
https://doi.org/10.1007/s10994-016-5607-3


Mach Learn (2017) 106:307–335
DOI 10.1007/s10994-016-5607-3

Adaptive edge weighting for graph-based learning
algorithms

Masayuki Karasuyama1 · Hiroshi Mamitsuka2,3

Received: 9 September 2015 / Accepted: 1 November 2016 / Published online: 18 November 2016
© The Author(s) 2016

Abstract Graph-based learning algorithms including label propagation and spectral clus-
tering are known as the effective state-of-the-art algorithms for a variety of tasks in machine
learning applications. Given input data, i.e. feature vectors, graph-based methods typically
proceed with the following three steps: (1) generating graph edges, (2) estimating edge
weights and (3) running a graph based algorithm. The first and second steps are difficult,
especially when there are only a few (or no) labeled instances, while they are important
because the performance of graph-based methods heavily depends on the quality of the input
graph. For the second step of the three-step procedure, we propose a new method, which
optimizes edge weights through a local linear reconstruction error minimization under a
constraint that edges are parameterized by a similarity function of node pairs. As a result
our generated graph can capture the manifold structure of the input data, where each edge
represents similarity of each node pair. To further justify this approach, we also provide ana-
lytical considerations for our formulation such as an interpretation as a cross-validation of
a propagation model in the feature space, and an error analysis based on a low dimensional
manifold model. Experimental results demonstrated the effectiveness of our adaptive edge
weighting strategy both in synthetic and real datasets.

Keywords Graph-based learning ·Manifold assumption ·Edgeweighting ·Semi-supervised
learning · Clustering

Editor: Karsten Borgwardt.

B Masayuki Karasuyama
karasuyama@nitech.ac.jp

Hiroshi Mamitsuka
mami@kuicr.kyoto-u.ac.jp

1 Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya,
Aichi 466-8555, Japan

2 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasyo, Uji,
Kyoto 611-0011, Japan

3 Department of Computer Science, Aalto University, 02150 Espoo, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5607-3&domain=pdf


308 Mach Learn (2017) 106:307–335

1 Introduction

Graph-based learning algorithms have received considerable attention in machine learning
community. For example, label propagation (e.g., Blum and Chawla 2001; Szummer and
Jaakkola 2001; Joachims 2003; Zhu et al. 2003; Zhou et al. 2004; Herbster et al. 2005;
Sindhwani et al. 2005; Belkin et al. 2006; Bengio et al. 2006) is widely accepted as a state-
of-the-art approach for semi-supervised learning, in which node labels are estimated through
the input graph structure. Spectral clustering (e.g., Shi andMalik 2000; Ng et al. 2001; Meila
and Shi 2001; von Luxburg 2007) is also a famous graph-based algorithm, in which cluster
partitions are determined according to the minimum cut of the given graph. A common
important property of these graph-based approaches is that the manifold structure of the
input data can be captured by the graph. Their practical performance advantage has been
demonstrated in various application areas (e.g., Patwari and Hero 2004; Lee and Kriegman
2005; Zhang and Zha 2005; Fergus et al. 2009; Aljabar et al. 2012).

On the other hand, it is well-known that the accuracy of the graph-based methods highly
depends on the quality of the input graph (e.g., Zhu et al. 2003; Kapoor et al. 2006; Zhang
and Lee 2007; von Luxburg 2007; Wang and Zhang 2008), which is typically generated from
a set of numerical input vectors (i.e., feature vectors). A general framework of graph-based
learning can be represented as the following three-step procedure:

Step 1: Generating graph edges from given data, where nodes of the generated graph corre-
spond to the instances of input data.

Step 2: Giving weights to the graph edges.
Step 3: Estimating node labels based on the generated graph, which is often represented as

an adjacency matrix.

This framework is employed by many graph-based algorithms including label propagation
and spectral clustering.

In this paper, we focus on the second step in the three-step procedure; estimating edge
weights for the subsequent label estimation. Optimizing edge weights is difficult in semi- or
un-supervised learning, because there are only a small number of (or no) labeled instances.
Also this problem is important because edge weights heavily affect the final prediction
accuracy of graph-based methods, while in reality rather simple heuristics strategies have
been employed.

There are two standard approaches for estimating edge weights: similarity function based-
and locally linear embedding (LLE) (Roweis and Saul 2000) based-approaches. Each of these
two approaches has its own disadvantage. The similarity based approaches use similarity
functions, such as Gaussian kernel, while most similarity functions have scale parameters
(such as the width parameter of Gaussian kernel) that are in general difficult to be tuned.
On the other hand, in LLE, the true underlying manifold can be approximated by a graph
by minimizing a local reconstruction error. LLE is more sophisticated than the similarity-
based approach, and LLE based graphs have been applied to semi-supervised learning and
clustering (Wang and Zhang 2008; Daitch et al. 2009; Cheng et al. 2009; Liu et al. 2010).
However LLE is noise-sensitive (Chen and Liu 2011). In addition, to avoid a kind of degen-
eracy problem (Saul and Roweis 2003), LLE has to have additional tuning parameters.1 Yet
another practical approach is to optimize weights by regarding them as hyper-parameters
of learning methods (e.g., Zhang and Lee 2007). Also general model selection criteria can

1 The LLE based approaches can be interpreted as simultaneously performing the first two steps in the three-
step procedure because both edges and weights are obtained.

