä a, Sanna Malinen d, Pia Tikka d, Riitta Hari a, Synnöve Carlson a,b

a Brain Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto University, Finland
b Neuroscience Unit, Institute of Biomedicine/Physiology, University of Helsinki, Finland
c Advanced Magnetic Imaging Centre, Aalto NeuroImaging, School of Science, Aalto University, Finland
d Department of Film, Television and Scenography, School of Arts, Design and Architecture, Aalto University, Finland

Abstract

To further the understanding how the human brain adapts to early-onset blindness, we searched in early-blind and normally-sighted subjects for functional brain networks showing the most and least spatial variabilities across subjects. We hypothesized that the functional networks compensating for early-onset blindness undergo cortical reorganization. To determine whether reorganization of functional networks affects spatial variability, we used functional magnetic resonance imaging to compare brain networks, derived by independent component analysis, of 7 early-blind and 7 sighted subjects while they rested or listened to an audio drama. In both conditions, the blind compared with sighted subjects showed more spatial variability in a bilateral parietal network (comprising the inferior parietal and angular gyri and precuneus) and in a bilateral auditory network (comprising the superior temporal gyri). In contrast, a vision-related left-hemisphere-lateralized occipital network (comprising the superior, middle and inferior occipital gyri, fusiform and lingual gyri, and the calcarine sulcus) was less variable in blind than sighted subjects. Another visual network and a tactile network were spatially more variable in the blind than sighted subjects in one condition. We contemplate whether our results on inter-subject spatial variability of brain networks are related to experience-dependent brain plasticity, and we suggest that auditory and parietal networks undergo a stronger experience-dependent reorganization in the early-blind than sighted subjects while the opposite is true for the vision-related occipital network.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Congenital or early blindness affects the structure and function of the brain (Pascual-Leone et al., 2005). Although knowledge about the neural mechanisms underlying brain plasticity following early blindness is accumulating, a more thorough comprehension of experience-dependent brain plasticity is required and could aid e.g. in the development of sensory substitution devices for the blind. It is thus important to understand how the human brain adapts to missing sensory input. Recent methodological advances have provided new ways to study brain organization and plasticity. One rapidly growing field is the study of functionally-connected brain networks (Calhoun and Adali, 2012), such as the “resting-state networks”. Commonly studied resting-state networks include (i) the default-mode network comprising areas within the posterior cingulate and precuneus, the parietal lobes bilaterally, and the medial prefrontal cortex (Raichle et al., 2001), (ii) the motor/sensory network comprising the pre- and postcentral gyri, and the premotor and supplementary motor areas (Biswal et al., 1995), (iii) the vision-related occipital network, and (iv) the superior temporal network covering auditory cortices (Damoiseaux et al., 2006). Topographies of these brain networks are rather similar both during rest and task performance (Smith et al., 2009), although hubs may shift during tasks, suggesting a more efficient information transmission (Di et al., 2013). As blind subjects cannot execute visual tasks, resting-state studies could be helpful in unraveling the functional connectivity of visual areas.

Early-blind subjects can have improved auditory and tactile abilities or maladjustments in senses other than vision. These two types of alterations are addressed by the compensatory-plasticity hypothesis and the general-loss hypothesis, respectively (Pascual-Leone et al., 2005). Early-blind subjects often perform better than sighted subjects in auditory (Gougoux et al., 2004, 2005) and tactile tasks (Goldreich and Kanics, 2003; Wan et al., 2010), which lends support to the compensatory-plasticity hypothesis. On the other hand, the general-loss hypothesis is supported by findings that blind subjects perform poorly in auditory localization tasks that seem to benefit from intact vision (Gori et al., 2014; Zwiers et al., 2001) and in tasks requiring auditory-tactile interaction in the peripersonal space (Collignon et al., 2009).

⁎ Corresponding author at: PO BOX 15100, 00076 Aalto, Finland. Fax: +358 9 19125302.
E-mail address: robert.boldt@helsinki.fi (R. Boldt).
Resting-state functional magnetic resonance imaging (fMRI) studies comparing early-blind with sighted subjects show reduced functional connectivity—in accordance with the general-loss hypothesis—within occipital areas and within a wide network extending from occipital to parietal somatosensory, frontal motor, and temporal multisensory areas (Yu et al., 2008). On the other hand, functional connectivity between visual and language areas is enhanced in anophthalmic (Watkins et al., 2012) and early-blind subjects, supporting the compensatory-plasticity hypothesis (Liu et al., 2007).

The structure and function of resting-state networks, such as the default-mode network and language-related networks, are in part genetically determined (Glahn et al., 2010; Jamadar et al., 2013). Environmental influences and experience, including practice (Jang et al., 2011) and disease (Greicius et al., 2004), however, induce changes in these networks. Accordingly, the investigation of variability in functional networks provides one approach to explore how experience, including early blindness, affects the brain (Lee et al., 2012; Liu et al., 2007; Mueller et al., 2013). Importantly, individual variability should not be considered noise, but rather as an essential feature helping to understand how the brain matures (Zilles and Amunts, 2013). Therefore, it is conceivable that sensory loss may affect brain structure and function in a variable manner and result in increased individual variability of functional brain networks.

