Sovilla, Betty; Faug, Thierry; Köhler, Anselm; Baroudi, Djebar; Fischer, Jan-Thomas; Thibert, Emmanuel

Gravitational wet avalanche pressure on pylon-like structures

Published in:
Cold Regions Science and Technology

DOI:
10.1016/j.coldregions.2016.03.002

Published: 01/06/2016

Please cite the original version:
Gravitational wet avalanche pressure on pylon-like structures

Betty Sovilla a,*, Thierry Faug b, Anselm Köhler a, Djeb Baroudi c, Jan-Thomas Fischer d, Emmanuel Thibert b

a WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
b Université Grenoble Alpes, Irstea, St-Martin-d’Hères, France
c Aalto University, School of Engineering, Department of Civil Engineering, Finland
d Austrian Research center for Forests (BFW), Innsbruck, Austria

ARTICLE INFO

Article history:
Received 8 October 2015
Received in revised form 9 February 2016
Accepted 8 March 2016
Available online 19 March 2016

Keywords:
Wet avalanches
Avalanche pressure
Gravitational pressure
Granular flow

ABSTRACT

Low-speed wet avalanches exert hydrostatic forces on structures that are flow-depth dependent. However, the pressure amplification experienced by smaller structures has not been quantified previously. In particular, recent wet avalanche pressure measurements, performed with small cells at the “Vallée de la Sionne” test site, indicate significantly higher pressures than those considered by engineering guidelines and common practice rules based only on the contribution of inertial forces. In order to gain a deeper understanding and investigate the relevance of these measurements for structural design, we analyzed data measured on obstacles of different shapes and dimensions. The pressure measured on a 1 m² pressure plate was, on average, 1.8 times smaller than the pressure measured on a 0.008 m² piezoelectric cell installed on a 0.60 m wide pylon and 2.9 times smaller than the pressure measured on a 0.0125 m² cantilever sensor extending freely into the avalanche flow. Further, avalanches characterized by a gravitational flow regime exerted pressures that increased linearly with avalanche depth. For Froude numbers larger than 1, an additional square-velocity dependent contribution could not be neglected. The pressure variations encountered by the different obstacles could be explained quantitatively with a granular force model, that assumes the formation of a mobilized volume of snow granules extending from the obstacle upstream whose dimensions depend on the incoming flow depth and the obstacle width. This mobilized volume is associated with the formation of a network of gravity-loaded grain-grain contacts, also called granular force chains, which densifies in front of the obstacle, producing force amplification. Our results underscore the fundamental influence of the dimensions of both the sensor and the obstacle on pressures in the gravitational flow regime and may help to improve rules for structural design.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The calculation of pressure exerted by gravitational mass flows on structures of different dimensions and shapes is a long-standing issue that is not yet resolved (Ancey and Bain, 2015; Gauer et al., 2008).

In literature, the pressure exerted on obstacles is calculated by considering a contribution from a fast impact, that is proportional to the square of velocity (inertial term) and a contribution from a slow thrust of material around the obstacles that is proportional to the flow depth, similar to a hydrostatic contribution (gravitational term) (Salm, 1966; Savage and Hutter, 1991; Voellmy, 1955).

The flow regimes associated with these contributions are frequently defined as inertial and gravitational, respectively (Ancey and Bain, 2015; Faug, 2015).

Normally, the Froude number is used as a criterion to distinguish between the two contributions, with \(Fr \gg 1 \) associated with the inertial regime and \(Fr \ll 1 \) with the gravitational regime. For intermediate Froude numbers, the avalanche pressure can not be expressed as a simple function of either avalanche velocity or flow depth, and the flow regime is defined as transitional. For granular flows, Faug (2015) found that the transitional regime covers a wide range of Froude numbers, from 0.1 to 10. Dense granular avalanches typically have Froude numbers within this range, which suggests that they may belong to the transitional regime.

This result indicates that the transitional regime is not simply defined by \(Fr = 1 \), the value that traditionally emerges from dimensional analysis of inviscid flows in conventional fluid mechanics. For frictional granular flows, such as snow avalanches, other...
dimensionless numbers are needed. \(Fr = 1 \) is not a relevant critical value for at least two reasons. First, it is quite well established that the Coulomb number (Ancey and Evesque, 2000) or the inertial number (Forterre and Pouliquen, 2008) that is the square root of the Coulomb number, are more suitable dimensionless numbers for a certain range of granular flow conditions. When shear is concentrated at the base of the flow, as in many snow avalanches (Kern et al., 2009), the macroscopic inertial number may be proportional to the Froude number (Ancey and Bain, 2015) but is not equal to the Froude number. Second, considering the finite width of the avalanche flow leads to another expression of the Froude number (a function of flow rate, flow cross section and width of the free surface), and thus to another transitional value of the Froude number. These problems regarding the dimensionless numbers, fully relevant to snow avalanches, are currently unresolved. However, the knowledge of both the thickness and the velocity of the avalanche flow are sufficient to determine the value of the infinite-wetted-section Froude number, which provides a rough yet quick indication of the range of the flow regime (gravitational, transitional, or inertial).