123



Mach Learn (2017) 106:307–335 309

be used, while the reliability of those criteria are unclear for graphs with a small number of
labeled instances. We will discuss those related approaches in Sect. 5.

Our approach is a similarity-based method, yet also captures the manifold structure of the
input data; we refer to our approach as adaptive edge weighting (AEW) because graph edges
are determined by a data adaptive manner in terms of both similarity and manifold structure.
The objective function in AEW is based on local reconstruction, by which estimated weights
capture the manifold structure. However, unlike conventional LLE based approaches, we
introduce an additional constraint that edges represent similarity of two nodes. Due to this
constraint, AEW has the following advantages compared to LLE based approaches:

– Our formulation alleviates the problem of over-fitting due to the parameterization of
weights. We observed that AEW is more robust against noise of input data and the
change of the number of graph edges.

– Since edge weights are defined as a parameterized similarity function, resultant weights
still represent the similarity of each node pair. This is very reasonable for many graph-
based algorithms.

Weprovide further justifications for our approach based on the ideas of feature propagation
and local linear approximation. Our objective function can be seen as a cross validation error
of a propagation model for feature vectors, which we call feature propagation. This allows
us to interpret that AEW optimizes graph weights through cross validation (for prediction)
in the feature vector space instead of given labels, assuming that input feature vectors and
given labels share the same local structure. Another interpretation is provided through local
linear approximation, by which we can analyze the error of local reconstruction in the output
(label) space under the assumption of low dimensional manifold model.

The rest of this paper is organized as follows: In Sect. 2, we briefly review some standard
algorithms in graph-based methods on which we focus in this paper. Section 3 introduces our
proposedmethod for adaptively optimizing graph edgeweights. Section 4describes analytical
consideration for our approach which provides interesting interpretations and error analysis
of AEW. In Sect. 5, we discuss relationships to other existing topics. Section 6 presents
experimental results obtained by a variety of datasets including synthetic and real-world
datasets, demonstrating the performance advantage of the proposed approach. Finally, Sect. 7
concludes the paper.

This paper is an extended version of our preliminary conference paper presented at NIPS
2013 (Karasuyama andMamitsuka 2013). In this paper, we describe our framework in amore
general way by using three well-known graph-based learning methods [harmonic Gaussian
field (HGF) model, local global consistency (LLGC) method, and spectral clustering], while
the preliminary version only deals with HGF. Furthermore, we have conducted experimental
evaluation more thoroughly which includes mainly three points: in semi-supervised setting,
(1) comparison with other state-of-the-art semi-supervised methods and (2) comparison with
hyper-parameter optimizationmethods, and as an additional problem setting, (3) comparisons
on the clustering.

2 Graph-based semi-supervised learning and clustering

In this paper we consider label propagation and spectral clustering as the methods in the third
step in the three-step procedure. Both are the state-of-the-art graph-based learning algorithms,
and labels of graph nodes (or clusters) are estimated by using a given adjacency matrix.

123



310 Mach Learn (2017) 106:307–335

Suppose that we have n feature vectors X = {x1, . . . , xn}, where x ∈ Rp . An undirected
graph G is generated from X , where each node (or vertex) corresponds to each data point xi .
The graph G can be represented by the adjacency matrix W ∈ Rn×n where (i, j)-element
Wi j is a weight of the edge between xi and x j . The key idea of graph-based classification
is that instances connected by large weights Wi j on a graph tend to have the same labels
(meaning that labels are kept the same in the strongly connected region of the graph).

Let F ∈ Rn×c be a label score matrix which gives estimation of labels, where c is the
number of classes or clusters. To realize the key idea described above, graph-based approaches
force the label scores to have similar values for strongly connected nodes. (This corresponds
to the “smoothness” penalty commonly called in semi-supervised learning literature though
“continuity” is a more appropriate word to represent it.) A penalty for the variation of the
score F on the graph can be represented as

c�

k=1

�

i j

Wi j (Fik − Fjk)
2. (1)

For the adjacency matrix Wi j , the following weighted k-nearest neighbor (k-NN) graph is
commonly used in graph-based learning algorithms:

Wi j =
�
exp

�
−‖xi −x j ‖

2σ 2

�
, j ∈ Ni or i ∈ N j ,

0, otherwise,

where Ni is a set of indices of the k-NN of xi (Note that the adjacency matrix W is not
necessarily positive definite).

From this adjacency matrix, the graph Laplacian (e.g., Chung 1997) can be defined by

L = D − W ,

where D is a diagonalmatrixwith the diagonal entry Dii = �
j Wi j . Instead of L, normalized

variants of Laplacian such as L = I − D−1W or L = I − D−1/2W D−1/2 is also used,
where I ∈ Rn×n is the identity matrix. Using the graph Laplacian, the score variation penalty
(1) can also be written as

trace
�

F�L F
�

, (2)

where trace(·) is defined as the sum of the diagonal entries of a given matrix.