We hypothesized that experience-dependent brain plasticity is reflected in inter-subject spatial variability of functional networks. In line with this hypothesis, the brain regions of children communicate locally with other regions, but with increasing age communication becomes more distributed as a result of experience-dependent processes (Fair et al., 2009; Satterthwaite et al., 2013). We explored whether the networks compensating for early-onset visual deprivation would exhibit more inter-subject spatial variability in the early-blind than sighted subjects. We also investigated whether some of the networks that are little used after early-onset visual deprivation, e.g. occipital networks devoid of visual input, would exhibit less inter-subject spatial variability in the blind than the sighted subjects. We estimated functional networks with independent component analysis (ICA) that, in contrast to seed-based correlation analysis, requires no anatomical seed regions and can reliably reveal comparable intrinsic and task-related connectivity patterns (Smith et al., 2009), despite coactivation of distinct networks during tasks (Joel et al., 2011). Thus ICA allowed us to compare the functional networks found in the data collected during rest and audio-drama listening. We also searched for possible between-group differences in functional network connectivity (Jafri et al., 2008) in the networks displaying large spatial variability between the blind and sighted subjects.

We analyzed both resting-state data and data collected while the subjects listened to an audio drama. In line with our hypothesis, the functional networks showing more variability in the blind than the sighted subjects encompassed auditory, parietal, and sensorimotor areas, i.e. regions that are modulated by altered sensory experience due to early-onset blindness. One network that encompassed visual occipital areas was less variable in the blind than sighted subjects.

Methods

Subjects

Seven early-blind subjects (4 females, 3 males; age range 19–43 years, mean age 34 years; 6 right-handed and one ambidextrous by report; see Table 1 for the causes and durations of the blindness) and 16 normally-sighted subjects (7 females, 9 males; age range 19–37 years; mean age 24 years, all right-handed by report) with no recorded history of neurological or psychiatric problems participated in the experiment; the data of 13 normally-sighted subjects were obtained from our previous study (Boldt et al., 2013). All blind subjects read Braille (mean ± SD 4.9 ± 2.6 h/week; range 2–8). For the main analysis, an age- and gender-matched control group (4 females, 3 males; age range 19–37 years, mean age 27 years) was formed of the sighted subjects; the data of the remaining 9 normally-sighted subjects were only used for creating a reference distribution (see Creating a reference distribution section). The subjects were native Finns and fluent in Finnish although one blind and one sighted subject included in the main analysis were Swedish-speaking bilinguals. The subjects participated after informed consent, and the study was approved by the ethics committee of the Helsinki and Uusimaa Hospital District.

Data acquisition and preprocessing

MRI data were obtained with a Signa VH/i 3.0 T MRI scanner (General Electric, Milwaukee, WI, USA). First, a structural image of 178 axial slices was acquired using a T1-weighted 3D-MPRAGE sequence, TR = 10 ms, TE = 30 ms, preparation time = 300 ms, flip angle = 15°; FOV = 25.6 cm, matrix = 256 × 256, and voxel size = 1 × 1 × 1 mm3. Next, functional images were acquired using a gradient echo-planar-imaging sequence with the following parameters: TR = 2.5 s, TE = 30 ms, flip angle = 75°, FOV = 22.0 cm, matrix = 64 × 64, slice thickness = 3.5 mm, voxel size = 3.4 × 3.4 × 3.5 mm3 and number of oblique axial slices = 43. Slices were obtained using interleaved acquisition. Altogether 246 functional volumes were collected, but the first 6 dummy volumes were automatically discarded. The resting-state scan lasted about 10 min. Subjects were instructed to lie still with their eyes closed, not to fall asleep and not to think of anything in particular. After the resting-state scan, an audio drama was presented (Boldt et al., 2013). The functional images during the audio drama were acquired using the same parameters as in the resting-state scan, but the scan lasted about 19 min resulting in 456 functional volumes. We refer to this set of data as the audio-drama data.

As described in detail in our previous study of normally-sighted subjects (Boldt et al., 2013), the audio drama comprised sequences from a Finnish movie “Postia Pappi Jaakobille” (“Letters to Father Jaakob”, director Klaus Härö, Production company: Kinotar Oy, Finland, 2009), in which a woman arrives at a run-down parsonage to help an old blind priest. The stimulus included sounds from the original movie, and a narration for blind people. The audio drama was presented binaurally with UNIDES ADU2a audio system (Unides Design, Helsinki, Finland) from a

Table 1

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age (years)</th>
<th>Age when blind</th>
<th>Cause of blindness</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>36</td>
<td>Since birth</td>
<td>Norrie's disease, no other neurological deficits</td>
</tr>
<tr>
<td>F</td>
<td>36</td>
<td>Since 3 years of age</td>
<td>Cataract, aniridia</td>
</tr>
<tr>
<td>F</td>
<td>19</td>
<td>Since birth</td>
<td>Leber's congenital amaurosis</td>
</tr>
<tr>
<td>F</td>
<td>40</td>
<td>Since birth</td>
<td>Leber optic atrophy</td>
</tr>
<tr>
<td>F</td>
<td>39</td>
<td>Since 6 months of age</td>
<td>Retinopathy of prematurity</td>
</tr>
<tr>
<td>M</td>
<td>43</td>
<td>Shadows and light until the age of 3 years</td>
<td>Retinopathy of prematurity</td>
</tr>
<tr>
<td>M</td>
<td>27</td>
<td>Since birth</td>
<td>Retinopathy of prematurity</td>
</tr>
</tbody>
</table>

F = female, M = male.
PC with an audio amplifier (Denon AVR-1802) and a power amplifier (Lab.gruppen ip 900). Sounds were delivered to the subject through plastic tubes connected to earplugs (Etymotic Research, ER3, IL, USA) that were inserted into the ear canals. The subject wore earmuffs to dampen the background noise of the magnet. Before scanning, we played parts of the audio-drama introduction to the subjects to adjust the sound level. The sound level was gradually raised until the sound level was loud but still comfortable. Subjects were instructed to lie still with their eyes closed and to listen attentively to the audio drama.