In snow avalanche engineering, the pressure contribution from the gravitational term is normally not considered (Rudolf-Miklau et al., 2009), although recommendations to include it in pressure calculations do exist (see Chapter 4 in Ancey (2006) and references therein). In snow avalanche science, the pressure contribution from the gravitational term is usually considered small or even negligible in comparison to the contribution from the inertial term. However, recent full-scale measurements on wet avalanches performed at the “Vallée de la Sionne” (VdlS) test site (Sovilla et al., 2010), and back analysis of avalanche damaging infrastructures (Ancey and Bain, 2015) have shown clearly that avalanches moving in a gravitational flow regime can also exert very large impact pressures, thus potentially becoming relevant for the design of infrastructures. Further, no clear definition of the transition regime exists in snow avalanche science, and thus there is no relationship with which to calculate impact pressure for avalanches characterized by Froude numbers in the range 0.1–10, where inertial and gravity-driven forces have the same order of magnitude.

At the VdlS, impact pressures are measured on sensors mounted on finite-size obstacles, which resemble ski or chairlift pylons (Sovilla et al., 2008a). Sensors have various dimensions, with areas varying between 0.008 and 1 m² (Schaer and Issler, 2001; Sovilla et al., 2008b). Finite-sized obstacles, also known as narrow obstacles, are normally defined as structures with a width on the same scale or smaller than the flow depth (Jóhannesson et al., 2009). For such obstacles, the flow is not laterally confined and diverted around the obstacle rather than passing over the obstacle.

Sovilla et al. (2010) reported impact pressures exerted by wet avalanches, in the gravitational flow regime (Froude numbers typically smaller than 1, even if such a critical value still spurs debate, as discussed previously), that were measured with piezoelectric load cells 0.10 m in diameter, the smallest sensors at the site (Fig. 1). As a follow-up study to that preliminary analysis, Baroudi et al. (2011) compared these data to measurements performed, at the same location, using rectangular cantilever sensing devices of a slightly larger area of 0.0125 m². These studies demonstrated a strong dependency of pressure measurements on sensor geometry and flow regimes, specifically for wet avalanches.

In particular, the properties of the snow entrained by an avalanche during its motion (density, temperature) significantly affect flow dynamics and can determine whether the flowing material forms granules or maintains its original fine-grained morphology. In general, a cold and light snow cover can be brought into suspension easily, while warmer and more cohesive snow may form a granular, denser layer. This diversification has a fundamental influence not only on the mobility of the flow but also on the impact pressure avalanches exert on structures (Sovilla et al., 2015; Steinkogler et al., 2015) recently showed that granulation in snow occurred when the snow temperature exceeded \(-1\degree C\). Different snow conditions result in different granulation regimes. Specifically, granules can be differentiated into moist or wet, depending on the liquid water content of snow, showing significantly different mechanical properties upon collision. Thus, granulation is mostly relevant for snow with a temperature higher than \(-1\degree C\) and therefore it plays a crucial role for avalanches close to the melting point. The avalanches studied in this paper are all in this category, and their characteristic flow regime is easily identifiable by the plug-like behavior measured at the pylon (Sovilla et al., 2008a); thus, they are expected to behave as granular flows. Nevertheless, we do not have information concerning the snow liquid water content or the exact temperature of the snow in the area of the obstacles, since appropriate measuring devices are not available at the site,
and thus a precise distinction between different granulation regimes is not possible.

The conclusion drawn from previous analysis (Sovilla et al., 2010) cannot simply be extrapolated to finite-sized obstacles that are relevant for engineering purposes, such as ski or chairlift pylons. In particular, large pressures measured with small cells may be related to the dimensions of the sensors, since they are of a similar size as the granules (10–25 cm in diameter) that usually characterize wet flows (Steinkogler et al., 2015).

In order to investigate whether high pressures measured with small sensors also occur at larger scale, i.e. the scale of real structures impacted by avalanches, we compared pressures measured in wet, granular avalanches with sensors of different dimensions. On this basis, we determined a reduction coefficient from small to large obstacles.

Additionally, we compared measurements with a theoretical model recently proposed by Faug (2015) to describe granular flow interaction with obstacles. This model assumes that, in a mobilized volume whose geometry depends on both structure width and avalanche flow depth, gravity-loaded grain-grain contacts are likely to form. The model quantifies an amplification factor explaining how these contacts enhance the force undergone by the obstacle.