2.1 Label propagation

Label propagation is a widely-accepted graph-based semi-supervised learning algorithm.
Amongmanymethods which have been proposed so far, we focus on the formulation derived
by Zhu et al. (2003) and Zhou et al. (2004), which is the current standard formulation of
graph-based semi-supervised learning.

Suppose that the first � data points in X are labeled by Y = {y1, . . . , y�}, where yi ∈
{1, . . . , c} and c is the number of classes. The goal of label propagation is to predict the
labels of unlabeled nodes {x�+1, . . . , xn}. The scoring matrix F gives an estimation of the
label of xi by argmax j≤c Fi j . Label propagation can be defined as estimating F in such a
way that the score F has a smaller amount of changes on neighboring nodes as well as it
can accurately predict given labeled points. The following is a regularization formulation of
label propagation (Zhou et al. 2004):

123



Mach Learn (2017) 106:307–335 311

min
F

trace
�

F�L F
�

+ λ‖F − Y‖2F , (3)

where Y ∈ Rn×c is the label matrix with Yi j = 1 if xi is labeled as yi = j ; otherwise,
Yi j = 0, λ is the regularization parameter, and ‖ · ‖2F denotes the matrix Frobenius norm
defined as‖M‖2F = �

i j M2
i j . This formulation is called local and global consistency (LLGC)

method. The first term of LLGC (3) represents the penalty for the score differences on
neighboring nodes and the second term represents the deviation from the initial labeling Y .
The following is another standard formulation, which is called the harmonic Gaussian field
(HGF) model, of label propagation (Zhu et al. 2003):

min
F

trace
�

F�L F
�

subject to Fi j = Yi j , for i = 1, . . . , �.

In this formulation, the scores for labeled nodes are fixed as constants. These two formulations
can be both reduced to linear systems, which can be solved efficiently, especially when
Laplacian L has some sparse structure (Spielman and Teng 2004).

2.2 Spectral clustering

Spectral clustering exploits the manifold structure of input data through a given graph. The
objective function can be represented as follows (von Luxburg 2007):

min
F

trace
�

F�L F
�

subject to F� F = I .

Here c, the number of columns of F, is corresponding to the number of clusters which should
be specified beforehand. We can solve this optimization problem through the eigenvalue
decomposition of the graph Laplacian matrix, and then the partitions can be obtained by
applying k-means clustering to the obtained eigenvectors. Although the formulation was
originally derived as an approximation of the graphmincut problem, it can also be interpreted
as minimizing the label score variation on the graph.

3 Basic framework

The performance of the graph-based algorithms, which are described in the previous section,
heavily depends on the quality of the input graph. Our proposed approach, adaptive edge
weighting (AEW), optimizes the edge weights for the graph-based learning algorithms. In
the three step procedure, we note that AEW is for the second step and has nothing to do with
the first and third steps. In this paper we consider that the input graph is generated by k-NN
graph (the first step is based on k-NN), while we note that AEW can be applied to any types
of graphs.

First of all graph edges should satisfy the following conditions:

– Capturing the manifold structure of the input space.
– Representing similarity between two nodes.

These two conditions are closely related to manifold assumption of graph-based learning
algorithms, in which label scores should have similar values if two data points are close in
the input manifold. Since the manifold structure of the input data is unknown beforehand,

123



312 Mach Learn (2017) 106:307–335

the graph is used to approximate the manifold (the first condition). Subsequent predictions
are performed in such a way that label scores are consistent with the similarity structure
provided by the graph (the second condition). Our algorithm simultaneously pursues these
two important aspects of the graph for the graph-based learning algorithms.

3.1 Formulation

We first define Wi j as a similarity function of two nodes (i, j), and we employ the following
standard kernel function for a similarity measure (Note: other similarity functions can also
be used):

Wi j = exp

�

−
p�

d=1

(xid − x jd)2

σ 2
d

�

for i ∈ N j or j ∈ Ni , (4)

where xid is the dth element of xi , and {σd}p
d=1 is a set of parameters. This edge weighting is

commonly used in many graph-based algorithms, and this weighting can also be interpreted
as the solution of the heat equation on the graph (Zhu et al. 2003). To adapt the difference of
scaling in each data point, we can also use the following local scaling kernel (Zelnik-Manor
and Perona 2004):

Wi j = exp

�

−
p�

d=1

(xid − x jd)2

si s jσ
2
d

�

for i ∈ N j or j ∈ Ni , (5)

where the constant si ≥ 0 is defined as the distance to the K -th neighbor from xi (e.g., K = 7
in Zelnik-Manor and Perona 2004).