For independent component analysis (see below, Independent component analysis section), volume data were preprocessed using FS-FAST pipeline of FreeSurfer v5.1.0 software (http://surfer.nmr.mgh.harvard.edu/) by including registration of the functional images to the anatomical images, motion correction, slice-timing correction, intensity normalization, normalization into 2-mm MNI space, and spatial smoothing with a 12-mm full-width-at-half-maximum Gaussian kernel. To adequately estimate independent components in most of the subjects, we used a large smoothing kernel as suggested previously (Allen et al., 2012). The resting-state data and the first 240 functional volumes collected while subjects listened to the audio drama were preprocessed independently, but with identical parameters.

Independent component analysis

We used group ICA toolbox GIFT v1.3 (http://icatb.sourceforge.net/) to estimate the independent components (ICs) corresponding to the functional networks. The 7 blind and 7 age- and gender-matched sighted subjects were grouped together for the analysis. Group ICA seeks ICs for the group data instead of estimating networks separately for each individual. We chose this approach to avoid the ambiguity arising from combining the different individual networks resulting from separate estimations. The minimum-description-length algorithm (Li et al., 2007) implemented in GIFT estimated the mean number of sources to be 53. Spatial networks were determined using the Infomax algorithm (Lee et al., 1999). The ICASSO method (Himberg et al., 2004) was used to assess the replicability of the networks by running the algorithm 100 times; the most representative networks of estimated clusters were selected. Back-reconstruction of individual networks and time-courses was done with the GICA3 algorithm (Erhardt et al., 2011). Resulting spatial networks were scaled to percent signal change to maximize sensitivity to regional differences (Allen et al., 2012). Group ICA was run independently, but with identical parameters for the resting-state data and the first 240 functional volumes collected while subjects listened to the audio drama.

We identified functional networks located in the gray matter (Stevens et al., 2007). Functional networks (thresholded at family-wise error (FWE)-corrected \(p < 0.05, t > 8.62 \) that had \(>67\% \) overlap with binarized gray-matter MNI-template (SPM8) were considered physiologically plausible and were thus retained for further analysis.

Correlating networks within subjects and between groups

Our main aim was to determine whether the intra-group spatial variability of the functional networks would differ between the groups of blind and sighted subjects. We assumed that experience-related modulation of certain brain areas would increase inter-individual spatial variability, and hence the functional networks compensating for early-onset blindness would be inter-individually less correlated in the blind than sighted subjects, whereas the functional networks that are used less following early-onset blindness would show the opposite effect. Thus, we analyzed the data to find out whether any of the functional networks in the group of early-blind subjects had a mean between subjects correlation that was different from the respective correlation in the sighted group. We measured how similarly the voxels of a functional network were distributed throughout the brain, both between subjects within the groups, and between the groups, by computing pairwise Pearson’s correlations for the individual, unthresholded spatial gray-matter network maps, between all pairs of subjects, separately within each group. Next, the within-group pairwise correlation values were compared between the groups with a Mann–Whitney test. This procedure resulted in a \(U \)-value, which was compared with a reference distribution (see Creating a reference distribution section) to estimate the statistical significance (\(p \)-value). We carried out the analysis identically but independently for the resting-state data and the audio-drama data. Fig. 1 depicts the method.

To find the group resting-state networks corresponding to the group networks derived from the audio-drama data, we used the spatial correlation function available in the GIFT toolbox and searched for the highest spatial correlations between the resting-state networks and the networks derived from the audio-drama data.

Creating a reference distribution

We estimated a reference distribution from the sighted subjects’ data to avoid possible confounds that could result from the statistical dependence of the pairwise correlation (Kim et al., 2008) and the back-reconstruction step performed to obtain individual networks. We estimated the reference distribution using all 16 normally-sighted subjects, which included the 7 subjects used in the blind-versus-sighted comparison. A sample of 14 subjects was taken without replacement from the 16 normally-sighted subjects. The subjects were randomly divided into two groups of 7 in each. ICA was run for the sample with the same parameters as in the blind-versus-sighted comparison. Inter-subject correlation for all pairwise comparisons was calculated for each network in both groups. The resulting pairwise correlation values were compared between the groups with a Mann–Whitney test. The process was repeated for all 120 possible pairwise comparisons. The minimum-description-length algorithm (Li et al., 2007) implemented in GIFT estimated the mean number of sources to be 53. Spatial networks were determined using the Infomax algorithm (Lee et al., 1999). The ICASSO method (Himberg et al., 2004) was used to assess the replicability of the networks by running the algorithm 100 times; the most representative networks of estimated clusters were selected. Back-reconstruction of individual networks and time-courses was done with the GICA3 algorithm (Erhardt et al., 2011). Resulting spatial networks were scaled to percent signal change to maximize sensitivity to regional differences (Allen et al., 2012). Group ICA was run independently, but with identical parameters for the resting-state data and the first 240 functional volumes collected while subjects listened to the audio drama.

