Repo, Päivikki; Talvitie, Heli; Li, Shuo; Skarp, Jarmo; Savin, Hele

Silicon Surface Passivation by Al2O3: Effect of ALD Reactants

Published in:
Energy Procedia

DOI:
10.1016/j.egypro.2011.06.201

Published: 01/01/2011

Please cite the original version:
Silicon Surface Passivation by Al₂O₃: Effect of ALD Reactants

Päivikki Repo, Heli Talvitie, Shuo Li, Jarmo Skarp, Hele Savin

Aalto University, Tietotie 3, 02150 Espoo, Finland
Beneq Oy, Ensimmäinen savu, 01510 Vantaa, Finland

Abstract

We have studied the surface passivation of p- and n-type silicon by thermal atomic layer deposited (ALD) Al₂O₃. The main emphasis is on different ALD reactant combinations and especially on using ozone as an oxidant. Thermal stability of Al₂O₃ will also be briefly addressed. Our results show that in p-type CZ-Si Al₂O₃ leads to much higher passivation than thermal oxidation, independent of the reactants. The best minority carrier lifetimes are measured when a combination of Al₂O₃ and TiO₂ is used. In n-type CZ-Si similar results are obtained except the choice of reactants seems to be more crucial. However, the combination of Al₂O₃ and TiO₂ results again in the best passivation with measured lifetimes well above 10 ms corresponding surface recombination velocities of ~2 cm/s. Finally, we demonstrate that Al₂O₃ passivation is also applicable in high resistivity n-type FZ-Si and in ~1 Ωcm p-type multicrystalline Si.

Keywords: Al₂O₃; Silicon; Passivation; ALD; Reactant; Ozone

1. Introduction

Al₂O₃ grown by atomic layer deposition (ALD) has been shown to provide a good surface passivation for lightly and highly doped p-type silicon and for lightly doped n-type silicon [1]. The high level of surface passivation is reached by the combination of chemical and field-effect passivation induced by the fixed negative charge close to the c-Si/Al₂O₃ interface [2].

ALD can be divided into thermal and plasma-enhanced processes. There are many studies where Al₂O₃ deposited by these two processes are compared [1-4]. On the other hand, not so much information is available on how different reactants affect the surface passivation properties of Al₂O₃. Thermal ALD can be...
be implemented by using either H_2O or O_3 as an oxidant. H_2O is more widely studied and only recently O_3 as an oxidant in Al$_2$O$_3$ surface passivation has been addressed [5].

In this paper, we compare three different reactant combinations in thermal ALD process using O_3 as the primary oxidant. We also study if the reactants behave differently depending on the wafer type and resistivity. Therefore, we include in our study low-resistivity CZ wafers (both p- and n-type) as well as p-type (~1 Ωcm) multicrystalline and high resistivity n-type FZ wafers.

2. Experiments

Three different reactant combinations were chosen for the thermal ALD. These processes were named as ALD1, ALD2 and ALD3 as shown in Table 1. TMA (trimethylaluminum) was used as aluminum source in all cases. In ALD1 mere ozone was used as an oxidant whereas in ALD2 and ALD3 also H_2O was added. In ALD3 Ti was doped into the film using TiCl$_4$ (titanium tetrachloride) as the Ti source. This resembles the $(\text{Al}_2\text{O}_3)_x(\text{TiO}_2)_{1-x}$ pseudobinary alloys that are known to passivate p-type Si surfaces [6].