To optimize parameterσd , we evaluate howwell the graph fits the input features (manifold)
by the following objective function:

min
{σd }p

d=1

n�

i=1

						
xi − 1

Dii

�

j∼i

Wi j x j

						

2

2

, (6)

where j ∼ i means that j is connected to i . This objective function represents the local
reconstruction error by local linear patch,which captures the inputmanifold structure (Roweis
and Saul 2000; Saul and Roweis 2003). Figure 1 illustrates the idea of this approach. Similar
objective functions have been used in locally linear embedding (LLE) (Roweis andSaul 2000)
and graph construction (Jebara et al. 2009; Daitch et al. 2009; Talukdar 2009; Liu et al. 2010),
fromwhich the difference of our approach is that the parameters of the similarity function are
optimized. The LLE type objective function assumes that a flat model provides a good local
approximation of the underlying manifold (by regarding that higher-order behaviors of the
manifold are not dominant locally). The parameters of a set of locally fitted flat models W are
expected to reflect an intrinsic geometrical relation in a sense that the same parameters W can
also approximately reconstruct each data point locally in the lower dimensional manifold by
its neighbors. This property is also advantageous for the graph-based semi-supervised setting
in which labels are propagated through the connectivity of the adjacency matrix W . We will
discuss a relation between the adjacencymatrixW and the underlyingmanifold in Sect. 4.2.2.

123



Mach Learn (2017) 106:307–335 313

Fig. 1 An illustration of local
linear approximation of a
manifold. The underlying
manifold, which can not be
observed, is approximated by a
set of local linear models (also
called local linear patches)

3.2 Optimization

To optimize the problem (6), we can use any gradient-based algorithm (such as steepest
descent and conjugate gradient) using the following gradient of the objective function with
respect to σd :

n�

i=1

1

Dii
(xi − x̂i )

�



�
�

j

∂Wi j

∂σd
x j − ∂ Dii

∂σd
x̂i

�


 ,

where

x̂i = 1

Dii

�

j

Wi j x j .

The derivatives of Wi j and Dii are

∂Wi j

∂σd
= 2Wi j (xid − x jd)2σ−3

d ,

∂ Dii

∂σd
=

�

j

∂Wi j

∂σd
.

Due to the non-convexity of the objective function, we cannot guarantee that solutions con-
verge to the global optimal which means that the solutions depend on the initial σd . In our
experiments, we employed well-known median heuristics (e.g., Gretton et al. 2007) for set-
ting initial values of σd (Sect. 6). Another possible strategy is to use a number of different
initial values for σd , which needs a high computational cost.

The gradient can be computed efficiently, due to the sparsity of the adjacency matrix.
Since the number of edges of a k-NN graph is O(nk), the derivative of adjacency matrix
W can be calculated by O(nkp). Then the entire derivative of the objective function can be
calculated by O(nkp2). Note that k often takes a small value such as k = 10.

3.3 Normalization

The standard similarity function (4) cannot adapt to differences of the local scaling around
each data point. These differencesmay cause a highly imbalanced adjacencymatrix, in which
Wi j has larger values around high density regions in the input space while Wi j has much
smaller values around low density regions. As a result, labels in the high density regions will
be dominantly propagated.

123



314 Mach Learn (2017) 106:307–335

To overcome this problemwe use symmetric normalized graphLaplacian and local scaling
kernel. Symmetric normalized graph Laplacian (hereinafter, normalized Laplacian for short)
is defined as

L = I − D− 1
2 W D− 1

2 .

The off-diagonal elements of this matrix is −Wi j/
�

Dii D j j , in which each similarity value
is divided by the degrees of the connected two nodes. Another approach is to use local scaling
kernel (Zelnik-Manor and Perona 2004) defined as (5), which can also be seen as a symmetric
normalization. Let S be a diagonal matrix in which diagonal entries are defined as Sii = s2i
(si is a local scaling parameter in (5)), and � be a scaled distance matrix for x which means
the elements of � are

�
d(xid − x jd)2/σd if (i, j) has edges, and 0 otherwise. Then, local

scaling kernel can be represented as

W = exp
�
−S− 1

2 �S− 1
2

�

where exp is applied to each element of matrix (note that it does not mean the matrix expo-
nential, here). This means local scaling kernel normalizes the distances in the exponential of
Gaussian kernel by a similar manner to symmetric normalized Laplacian. Instead of using
the distance to the K th neighbor to define si , the average distance of nearest-neighbors is
also used (Jegou et al. 2007).

4 Analytical considerations

In Sect. 3, we defined our approach as the minimization of the local reconstruction error
of input features. We here describe several interesting properties and interpretations of this
definition.

4.1 Interpretation as feature propagation

First, we show that our objective function can be interpreted as a cross-validation error of
the HGF model for the feature vector x on the graph. Let us divide a set of node indices
{1, . . . , n} into a training set T and a validation set V . Suppose that we try to predict x in the
validation set {xi }i∈V from the given training set {xi }i∈T and the adjacency matrix W . For
this prediction problem, we consider the HGF model for x:

min
{x̂i }n

i=1

�

i j

Wi j‖x̂i − x̂ j‖22. (7)

subject to x̂i = xi , for i ∈ T ,

where x̂i is a prediction for xi . Here, only x̂i in the validation set V is regarded as free
variables in the optimization problem because the other {x̂i }i∈T is fixed at the observed
values by the constraint. This can be interpreted as propagating {xi }i∈T to predict {xi }i∈V .
We call this process as feature propagation. The following matrix representation shows that
the objective function of feature propagation has the same form as the basic objective function
of the graph-based learning methods (2):

min
X̂

trace
�

X̂
�

LX̂
�

subject to x̂i j = xi j , for i ∈ T ,

123



Mach Learn (2017) 106:307–335 315

where X = (x1, x2, . . . xn)
�, X̂ = (x̂1, x̂2, . . . x̂n)

�, and xi j and x̂i j indicate (i, j)th entries
of X and X̂ respectively.