We identified functional networks located in the gray matter (Stevens et al., 2007). Functional networks (thresholded at family-wise error (FWE)-corrected \(p < 0.05, t > 8.62 \) that had \(>67\% \) overlap with binarized gray-matter MNI-template (SPM8) were considered physiologically plausible and were thus retained for further analysis.

Correlating networks within subjects and between groups

Our main aim was to determine whether the intra-group spatial variability of the functional networks would differ between the groups of blind and sighted subjects. We assumed that experience-related modulation of certain brain areas would increase inter-individual spatial variability, and hence the functional networks compensating for early-onset blindness would be inter-individually less correlated in the blind than sighted subjects, whereas the functional networks that are used less following early-onset blindness would show the opposite effect. Thus, we analyzed the data to find out whether any of the functional networks in the group of early-blind subjects had a mean between subjects correlation that was different from the respective correlation in the sighted group. We measured how similarly the voxels of a functional network were distributed throughout the brain, both between subjects within the groups, and between the groups, by computing pairwise Pearson’s correlations for the individual, unthresholded spatial gray-matter network maps, between all pairs of subjects, separately within each group. Next, the within-group pairwise correlation values were compared between the groups with a Mann–Whitney test. This procedure resulted in a \(U \)-value, which was compared with a reference distribution (see Creating a reference distribution section) to estimate the statistical significance (\(p \)-value). We carried out the analysis identically but independently for the resting-state data and the audio-drama data. Fig. 1 depicts the method.

To find the group resting-state networks corresponding to the group networks derived from the audio-drama data, we used the spatial correlation function available in the GIFT toolbox and searched for the highest spatial correlations between the resting-state networks and the networks derived from the audio-drama data.

Creating a reference distribution

We estimated a reference distribution from the sighted subjects’ data to avoid possible confounds that could result from the statistical dependence of the pairwise correlation (Kim et al., 2008) and the back-reconstruction step performed to obtain individual networks. We estimated the reference distribution using all 16 normally-sighted subjects, which included the 7 subjects used in the blind-versus-sighted comparison. A sample of 14 subjects was taken without replacement from the 16 normally-sighted subjects. The subjects were randomly divided into two groups of 7 in each. ICA was run for the sample with the same parameters as in the blind-versus-sighted comparison. Inter-subject correlation for all pairwise comparisons was calculated for each network in both groups. The resulting pairwise correlation values were compared between the groups with a Mann–Whitney test. The process was repeated for all 120 possible...
combinations obtained by selecting 14 subjects out of 16. Employing all 53 networks, a total of $53 \times 120 = 6360$ values were obtained to estimate the reference distribution. We used the frequencies of the values in the reference distribution to compute p-values for each network in the two-tailed tests between the blind and sighted subjects, and the p-values were corrected for false discovery rate (FDR).

Functional network connectivity

We searched for functional network connectivity for networks that displayed statistically significant between-group differences in spatial variability. Within each subject, we first correlated the time-courses of these networks with the functional networks that displayed no significant differences in variability between the groups (Jafri et al., 2008). The resulting correlation values were Fisher-transformed, after which we tested the correlation values against zero (one-sample t-test; DOF = 6), separately for the two subject groups, blind and sighted. We then tested the statistical significance of group differences in functional network connectivity (two-sample t-test; DOF = 12; Bonferroni correction for multiple comparisons).

Results

Networks during rest

Of the 53 networks estimated from the data collected during rest, 25 were classified as gray-matter networks and thus suitable for further analysis. Supplementary Fig. S1 depicts these networks ordered so that the network that displayed the largest variability among the blind compared with the sighted subjects (IC1r) is shown first and the network with the least variability (IC25r) is shown last. Each network had a quality index >0.9 (on a scale from 0 to 1) (Himberg et al., 2004), indicating reasonable reliability of the estimated networks. From the 25 networks, four (IC1r, IC2r, IC3r, and IC25r) displayed statistically significantly different spatial variability between the groups (FDR corrected threshold, $p < 0.0083$).

Fig. 2 shows the three networks (IC1r, IC2r, and IC3r; blue frame in Fig. 2 and Supplementary Fig. S1) that were significantly more variable in the blind than the sighted subjects: (1) IC1r, “a parietal network”, comprised bilaterally the angular and inferior parietal gyri, and the left precuneus; the within-subject correlation values differed between the blind and sighted subjects ($r_{\text{blind}} = 0.58$, $r_{\text{sighted}} = 0.68$; $p = 0.0006$). (2) IC2r, “an auditory network”, comprised the superior temporal and Heschl’s gyri extending to the postcentral and supramarginal gyri, Rolandic operculum, and insula of both hemispheres ($r_{\text{blind}} = 0.64$, $r_{\text{sighted}} = 0.72$; $p = 0.0016$). (3) IC3r, “a tactile network”, encompassed bilaterally the postcentral gyrus and extended in the right hemisphere to the precentral gyrus ($r_{\text{blind}} = 0.55$, $r_{\text{sighted}} = 0.71$; $p = 0.0022$). Moreover, Fig. 2 shows network IC25r (brown frame in Fig. 2 and in Supplementary Fig. S1) that was significantly less variable among the blind than sighted subjects. This “visual network” encompassed the left superior, middle, and inferior occipital gyri and the fusiform, lingual and calcarine sulcus ($r_{\text{blind}} = 0.72$, $r_{\text{sighted}} = 0.58$; $p = 0.0047$). Table 2 shows a list of areas encompassed by all 25 networks displayed in Supplementary Fig. S1.