Table 1. ALD processes and the corresponding reactants.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Reactants</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD1</td>
<td>TMA + O_3</td>
</tr>
<tr>
<td>ALD2</td>
<td>TMA + H_2O + O_3</td>
</tr>
<tr>
<td>ALD3</td>
<td>TMA + O_3 + TiCl$_4$ + H_2O</td>
</tr>
</tbody>
</table>

The following wafer types were used as the substrate material for the experiments: p-type CZ-Si (2-5 Ωcm), n-type CZ-Si (2.2 Ωcm), high-resistivity (>10 kΩcm) n-type FZ-Si and p-type mc-Si (~1 Ωcm). All the samples received a basic RCA cleaning procedure followed by a HF (1:50) dip for 30 s to etch the native oxide. Two identical p- and n-type CZ wafers received Al$_2$O$_3$ depositions on both sides at 200 °C. ALD processes were followed by annealing for 30 minutes at 450 °C in N$_2$. The resulting Al$_2$O$_3$ film thickness was ~40 nm. After the annealing, a firing step for ~3 s in a peak temperature of 800 °C was done for one of the p-type CZ and one of the n-type CZ wafers with Al$_2$O$_3$ deposited by using ALD1 reactants. For FZ and mc-Si wafers, ALD1 process was chosen. Al$_2$O$_3$ deposition on both sides at 200 °C was followed by a 30 min anneal at 430 °C in N$_2$. In these samples, the resulting film thickness was ~23 nm. ALD2 reactant set was also tested for mc-Si wafers. Subsequent to the deposition of ~23 nm thick Al$_2$O$_3$ at 200 °C annealing at 450 °C in N$_2$ for 30 minutes was done. Summary of the experiments is shown in Table 2.

Notice that our p-type CZ and mc-Si wafers suffer from light induced degradation (oxygen content 12-14 ppma) [7]. In our experiments the wafers were in a degraded state.

Table 2. Wafers and processes used in this study.

<table>
<thead>
<tr>
<th>Wafer type</th>
<th>Resistivity (Ωcm)</th>
<th>Thickness (μm)</th>
<th>Size</th>
<th>ALD process</th>
<th>Al$_2$O$_3$ thickness (nm)</th>
<th>Post-deposition anneal</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-type CZ</td>
<td>2-5</td>
<td>525</td>
<td>dia. 100 mm</td>
<td>ALD1 - ALD3</td>
<td>~40</td>
<td>450 °C, 30 min, N$_2$</td>
</tr>
<tr>
<td>n-type CZ</td>
<td>2.2</td>
<td>400</td>
<td>dia. 100 mm</td>
<td>ALD1 - ALD3</td>
<td>~40</td>
<td>450 °C, 30 min, N$_2$</td>
</tr>
<tr>
<td>n-type FZ</td>
<td>>10 000</td>
<td>525</td>
<td>dia. 100 mm</td>
<td>ALD1</td>
<td>~23</td>
<td>430 °C, 30 min, N$_2$</td>
</tr>
<tr>
<td>p-type mc-Si</td>
<td>~1</td>
<td>200</td>
<td>62 mm × 125 mm</td>
<td>ALD1, ALD2</td>
<td>~23</td>
<td>430-450 °C, 30 min, N$_2$</td>
</tr>
</tbody>
</table>
As a reference for the surface passivation quality, thermal oxidation (SiO$_2$) was carried out for each wafer type, excluding the mc-Si samples. Oxidation was done at 900 °C for 40 minutes followed by a 20 minute N$_2$ anneal at 900 °C which resulted in 15 nm thick oxides. The surface passivation of such films enhanced by external corona charging is known to yield low surface recombination velocities ($S_{\text{eff}} < 1$ cm/s at a wafer doping 4.2×10^{16} cm$^{-3}$) [8]. The samples were measured both by quasi-steady-state photoconductance (QSSPC) and microwave photoconductance (μ-PCD) techniques.

3. Results

3.1. p- and n-type CZ wafers

Let us first study the surface passivation in p-type CZ wafers. Fig. 1a shows the effect of different ALD reactants on minority carrier lifetimes as a function of injection level. With all injection levels Al$_2$O$_3$ seems to provide a better surface passivation than the thermal oxide independent of the ALD reactants. It is well known that at higher injection levels Auger recombination limits the lifetime values. When we compare the ALD reactants, ALD3 (with Ti addition) yields the best passivation within the whole injection range. ALD1 and ALD2 seem to be comparable, yet better than oxide, which indicates that water as an ALD reactant does not make a significant difference to pure ozone case. Average lifetimes measured with μ-PCD at an injection level of about 3×10^{14} cm$^{-3}$ are also included in the same figure and they can be seen to be in agreement with the QSSPC results. μ-PCD maps also confirmed that the passivation by Al$_2$O$_3$ was laterally homogeneous.