When we employ leave-one-out as the cross-validation of the feature propagation model,
we obtain

n�

i=1

‖xi − x̂−i‖22, (8)

where x̂−i is a prediction for xi with T = {1, . . . , i −1, i +1, . . . , n} and V = {i}. Due to the
local averaging property ofHGF (Zhu et al. 2003), we see x̂−i = �

j Wi j x j/Dii , and then (8)
is equivalent to our objective function (6). From this equivalence, AEW can be interpreted
as the optimization of parameters in graph weights of the HGF model for feature vectors
through the leave-one-out cross-validation. This also means that our framework estimates
labels using the adjacency matrix W optimized in the feature space instead of the output
(label) space. Thus, if input features and labels share the same adjacency matrix (i.e., sharing
the same local structure), the minimization of the objective function (6) should estimate the
adjacency matrix by accurately propagating the labels of graph nodes.

4.2 Local linear approximation

The feature propagationmodel provides the interpretation of our approach as the optimization
of the adjacency matrix under the assumption that x and y can be reconstructed by the same
adjacency matrix. We here justify our approach in a more formal way from a viewpoint of
local reconstruction with a lower dimensional manifold model.

4.2.1 Graph-based learning as local linear reconstruction

First, we show that all graph-based methods that we consider can be characterized by the
local reconstruction for the outputs on the graph. The following proposition shows that all
three methods which we reviewed in Sect. 2 have the local reconstruction property:

Proposition 1 Assuming that we use unnormalized Laplacian L = D − W , the optimal
solutions of HGF, LLGC and spectral clustering can be represented as the following local
averaging forms:

– HGF:

Fik =
�

j Wi j Fjk

Dii
for i = � + 1, . . . , n.

– LLGC:

Fik =
�

j Wi j Fjk

Dii + λ
+ λYik

Dii + λ
for i = 1, . . . , n.

– Spectral clustering:

Fik =
�

j Wi j Fjk

Dii − ρk
for i = 1, . . . , n,

where ρk is the kth smallest eigenvalue of L.

123



316 Mach Learn (2017) 106:307–335

Proof For HGF, the same equation was shown in Zhu et al. (2003). We here derive the
reconstruction equations for LLGC and spectral clustering.

For LLGC, setting the derivatives to zero, we obtain

(D − W)F + λ(F − Y) = 0.

From this equation, the reconstruction form of LLGC is obtained.
As iswell known, the score F of spectral clustering can be calculated as the eigenvectors of

graphLaplacian L (vonLuxburg 2007)which are corresponding to the smallest c eigenvalues.
We thereby obtain the following equation:

L F = FP,

where P ∈ Rc×c is a diagonal matrix with the diagonal entry Pi i = ρi . Substituting L =
D − W to the above equation, we obtain

DF − FP = W F.

Since D andP are diagonal matrices, this equation derives the reconstruction form of spectral
clustering. �	

Regarding the optimization problems of the three methods as the minimization of the
same score penalty term trace(FL F) under the different regularization strategies, which
prevent a trivial solution F = 0, it is reasonable that the similar reconstruction form is
shared by those three methods. Among the three methods, HGF has the most standard form
of local averaging. The output of the i th node is the weighted average over their neighbors
connected by the graph edges. LLGC can be interpreted as a regularized variant of the local
averaging. The averaging score W F is regularized by the initial labeling Y , and the balance
of regularization is controlled by the parameter λ. Spectral clustering also has a similar form
to the local reconstruction. The only difference here is that the denominator is modified by
the eigenvalue of graph Laplacian. The eigenvalue ρk of graph Laplacian has a smaller value
when the score matrix F has a smaller amount of variation on neighboring nodes. Spectral
clustering thus has the same local reconstruction form in particular when the optimal scores
have close values for neighboring nodes.

4.2.2 Error analysis

Proposition 1 shows that the graph-based learning algorithms can be regarded as local recon-
struction methods. We next show the relationship between the local reconstruction error in
the feature space described by our objective function (6) and the output space. For simplicity
we consider the vector form of the score function f ∈ Rn which can be considered as a
special case of the score matrix F, and discussions here can be applied to F.

We assume the following manifold model for the input feature space, in which x is
generated from corresponding some lower dimensional variable � ∈ Rq :

x = g(� ) + εx ,

where g : Rq → Rp is a smooth function, and εx ∈ Rp represents noise. In this model, y is
also represented by some function form of � :

y = h(� ) + εy,

where h : Rq → R is a smooth function, and εy ∈ R represents noise. For simplicity, we here
consider a continuous output y ∈ R rather than discrete labels, and thus the latent function
h(� ) is also defined as a continuous function. Our subsequent analysis is applicable to the

123



Mach Learn (2017) 106:307–335 317

discrete label case by introducing an additional intermediate score variable which we will
see in the end of this section. For this model, the following theorem shows the relationship
between the reconstruction error of the feature vector x and the output y:

Theorem 1 Suppose xi can be approximated by its neighbors as follows

xi = 1

Dii

�

j∼i

Wi j x j + ei , (9)

where ei ∈ Rp represents an approximation error. Then, the same adjacency matrix recon-
structs the output yi ∈ R with the following error:

yi − 1

Dii

�

j∼i

Wi j y j = Jei + O(δ� i ) + O(εx + εy), (10)

where

J = ∂h(� i )

∂��

�
∂g(� i )

∂��

�+

with superscript + indicates pseudoinverse, and δ� i = max j (‖� i − � j‖22).
Proof Let β j = Wi j/Dii (Note that then

�
j∼i β j = 1). Assuming that g is smooth enough,

we obtain the following first-order Taylor expansion at � i for the right hand side of (9).

xi =
�

j∼i

β j

�
g(� i ) + ∂g(� i )

∂�� (� j − � i ) + O(‖� j − � i‖22)
�

+ ei + O(εx ),

Arranging this equation, we obtain

∂g(� i )

∂��
�

j∼i

β j (� j − � i ) = −ei + O(δ� i ) + O(εx ).

If the Jacobian matrix ∂g(� i )
∂�� has full column rank, we obtain

�

j∼i

β j (� j − � i ) = −
�

∂g(� i )

∂��

�+
ei + O(δ� i ) + O(εx ). (11)

On the other hand, we can see
�

j∼i

β j y j =
�

j∼i

β j

�
h(� i ) + ∂h(� i )

∂�� (� j − � i ) + O(‖� j − � i‖22)
�

+ O(εy)

=yi + ∂h(� i )

∂��
�

j∼i

β j (� j − � i ) + O(δ� i ) + O(εy) (12)

Substituting (11) into (12), we obtain

yi −
�

j∼i

β j y j =∂h(� i )

∂��

�
∂g(� i )

∂��

�+
ei

+ O(δ� i ) + O(εx + εy).

�	

123



318 Mach Learn (2017) 106:307–335

From (10), we can see that the reconstruction error of yi consists of three terms. The first
term includes the reconstruction error for xi which is represented by ei , and the second term
is the distance between � i and {� j } j∼i . Minimizing our objective function corresponds to
reducing this first term, which means that reconstruction weights estimated in the input space
provide an approximation of reconstruction weights in the output space. The two terms in
(10) have a kind of trade-off relationship because we can reduce ei if we use a lot of data
points x j , but then δ� i would increase. The third term is the intrinsic noise which we cannot
directly control.

A simple approach to exploit this theorem would be the regularization formulation, which
can be a minimization of a combination of the reconstruction error for x and a penalization
term for distances between data points connected by the edges. Regularized LLE (Wang et al.
2008; Cheng et al. 2009; Elhamifar and Vidal 2011; Kong et al. 2012) can be interpreted as
one realization of such an approach. However, in the context of semi-supervised learning and
un-supervised learning, selecting appropriate values of the regularization parameter for such
a regularization term is difficult. We therefore optimize edge weights through the parameter
of a similarity function, especially the bandwidth parameter of Gaussian similarity function
σ . In this approach, a very large bandwidth (giving large weights to distant data points) may
cause a large reconstruction error, while an extremely small bandwidth causes the problem
of not giving enough weights to reconstruct.

For symmetric normalized graph Laplacian, we can not apply Theorem 1 to our algo-
rithm. For example, in HGF, the local averaging relation for normalized Laplacian is
fi = �

j∼i Wi j f j/
�

Dii D j j . The following theorem is the normalized counterpart of The-
orem 1:

Theorem 2 Suppose that xi can be approximated by its neighbors as follows

xi =
�

j∼i

Wi j�
Dii D j j

x j + ei , (13)

where ei ∈ Rp represents an approximation error. Then, the same adjacency matrix recon-
structs the output yi ∈ R with the following error:

yi −
�

j∼i

Wi j�
Dii D j j

y j =



�1 −
�

j∼i

γ j

�


 (h(� i ) + Jg(� i ))

+ Jei + O(δ� i ) + O(εx +εy), (14)

where

γ j = Wi j�
Dii D j j

.

Proof The proof is almost the same as Theorem 1. However, the sum of the coefficients γ j
(corresponding to β j in Theorem 1) cannot be 1. Applying the same Taylor expansion to the
right hand side of (13), we obtain

∂g(� i )

∂��
�

j∼i

γ j (� j − � i ) = − ei + (1 −
�

j∼i

γ j )g(� i )

+ O(δ� i ) + O(εx ).

123



Mach Learn (2017) 106:307–335 319

On the other hand, applying Taylor expansion to yi − �
j∼i γ j y j , we obtain

yi −
�

j∼i

γ j y j =(1−
�

j∼i

γ j )h(� i ) − ∂h(� i )

∂��
�

j∼i

γ j (� j − � i )

+ O(δ� i ) + O(εy)

Using the above two equations, we obtain (14). �	
Although Theorem 2 has a similar form to Theorem 1, we prefer Theorem 1 to Theorem 2
by the following reasons:

– Since the sum of the reconstruction coefficients Wi j/
�

Dii D j j is no longer 1, the inter-
pretation of local linear patch cannot be applied to (13).