2. Methods

2.1. Infrastructure and sensors

Pressure measurements are performed on an oval-shaped steel pylon, 20 m high, 0.59 m wide and 1.58 m long (Fig. 1). Six piezoelectric load cells, hereafter designated as piezo sensors, are installed on the uphill face of the pylon, with 1 m vertical spacing, from 0.5 to 5.5 m above ground. The sampling frequency is 7.5 kHz and they extend into the avalanche flow (Fig. 1b). They have an area of about 0.0125m² and an acquisition frequency of 2.0 kHz (Baroudi et al., 2011).

The pylon is also equipped with optical sensors for the determination of velocity profiles (between 0.5 and 6 m above ground) (Dent et al., 1998; Tiefenbacher and Kern, 2004), capacitance probes for density measurements (at 3 and 6.5 m) (Louge et al., 1997) and flow depth sensors (toggles switches between 0.25 and 7.5 m).

Thirty meters downstream from the pylon a small concrete wall, 1 m wide, 4.5 m high and 3.5 m long, supports a 1m² pressure plate (bottom left in Fig. 1), which is mounted with its center at a height of 3 m above ground surface (Fig. 2). The pressure plate is supported by four strain-gauged pins. The set-up makes it possible to measure normal and shear forces along the horizontal and vertical directions with a sampling frequency of 2 kHz. A more detailed description of the infrastructure and sensors can be found in Sovilla et al. (2008b) and Schaer and Issler (2001).

2.2. Criteria for data comparison

The pylon and the plate are approximately 30 m apart; thus, it is very important to verify that the avalanche reached both infrastructures with similar velocities and depths. As a general criterion, we observe deposition patterns, and avalanche dynamics from pictures and videos to visually identify avalanches that have interacted with both infrastructures in a similar manner. Avalanches characterized by a large width in the run-out zone are better suited for the analysis since they exert a similar pressure over a large area. Only signals comparable in duration and shape were included in the analysis presented here.

Given that the 1m² plate is mounted with its center 3 m above the ground and vertically extends from 2.5 to 3.5 m, we compared these data with the average impact pressure measured with the small sensors on the pylon, 2.5 m and 3.5 m above ground. This implies that the sliding surface is the same at the plate and pylon locations. Further, velocity and flow depth measurements are performed only at the pylon, and thus the pressure data at the plate need to be coupled with measurements taken 30 m away. To account for the time shift between pylon and wall measurements, we moved the time origin of the two records using the avalanche front velocity.

Pressure is strongly correlated with the flow regime, with gravitational, transitional and inertial regimes characterized by completely different obstacle–avalanche interactions (Baroudi et al., 2011; Sovilla et al., 2008a). Thus, data need to be classified into these categories. Difficulties arise when many flow regimes are present in one single avalanche. We used different criteria to associate flow regimes to impact signals, including: (1) analyzing the ratio between pressure fluctuations and average pressure, which is very different for each flow regime (Sovilla et al., 2010) and (2) comparing the velocity profiles and their fluctuations to distinguish between plug flow, sheared flow and more energetic zones of the signal (Sovilla et al., 2015; Steinkogler et al., 2015). In the analysis presented here, only data pertaining to the gravitational and transition regimes were considered. In other words, we manually excluded time slots for which inertial forces prevail.

![Fig. 2. The small concrete wall supports a 1m² pressure plate. The plate is mounted with its center at a height of 3 m above the ground surface.](image-url)
3. Data

Measurements at both the plate and the pylon have been performed since the winter season 2004/05. Over this period, we have recorded impact pressures of about 40 avalanches, of varying dimension and typology, that interacted with both infrastructures. Five of these were wet avalanches and were analyzed in this study. All wet avalanches released naturally, making it difficult to establish the exact location of release and the avalanche volumes. Nevertheless, pictures taken after the avalanche release allowed us to characterize their dimensions in the avalanche deposition zone, i.e. at the location of the measurements. Table 1 shows the most relevant avalanche parameters characterizing the flow, namely the avalanche velocity, v, the maximum avalanche depth, H_{max}, and the Froude number, Fr. It is noteworthy that our analysis distinguished between the flow density to be 400 kg m$^{-3}$ and was characterized by a gravitational flow regime (Sovilla et al., 2010). Density measurements of this avalanche have been presented by Sovilla et al. (2015). The sliding surface of this avalanche was estimated to be 1.2 m above ground.