Next we compare the same set of ALD reactants in n-type CZ wafers. The corresponding minority carrier lifetimes measured with QSSPC are shown in Fig. 1b. The results are somewhat similar to p-type wafers but some differences exist. First of all, the measured lifetimes are much higher in general (in ms range). Secondly, ALD1 (only TMA and O$_3$ as reactants) results in much lower passivation than ALD2 and ALD3, even lower than the reference oxidation. In Fig. 1b ALD2 and ALD3 can be seen comparable and lifetimes as high as 8-11 ms are obtained. This corresponds to surface recombination velocities of $S_{\text{eff}} \approx 1.8-2.5$ cm/s if an infinite bulk lifetime is assumed. μ-PCD measurements lead to similar results.

![Fig. 1. Carrier lifetimes as a function of minority carrier density measured with QSSPC in (a) p-type CZ (2-5 Ωcm) and in (b) n-type CZ (2.2 Ωcm) wafers. Al$_2$O$_3$ was deposited with three different reactant combinations (ALD1, ALD2 and ALD3) to the thickness of ~40 nm. Post-deposition anneal was done at 450 °C in N$_2$ for 30 minutes.](image)
3.2. High resistivity n-type FZ wafers

We studied Al₂O₃ passivation in high resistivity n-type FZ-Si. It is well known that this material has extremely long bulk lifetime which makes it ideal for surface passivation research [1]. Here in this study we report the Al₂O₃ results made with ALD1 process (TMA + O₃). The QSSPC measurements of these wafers are shown in Fig. 2. As can be seen both the oxidized and the Al₂O₃ passivated wafer yields extremely high lifetimes (~40 ms corresponding to S_eff \approx 0.66 cm/s). These results indicate that Al₂O₃ could be used as an effective surface passivation in other photonic applications as well, e.g. in radiation detectors where surface passivation of high resistivity wafers is essential. Equipment limitations prevent measurements at lower injection levels (< 1 \times 10^{14} \text{ cm}^{-3}).

It is often thought that the measurement equipment (WCT-120 Photoconductance lifetime tester) cannot be used to measure high resistivity silicon wafers. However, we calibrated the RF sensor of the QSSPC for high-resistivity wafer with a series of calibration wafers of known conductance. During RF sensor calibration and high-resistivity wafer measurement we used an extra silicon wafer on measurement stage below the actual measured wafer. In this way reliable measurements in high resistivity silicon were obtained.

![Fig. 2. Carrier lifetimes of high-resistivity n-type FZ wafers as a function of minority carrier density measured with QSSPC. Al₂O₃ was deposited on both sides of the wafer to a thickness of ~23 nm by using ALD1 reactant set. Post-deposition anneal was carried out at 430 °C in N₂ for 30 minutes.](image)

3.3. mc-Si wafers

We also studied the surface passivation quality of Al₂O₃ on multicrystalline p-type silicon. This is a very common solar cell material and Al₂O₃ could be used for the rear surface passivation of such solar cells [9]. Lifetime maps of the mc-Si wafers measured with \(\mu \)-PCD are shown in Fig. 3. The figure shows that Al₂O₃ deposited both with ALD1 (Fig. 3a) and ALD2 (Fig. 3b) reactants can passivate well also the mc-Si wafers, since more than 50 % of the wafer area has lifetime over 30 \(\mu \)s. In the areas of low lifetimes the lifetime is most likely limited by bulk defects so that the surface passivation has no effect on the measurement results in these locations.
Fig. 3. Lifetime maps of Al₂O₃ passivated p-type mc-Si wafers when (a) ALD1 and (b) ALD2 reactants are used. Circles indicate the areas where lifetime averages are taken for comparison. Yellow indicates a good grain, black a poor grain and white an average grain. Al₂O₃ was deposited on both sides of the wafers to a thickness of ~23 nm. Post-deposition anneal was carried out at 430 °C in N₂ for 30 minutes with ALD1 reactants and at 450 °C in N₂ for 30 minutes with ALD2 reactants.