– The reconstruction error (objective function) led by Theorem 2 (i.e., xi − �
j∼i Wi j x j/�

Dii D j j ) results in a more complicated optimization.
– The error Eq. (14) in Theorem 2 has the additional term (1−�

j∼i γ j )(h(� i )+ Jg(� i ))
compared to Theorem 1.

However, symmetric normalized graph Laplacian has been often preferred to the unnor-
malized one in many papers due to its practical performance advantage. For example, in
semi-supervised learning, the balancing degree of each node would prevent only a small
fraction of nodes from a dominant effect for propagating labels. Another example is in the
context of spectral clustering, for which better convergence conditions of symmetric nor-
malized graph Laplacian compared to the unnormalized one were proved by von Luxburg
et al. (2008). We thus use symmetric normalized graph Laplacian as well in our experi-
ments, though we do not change the objective function for reconstruction (6). Note that the
normalization using local scaling kernel does not affect Theorem 1.

We have considered continuous outputs for simplicity, while our work can be extended
to discrete outputs by redefining our output model, into which an intermediate label score
variable f is incorporated:

f = h(� ) + εy .

The discrete label can be determined through f , following regular machine learning clas-
sification methods (for example, in binary classification: y = 1 if f > 0.5, and y = 0 if
f < 0.5). According to the manifold assumption on this model, the label score f should
have similar values for close data points on the manifold because the labels do not change
drastically in the local region.

5 Related topics

We here describe relations of our approach with other related topics.

5.1 Relation to LLE

The objective function (6) is similar to the local reconstruction error of LLE (Roweis and
Saul 2000), in which W is directly optimized as a real valued matrix. This manner has been
used in many methods for graph-based semi-supervised learning and clustering (Wang and
Zhang 2008; Daitch et al. 2009; Cheng et al. 2009; Liu et al. 2010), but LLE is very noise-
sensitive (Chen and Liu 2011) and the resulting weights Wi j cannot necessarily represent

123



320 Mach Learn (2017) 106:307–335

the similarity between the corresponding nodes (i, j). For example, for two nearly identical
points x j1 and x j2 , both connecting to xi , it is not guaranteed that Wi j1 and Wi j2 have similar
values. To solve this problem, a regularization term can be introduced (Saul and Roweis
2003), while it is not easy to optimize the regularization parameter for this term. On the other
hand, we optimize parameters of the similarity (kernel) function. This parameterized form
of edge weights can alleviate the over-fitting problem. Moreover, obviously, the optimized
weights still represent the node similarity.

5.2 Other hyper-parameter optimization strategies

AEW optimizes the parameters of graph edge weights without labeled instances. This prop-
erty is powerful, especially for the case with only few (or no) labeled instances. Although
several methods have been proposed for optimizing graph edge weights with standard model
selection approaches (such as cross-validation and marginal likelihood maximization) by
regarding them as usual hyper-parameters in supervised learning (Zhu et al. 2005; Kapoor
et al. 2006; Zhang and Lee 2007; Muandet et al. 2009), most of those methods need labeled
instances and become unreliable under the cases with few labels. Another approach is opti-
mizing some criterion designed specifically for each graph-based algorithm (e.g., Ng et al.
2001; Zhu et al. 2003; Bach and Jordan 2004). Some of these criteria however have degenerate
(trivial) solutions for which heuristics are proposed to prevent such solutions but the validity
of those heuristics is not clear. Compared to these approaches, our approach is more general
and flexible for problem settings, because AEW is independent of the number of classes
(clusters), the number of labels, and the subsequent learning algorithms (the third step). In
addition, model selection based approaches are basically for the third step in the three-step
procedure, by which AEWcan be combined with suchmethods, like that the optimized graph
by AEW can be used as the input graph of these methods.

5.3 Graph construction

Besides k-NN, there have been several methods generating a graph (edges) from the feature
vectors (e.g., Talukdar 2009; Jebara et al. 2009; Liu et al. 2010). Our approach can also be
applied to those graphs because AEW only optimizes weights of edges. In our experiments,
we used the edges of the k-NN graph as the initial graph of AEW. We then observed that
AEW is not sensitive to the choice of k, comparing with usual k-NN graphs. This is because
the Gaussian similarity value becomes small if xi and x j are not close to each other to
minimize the reconstruction error (6). In other words, redundant weights can be reduced
drastically, because in the Gaussian kernel, weights decay exponentially according to the
squared distance.

In the context of spectral clustering, a connection to statistical properties of graph con-
struction has been analyzed (Maier et al. 2009, 2013). For example, Maier et al. (2013) have
shown conditions under which the optimal convergence rate is achieved for a few types of
graphs. These different studies also indicate that the quality of the input graph affects the
final performance of learning methods.