Networks during audio drama

Of the 53 estimated networks that were related to the audio drama, 24—an amount similar to the 25 resting-state gray-matter networks—were classified as gray-matter networks. Supplementary Fig. S2 depicts these networks ordered so that the network that displayed the largest
variability among the blind compared with the sighted is shown first (IC1a), and the network with the least variability is shown last (IC24a); the networks had a quality index > 0.9, except IC16a (0.82) and IC20a (0.80).

From the 24 networks five (IC1a, IC2a, IC3a, IC4a, and IC24a) displayed significantly different spatial variability between the groups (FDR corrected p < 0.0104). Fig. 2 shows the four audio-drama networks (IC1a, IC2a, IC3a, and IC4a; blue frame in Fig. 2) and in Supplementary Fig. S2 that were significantly more variable in the blind than sighted subjects: (1) IC1a, a “parietal network”, was similar to IC1r, but comprised the inferior parietal gyrus only in the right hemisphere, and displayed some modest clusters in the right middle temporal and middle frontal gyr, and in the left Rolandic operculum. IC1a was significantly more variable in the blind than sighted subjects (mean correlation values: $r_{\text{blind}} = 0.53$ and $r_{\text{sighted}} = 0.61$, p < 0.0006). (2) IC2a, an “auditory network”, was found bilaterally in the superior temporal gyrus ($r_{\text{blind}} = 0.68$, $r_{\text{sighted}} = 0.78$, p = 0.0006). (3) IC3a, another “auditory network”, encompassed bilaterally the same areas as IC2r, with the exception of that it lacked a left middle temporal gyrus cluster ($r_{\text{blind}} = 0.65$, $r_{\text{sighted}} = 0.76$, p = 0.0016). (4) IC4a, a “visual network”, encompassed bilaterally the calcarine sulcus and lingual gyrus, precuneus, and cuneus ($r_{\text{blind}} = 0.64$, $r_{\text{sighted}} = 0.70$, p = 0.0028). Moreover, Fig. 2 shows another “visual network” (IC24a; brown frame in Fig. 2 and in Supplementary Fig. S2), lateral and posterior to IC4a, which was significantly less variable among the blind than the sighted, and encompassed the same areas as IC25r, but extended to the cuneus and lacked the inferior temporal gyrus voxels ($r_{\text{blind}} = 0.72$, $r_{\text{sighted}} = 0.56$, p = 0.0009). Table 3 shows a list of the areas encompassed by all 24 networks displayed in Supplementary Fig. S2.

Correspondence between resting-state and audio-drama networks displaying significant variability differences between the groups in both conditions

Fig. 2 shows, for both the resting-state and audio-drama data, the networks that were the most discriminating between the subject groups. Resting-state network IC1r was possibly split during audio drama into networks IC1a and IC16a (not shown in Fig. 2)—correlations 0.43 and 0.43, respectively; the resting-state network IC2r into audio-drama networks IC2a and IC3a (correlations 0.42 and 0.65, respectively). Resting-state network IC25r corresponded to IC24a (r = 0.62), resting-state network IC3r corresponded to audio-drama network IC7a (r = 0.63), and audio-drama network IC4a corresponded to IC20r (r = 0.65). In the following we focus only on the most correlated pairs of networks that displayed significant variability between the blind and sighted subjects during both conditions; the IC1r–IC1a, IC2r–IC3a and IC25r–IC24a pairs. The lines in Fig. 2 link matching networks. Comparison of the resting-state and audio-drama networks implied that two networks, a parietal network (IC1r/IC1a) and an auditory network (IC2r/IC3a), were more variable and a visual network (IC25r/IC24a) less variable in the blind than sighted subjects both during rest...
and while the subjects listened to the audio drama. To allow a comparison not only between the conditions but also between the groups, Fig. 3 shows separately for the blind and sighted groups the resting-state networks IC1r, IC2r, and IC25r and the corresponding audio-drama data networks IC1a, IC3a, and IC24a. Additionally, for these networks, the unthresholded spatial maps for each subject are presented in Fig. S3.

Functional network connectivity

Assessment of functional network connectivity in the blind subjects showed that the resting-state network IC1r correlated significantly with networks IC12r and IC22r, network IC2r correlated with IC3r, and network IC25r correlated with IC12r, IC21r, and IC23r; see Table S1 for details and Table 2 for anatomical labels. Audio-drama network IC1a correlated significantly with IC16a and IC23a, network IC3a correlated with IC2a, IC7a, and IC16a, and network IC24a correlated with IC18a and IC21a; see Table S4 for details and Table 3 for anatomical labels.