In Fig. 4 lifetime values of Al₂O₃ passivated mc-Si wafers are compared. Three of six adjacent wafers were Al₂O₃ passivated by using ALD1 (wafers A1-A3) reactants and three by using ALD2 (wafers B1-B3) reactants. Areas of different quality were chosen and average lifetime values of these areas were read out. The areas are shown in Fig. 3 with circles. Yellow indicates a good grain, black a poor grain and white an average grain. It seems that Al₂O₃ deposited with ALD2 reactants works better on good grains whereas in poor grains there is no significant difference. This result is congruent with the measurements of n-type CZ wafers. It is also worth mentioning that there are notable differences between identical grains of adjacent wafers.

3.4. Thermal stability

Thermal stability of Al₂O₃ passivation has been a popular topic of discussion because in industrial solar cell fabrication process Al₂O₃ will experience high temperatures during the contact firing [10]. We tested the firing stability of Al₂O₃ passivation on p-type CZ (2-5 Ωm) and n-type CZ (2.2 Ωm) wafers. ALD1 reactant set (TMA + O₃) was used in the Al₂O₃ deposition. QSSPC results before and after the firing step (~3 s, 800 °C) are shown in Fig. 5. It can be seen that in p-type CZ lifetimes at lower injection levels are not affected by high temperature treatment whereas at higher injection levels there is a distinct
decrease. This was verified also by the μ-PCD results. In n-type CZ lifetime is decreased regardless of the injection level.

Fig. 5. Lifetime values as a function of minority carrier density before and after firing (~3 s, 800 °C) in (a) p-type CZ-Si and (b) n-type CZ-Si measured with QSSPC. ALD1 reactant set (TMA + O3) was used in the Al2O3 deposition. Annealing for 30 minutes at 450 °C in N2 was done before the firing step.

4. Conclusions

We have shown that the choice of reactants can play a major role in surface passivation quality of thermal atomic layer deposited Al2O3. In general, it seems that Al2O3 can provide similar or even better surface passivation quality than thermal oxidation. In our wafers, we obtained the best results with TMA + TiCl4 + H2O + O3 reactant combination both in n-type and p-type CZ-Si. The lifetime variation between ALD reactant combinations are related to the differences in the interface charge and defect density. Al2O3 films have been observed to contain hydrogen mainly in the form of O-H groups [11]. Al2O3 films deposited by using ALD2 reactants probably contain more hydrogen than the films deposited with ALD1 reactants. In ALD2 H2O acts as one hydrogen source whereas in ALD1 mere O3 is used. During annealing greater hydrogen content can result in better interface quality due to passivation of dangling bonds by hydrogen [12]. In future studies the hydrogen content in the films and the interface charge density could be measured before and after annealing to verify the speculations.

The passivation quality of Al2O3 deposited from TMA and O3 was deteriorated by a high temperature treatment both on p-type and n-type CZ. This can be caused by hydrogen diffusion from the interface [13]. Al2O3 was shown to passivate well also the high resistivity FZ-Si when reactant combination TMA + O3 was used. In mc-Si Al2O3 passivation worked with both ALD1 and ALD2 reactants. In future studies the passivation quality of Al2O3 when TMA + TiCl4 + H2O + O3 reactant set is used will be tested also on high-resistivity n-type FZ and p-type (~1 Ωcm) mc-Si wafers.

Acknowledgements

CZ samples were provided by Okmestic Oyj, FZ samples by Topsil Semiconductor Materials A/S and mc-Si samples by BP Solar International Inc. Authors acknowledge the financial support from Beneq Oy, BP Solar International Inc and Braggone Oy.
References