5.4 Discussion on manifold assumption

A key assumption for our approach is manifold assumption which has been widely accepted
in semi-supervised learning (e.g., see Chapelle et al. 2010). In manifold assumption, the
input data is assumed to lie on a lower-dimensional manifold compared to the original

123



Mach Learn (2017) 106:307–335 321

input space. Although verifying manifold assumption itself accurately would be diffi-
cult (because it is equivalent to estimating intrinsic dimensionality of the input data), the
graph-based approach is known as a practical approximation of the underlying manifold
which is applicable without knowing such a dimensionality. Many empirical evaluations
have revealed that the manifold assumption-based approaches (most of them are graph-
based) achieve high accuracy in various applications, particularly image and text data
(see e.g., Patwari and Hero 2004; Lee and Kriegman 2005; Zhang and Zha 2005; Fergus
et al. 2009; Chapelle et al. 2010; Aljabar et al. 2012). In these applications, the mani-
fold assumption is reasonable, as implied by prior knowledge of the given data (e.g., in
the face image classification, each person lies on different low-dimensional manifolds of
pixels).

Another important implication in most of graph-based semi-supervised learning is cluster
assumption (or low density separation) in which different classes are assumed to be sep-
arated by a low-density region. Graph-based approaches assume that nodes in the same
class are densely connected while different classes are not so. If different classes are
not separated by a low-density region, a nearest-neighbor graph would connect differ-
ent classes which may cause miss-classification by propagating wrong class information.
Several papers have addressed this problem (Wang et al. 2011; Gong et al. 2012). They
considered the existence of singular points at which different classes of manifolds have inter-
sections. Their approach is to measure similarity of two instances by considering similarity
of tangent spaces of two instances, but this approach has to consider accurately modeling
both of the local tangent and their similarity measure which introduces additional para-
meters and estimation errors. We perform experimental evaluation for this approach in
Sect. 6.2.1.

6 Experiments

We evaluate the performance of our approach using synthetic and real-world datasets. AEW
is applicable to all graph based learning methods reviewed in Sect. 2. We investigated the
performance of AEW using the harmonic Gaussian field (HGF) model and local and global
consistency (LLGC)model in semi-supervised learning, and using spectral clustering (SC) in
un-supervised learning. For comparison in semi-supervised learning, we used linear neigh-
borhood propagation (LNP) (Wang and Zhang 2008), which generates a graph using a LLE
based objective function. LNP can have two regularization parameters, one of which is for
the LLE process (the first and second steps in the three-step procedure), and the other is for
the label estimation process (the third step in the three-step procedure). For the parameter in
the LLE process, we used the heuristics suggested by Saul and Roweis (2003), and for the
label propagation process, we chose the best parameter value in terms of the test accuracy.
LLGC also has the regularization parameter in the propagation process (3), and we chose the
best one again. This choice was to remove the effect by model selection and to compare the
quality of the graphs directly. HGF does not have such hyper-parameters. All experimental
results were averaged over 30 runs with randomly sampled data points.

6.1 Synthetic datasets

Using simple synthetic datasets in Fig. 2, we here illustrate the advantage of AEW by com-
paring the prediction performance in the semi-supervised learning scenario. Two datasets
in Fig. 2 have the same form, but Fig. 2b has several noisy data points which may become

123



322 Mach Learn (2017) 106:307–335

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

(a)

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1

(b)

Fig. 2 Synthetic datasets

Table 1 Test error comparison
for synthetic datasets

The best methods according to
t-test with the significant level of
5% are highlighted with boldface

Dataset k HGF AEW + HGF LNP

(a) 10 0.057 (0.039) 0.020 (0.027) 0.039 (0.026)

(a) 20 0.261 (0.048) 0.020 (0.028) 0.103 (0.042)

(b) 10 0.119 (0.054) 0.073 (0.035) 0.103 (0.038)

(b) 20 0.280 (0.051) 0.077 (0.035) 0.148 (0.047)

bridge points (which can connect different classes, defined by Wang and Zhang 2008). In
both cases, the number of classes is 4 and each class has 100 data points (thus, n = 400).

Table 1 shows the error rates for the unlabeled nodes of HGF and LNP under 0–1 loss.
For HGF, we used the median heuristics to choose the parameter σd in similarity function
(4), meaning that a common σ(= σ1 = · · · = σp) is set as the median distance between
all connected pairs of xi , and as the normalization of graph Laplacian, the symmetric nor-
malization was used. The optimization of AEW started from the median σd . The results by
AEW are shown in the column ‘AEW + HGF’ of Table 1. The number of labeled nodes was
10 in each class (� = 40, i.e., 10% of the entire datasets), and the number of neighbors in the
graphs was set as k = 10 or 20.

In Table 1, we see HGF with AEW achieved better prediction accuracies than the median
heuristics and LNP in all cases. Moreover, for both of datasets (a) and (b), AEW was most
robust against the change of the number of neighbors k. This is because σd is automatically
adjusted in such a way that the local reconstruction error is minimized and then weights
for connections between different manifolds are reduced. Although LNP also minimizes the
local reconstruction error, LNP may connect data points far from each other if it reduces the
reconstruction error.

Figure 3 shows the graphs generated by (a) k-NN, (b) AEW, and (c) LNP, under k = 20
for the dataset of Fig. 2a. In this figure, the k-NN graph connects a lot of nodes in different
classes, while AEW favorably eliminates those undesirable edges. LNP also has less edges
between different classes compared to k-NN, but it still connects different classes. We can
see that AEW shows the class structure more clearly, which can lead the better prediction
performance of subsequent learning algorithms.

123




























	Adaptive edge weighting for graph-based learning algorithms
	Abstract
	1 Introduction