Table 3

<table>
<thead>
<tr>
<th>IC #</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Region</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-56</td>
<td>-71</td>
<td>25</td>
<td>Angular gyrus, middle occipital gyrus</td>
<td>522</td>
</tr>
<tr>
<td>62</td>
<td>-67</td>
<td>21</td>
<td></td>
<td>Angular gyrus, inferior parietal gyrus, middle temporal gyrus</td>
<td>2233</td>
</tr>
<tr>
<td>-56</td>
<td>-5</td>
<td>9</td>
<td>Rolando operculum</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>23</td>
<td>53</td>
<td>Superior and middle frontal gyri</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-63</td>
<td>35</td>
<td>Bilaterally precuneus</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>-68</td>
<td>-17</td>
<td>9</td>
<td>Superior and middle temporal gyr, postcentral gyr</td>
<td>1458</td>
</tr>
<tr>
<td>64</td>
<td>-11</td>
<td>9</td>
<td>Superior temporal gyrus</td>
<td>595</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>-58</td>
<td>-9</td>
<td>11</td>
<td>Superior temporal gyrus, postcentral gyr, Rolando operculum, supramarginal gyrus, insula, Hesch's gyrus</td>
<td>2150</td>
</tr>
<tr>
<td>52</td>
<td>-3</td>
<td>13</td>
<td>Superior temporal gyrus, postcentral gyr, Rolando operculum, supramarginal gyrus, insula, Hesch's gyrus</td>
<td>3042</td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>0</td>
<td>-45</td>
<td>9</td>
<td>Bilaterally calcarine sulcus, lingual gyrus, precuneus, cuneus, vermis</td>
<td>5746</td>
</tr>
<tr>
<td>5a</td>
<td>-51</td>
<td>39</td>
<td>Middle and superior temporal gyr, angular gyrus, supramarginal gyrus</td>
<td>4523</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>-13</td>
<td>39</td>
<td>Precentral gyrus</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-59</td>
<td>45</td>
<td>Right precuneus</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>-64</td>
<td>-29</td>
<td>23</td>
<td>Supramarginal gyrus, inferior parietal gyr</td>
<td>1661</td>
</tr>
<tr>
<td>52</td>
<td>-29</td>
<td>25</td>
<td>Supramarginal gyrus, inferior parietal gyr, postcentral gyr, superior temporal gyrus</td>
<td>1904</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>-49</td>
<td>47</td>
<td>Bilaterally precuneus, left middle cingulate gyr</td>
<td>978</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>-52</td>
<td>-7</td>
<td>31</td>
<td>Postcentral and precentral gyr</td>
<td>2162</td>
</tr>
<tr>
<td>56</td>
<td>-5</td>
<td>27</td>
<td>Postcentral gyr, precentral gyr, Rolando operculum</td>
<td>1779</td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>-60</td>
<td>-55</td>
<td>25</td>
<td>Middle temporal gyr, angular gyr, superior temporal gyr, supramarginal gyrus</td>
<td>4256</td>
</tr>
<tr>
<td>-54</td>
<td>19</td>
<td>3</td>
<td>Triangular and orbital part of inferior frontal gyr</td>
<td>376</td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>18</td>
<td>49</td>
<td>49</td>
<td>Bilaterally precuneus, superior parietal gyr, left middle cingulate gyrus</td>
<td>3038</td>
</tr>
<tr>
<td>10a</td>
<td>-6</td>
<td>-67</td>
<td>27</td>
<td>Bilaterally precuneus, middle and posterior cingulate gyr, cuneus, calcarine sulcus, right superior occipital gyrus</td>
<td>7238</td>
</tr>
<tr>
<td>11a</td>
<td>-42</td>
<td>31</td>
<td>21</td>
<td>Triangular and opercular part of inferior frontal gyr, middle frontal gyrus, precentral gyrus</td>
<td>2803</td>
</tr>
<tr>
<td>12a</td>
<td>8</td>
<td>-31</td>
<td>13</td>
<td>Cerebellum, vermis</td>
<td>1356</td>
</tr>
<tr>
<td>13a</td>
<td>16</td>
<td>-49</td>
<td>67</td>
<td>Postcentral gyr, superior and inferior parietal gyr, precentral gyr</td>
<td>1551</td>
</tr>
<tr>
<td>14a</td>
<td>34</td>
<td>-79</td>
<td>51</td>
<td>Inferior and superior parietal gyr, angular gyrus, middle and superior occipital gyr, precuneus</td>
<td>4019</td>
</tr>
<tr>
<td>14a</td>
<td>34</td>
<td>-91</td>
<td>25</td>
<td>Middle and superior occipital gyr, inferior parietal gyr, precuneus, cuneus, angular gyrus, middle cingulate gyrus</td>
<td>4109</td>
</tr>
<tr>
<td>50</td>
<td>-81</td>
<td>23</td>
<td>Middle and superior occipital gyr, cuneus, angular gyrus</td>
<td>1737</td>
<td></td>
</tr>
<tr>
<td>-28</td>
<td>-41</td>
<td>13</td>
<td>Fusiform gyrus</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>-41</td>
<td>11</td>
<td>Fusiform gyrus</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>16a</td>
<td>52</td>
<td>-65</td>
<td>33</td>
<td>Inferior and superior parietal gyr, angular gyrus</td>
<td>2871</td>
</tr>
<tr>
<td>42</td>
<td>-71</td>
<td>55</td>
<td>Angular gyrus, inferior parietal gyr</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td>15</td>
<td>47</td>
<td>Middle frontal gyr</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>-43</td>
<td>7</td>
<td>Middle temporal gyr</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>17a</td>
<td>-10</td>
<td>-69</td>
<td>35</td>
<td>Cerebellum, vermis</td>
<td>526</td>
</tr>
<tr>
<td>18a</td>
<td>-12</td>
<td>-91</td>
<td>31</td>
<td>Bilaterally cuneus, superior occipital gyr, precuneus, calcarine sulcus</td>
<td>2988</td>
</tr>
<tr>
<td>19a</td>
<td>-38</td>
<td>-11</td>
<td>55</td>
<td>Postcentral gyr, precentral gyr, superior parietal gyr, superior frontal gyr</td>
<td>2248</td>
</tr>
<tr>
<td>20a</td>
<td>-26</td>
<td>53</td>
<td>37</td>
<td>Middle and superior frontal gyr</td>
<td>2932</td>
</tr>
<tr>
<td>34</td>
<td>53</td>
<td>37</td>
<td>Middle frontal gyr</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>21a</td>
<td>18</td>
<td>-77</td>
<td>5</td>
<td>Bilaterally calcarine sulcus, lingual gyr, cuneus, right superior occipital gyr</td>
<td>4368</td>
</tr>
<tr>
<td>22a</td>
<td>42</td>
<td>-91</td>
<td>9</td>
<td>Bilaterally middle and superior occipital gyr, cuneus, calcarine sulcus, right middle temporal gyrus and inferior occipital gyr</td>
<td>4619</td>
</tr>
<tr>
<td>23a</td>
<td>-6</td>
<td>61</td>
<td>35</td>
<td>Bilaterally medial part of superior frontal gyr, right middle frontal gyr</td>
<td>4495</td>
</tr>
<tr>
<td>-6</td>
<td>-59</td>
<td>31</td>
<td>Left precuneus</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

N refers to the number of voxels in each cluster. Anatomical labeling is based on the group data, and was performed with the Automated Anatomical Labeling (AAL) tool. Labels are listed if a cluster extended > 100 voxels into the AAL defined area. Threshold t > 8.62, FWE-corrected p < 0.05, and cluster size > 100 voxels.

and while the subjects listened to the audio drama. To allow a comparison not only between the conditions but also between the groups, Fig. 3 shows separately for the blind and sighted groups the resting-state networks IC1r, IC2r, and IC25r and the corresponding audio-drama data networks IC1a, IC3a, and IC24a. Additionally, for these networks, the unthresholded spatial maps for each subject are presented in Fig. S3.

Discussion

During rest, three brain networks (a parietal network, an auditory network, and a tactile network) were spatially more variable and a visual network less variable in the blind than in the sighted subjects. During audio drama, four networks (a parietal network, two auditory networks, and a visual network) were more variable and one visual network less variable in the blind compared with the sighted subjects. Thus, in both conditions, a parietal network and an auditory network were more variable and a visual network less variable in the blind than sighted subjects.
consider these functional network pairs (IC1r–IC1a, IC2r–IC3a and IC25r–IC24a) spatially rather similar. Employing spatial cross-correlations between these network pairs we found a minimum correlation of $r = 0.42$, which is within the previously reported correlation limits ($r = 0.25–0.79$, mean 0.53) between ICA-derived resting-state and task networks (Smith et al., 2009). Considering that a multitude of factors, such as the number of estimated components, affects the spatial shape and extent of networks between the runs of an ICA (Pamilo et al., 2012), the resting-state and audio-drama networks obtained in the current study corresponded reasonably well with each other. However, as variability is evident even between runs with identical data, variability between different studies is expected. Still, as argued below, our results correspond reasonably well to previous experiments.

Our sample size was small and although statistically significant results based on small samples are worth reporting (Friston, 2012; Lindquist et al., 2013), the low statistical power could conceal true effects and overestimate effect sizes.

Parietal network (IC1r, IC1a)

A bilateral network comprising mainly the angular gyri, and additionally the inferior parietal gyri and precuneus, was spatially more variable in the blind than in the normally-sighted subjects. Angular gyrus is activated in a multitude of tasks, most of which involve language processing (Seghier, 2013), and a functional network encompassing the angular gyrus and precuneus is involved in semantic processing of narratives (Schmithorst et al., 2006). Moreover, the angular gyrus is attributed to language processing also during reading (Segal and Petrides, 2013).

All the blind subjects in the current study read Braille regularly. Therefore, in addition to verbal language processing, the large intragroup spatial variability among the blind in the parietal network could be related to the use of fingers when reading Braille. This notion is supported by the findings that the inferior parietal lobe is involved in Braille reading (Burton et al., 2002; Sadato et al., 1998) and a lesion in the inferior parietal lobule can lead to dysgraphia and finger agnosia (Rusconi et al., 2010).

Auditory network (IC2r, IC3a)

Both during rest and audio drama, an auditory-cortex network, known to react to sounds (Malinen et al., 2007; Schmitzorst et al., 2006), was spatially more variable in the blind than in the sighted subjects. The network comprised bilaterally the superior temporal, Heschl’s, supramarginal and postcentral gyri, Rolandic operculum, and insula. Early-blind individuals rely strongly on hearing and have a sharper auditory spatial tuning (Röder et al., 1999) and can locate some sounds equally well or better than sighted subjects (Lessard et al., 1998), suggesting compensatory changes in auditory processing (Bavelier and Neville, 2002). However, blind subjects perform poorly in such sound–localization tasks that benefit from calibration of the auditory system by intact vision (Gori et al., 2014; Zwiers et al., 2001). Thus, the blind’s large spatial variability in the auditory network could be related to experience-dependent compensatory changes in auditory cortical areas that varied between the blind subjects during development.

Both human voice and pure tones seem to activate the auditory cortex less intensively in the blind than in the sighted subjects (Gougoux et al., 2009; Watkins et al., 2013). In the light of the current findings, a part of this difference might be explained by increased individual variability in the extent of the auditory network in blind subjects. The current results support the notion that, in the blind, the auditory cortex could be part of an “extended auditory network” reacting less intensively to auditory stimuli (Gougoux et al., 2009).
Visual network (IC25r, IC24a)

Only the visual network—comprising the left superior, middle, and inferior occipital gyri, fusiform and lingual gyri, and the calcarine sulcus — was less variable in the blind than the sighted. Accordingly, the regional homogeneity of local resting-state blood-oxygen-level-dependent signals is increased in the occipital areas of early-blind subjects compared with sighted control subjects (Liu et al., 2011).

We found that the visual network that was spatially less variable in the blind than sighted subjects displayed in the sighted subjects negative functional network connectivity with a frontal language network, but positive connectivity in the blind. This result agrees with earlier studies showing stronger functional connectivity between lateral occipital cortices and frontal language areas in the blind than sighted (Bedny et al., 2011; Watkins et al., 2012). Additionally, the coupling between lateral occipital areas and other visual areas seemed stronger in the blind than sighted subjects. The change in functional connectivity of the lateral occipital area in blind subjects could to some extent affect the extent of the subjects’ networks and thus explain the spatial variability differences between the groups. However, as we found no other differences in functional network connectivity between the groups, changes in functional network connectivity in the blind were unlikely the main reason for the spatial variability differences in functional networks between the blind and sighted subjects.

Resting-state brain networks are present already in human infants (Fransson et al., 2007), and the large-scale organization of visual streams could thus develop rather independently of experience (Striem-Amit et al., 2012). On the other hand, it could be driven by the innate retinal waves during fetal development (Goodman and Shatz, 1993). Even though cross-modal recruitment of cortical regions during auditory processing could explain superior auditory performance in blind subjects, the prenatally determined functions are retained in the recruited cortical regions (Lingnau et al., 2014; Renier et al., in press). Thus, we suggest that the primary force of increased inter-individual spatial variability is intra-modal experience-dependent plasticity, while cross-modal plasticity may play a secondary role. Consequently, the relatively small variability of the spatial distribution in this visual network among the blind could be due to the lack of visual information flow in the brain suggesting that the here observed cortical alterations reflect reduced sensory-experience-dependent synaptic pruning (Jiang et al., 2009).

Networks with significant variability differences during only one condition

During rest, a tactile network (IC3r) comprising bilaterally the postcentral gyrus and the right precentral gyrus displayed significantly larger spatial variability in the blind than sighted subjects. The same was true for one visual network (IC4a) during audio-drama listening. Although these results were only seen in one condition and should therefore be interpreted with caution, they could indicate that (i) extensive use of the somatosensory system in the early-blind results in compensatory plasticity in tactile networks (Wang et al., in press) and that (ii) cross-modal recruitment of occipital areas in the early-blind (Renier et al., 2010) plausibly increases inter-subject variability of some, but not all, visual networks.

We observed in sighted subjects larger variability in the lateral visual networks (IC25r, IC24a) than in the network comprising more medial occipital areas (IC4a) (see Fig. 2), analogous to a cytoarchitectonic study in sighted subjects showing larger variability in size and shape in the lateral occipital areas compared with medial occipital areas (Amunts et al., 2000). Whether this result explains why one occipital network (IC25r, IC24a) was more variable in the sighted than the blind subjects, while another occipital network (IC4a) was less variable in the sighted than blind subjects, remains unknown.

Although the cause of the blindness varied among our blind subjects, all subjects could be classified as early-blind. Four subjects were blind from birth and one from 6 months of age, and two had very limited vision before becoming blind at the age of about 3 years. Nonetheless we cannot exclude the possibility that the heterogeneity of our blind subjects could be a major cause for the observed spatial variability. Contrary to this proposition, however, the occipital network comprising visual cortices was more similar among the blind than sighted subjects, rendering the different causes of early-onset blindness an unlikely explanation for increased variability of functional brain networks.

Conclusions

We conclude that networks spatially more variable among the blind than the sighted subjects are related to language processing and hearing, that is to abilities that are expected to compensate for the loss of sight. On the other hand, we observed less variability among the early-blind than the sighted subjects in a left-lateralized visual network that lacks visual information flow in the blind. Based on these observations, we suggest that the degree of spatial variability in a functional network is proportional to the degree of experience-dependent plasticity driven by the sense normally attributed to the network.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.neuroimage.2014.03.058.

Acknowledgments

The study was supported by the Academy of Finland, (grants #131483, #259752, #263800, and #273147) aivoAALTO project of the Aalto University, and European Research Council (Advanced Grant #239246). We thank Marita Kattelus for expert help during fMRI measurements and Ilkka Linankoski for reviewing the language.

References

R. Boldt et al. / NeuroImage 95 (2014) 208–216