3.1. Avalanche #8448

Avalanche #8448 released naturally on 1 March 2007 at 21:19. It released after a snow precipitation event of nearly 0.4 m on an existing 2–3 m thick snowpack, according to measurements made close to the release zone at an altitude of 2390 m a.s.l. Air temperature was about $-4 \, ^\circ\text{C}$ in the release zone and slightly above $0 \, ^\circ\text{C}$ in the run-out zone. The avalanche started as a dry flow but traveled at a maximum velocity of 24 ms$^{-1}$, with a maximum flow depth of up to 6–7 m at the pylon and it slid directly on the rock ground (Fig. 4, left).

3.2. Avalanche #20103003

Avalanche #20103003 released naturally on 30 December 2009 at 13:30. At the time of release, about 0.20 m of new snow had fallen in the preceding 24 h on a snow cover of 1.80 m, as measured close to the release zone at an altitude of 2390 m a.s.l. Air temperature was $-4 \, ^\circ\text{C}$ in the release zone, and around $0 \, ^\circ\text{C}$ in the run-out zone. These values indicate that the snow precipitation might have evolved into rain at lower altitude. The avalanche started as a dry flow but at the pylon was characterized by a dilute, fast moving front, followed by a denser, slower avalanche body moving with velocities up to approximately 10 ms$^{-1}$. Oscillations in velocity and flow depth indicate that the flow was characterized by successive surges. This large avalanche had a maximum flow depths of up to 6–7 m at the pylon and it slid directly on the rock ground (Fig. 4, left).

3.3. Avalanche #20113003

Avalanche #20113003 occurred on 6 December 2010 at 18:30. The avalanche naturally released after a snow precipitation event of about 0.50 m in the preceding 48 h on a snow cover of 0.80 m, as measured close to the release zone at an altitude of 2390 m a.s.l. Air temperature in the release zone was $-4 \, ^\circ\text{C}$. The motion of the avalanche could be observed using a new phased array FMCW radar system (GEODAR) (Vriend et al., 2013). At the pylon, the avalanche was characterized by three distinct surges. The first two surges were dry diluted and traveled at a maximum velocity of 24 ms$^{-1}$ and 21 ms$^{-1}$, respectively. The third surge traveled slowly at 1–2 ms$^{-1}$ had the typical characteristics of a wet dense flow with a maximum flow depth of 2.5 m, and was characterized by a $Fr < 1$, and thus by a gravitational regime. Density measurements of this avalanche have been presented by Sovilla et al. (2015). The sliding surface of this avalanche was estimated to be 1.2 m above ground.

3.4. Avalanche #20133019

Avalanche #20133019 naturally released on 1 February 2013 at 17:16 after a snow precipitation event of about 0.35 m in the preceding 36 h on a snow cover of 2.2 m, as measured close to the release zone at an altitude of 2390 m a.s.l. Air temperature in the release zone was $-2.5 \, ^\circ\text{C}$. The GEODAR data confirms that, at the pylon, the avalanche had mostly a wet flow behavior characterized by velocity in the range 1–5 ms$^{-1}$. A small powder component was probably still present at this distance but rapidly disappeared. The deposit depicted the typical characteristics of wet avalanche debris with granules aggregations. At the pylon location, the avalanche slide on a 1 m thick previous snow deposit and was characterized by plug flow. Maximum flow depth was about 3.5 m. The avalanche was characterized by a gravitational regime.

3.5. Avalanche #20133021

Avalanche #20133021 naturally released on 2 February 2013 at 05:28 after a snow precipitation event of about 0.70 m in the preceding 42 h on a snow cover of 2.2 m, according to measurements made close to the release zone at an altitude of 2390 m a.s.l. Air temperature in the release zone was $-4.7 \, ^\circ\text{C}$. The GEODAR data confirms that the avalanche was traveling slowly at the pylon, with a velocity of 2–7 ms$^{-1}$. A small powder component was probably still present.

<table>
<thead>
<tr>
<th>Date</th>
<th>Av. #</th>
<th>v(ms$^{-1}$)</th>
<th>H_{max}(m)</th>
<th>Fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-03-2007</td>
<td>8448</td>
<td>1–3</td>
<td>4</td>
<td>$Fr < 1$</td>
</tr>
<tr>
<td>30-12-2009</td>
<td>20103003</td>
<td>6–10</td>
<td>6–7</td>
<td>$1 \leq Fr < 2$</td>
</tr>
<tr>
<td>06-12-2010</td>
<td>20113003</td>
<td>1–2</td>
<td>2.5</td>
<td>$Fr < 1$</td>
</tr>
<tr>
<td>01-02-2013</td>
<td>20133019</td>
<td>1–5</td>
<td>3.5</td>
<td>$Fr < 1$</td>
</tr>
<tr>
<td>02-02-2013</td>
<td>20133021</td>
<td>2–7</td>
<td>5</td>
<td>$Fr < 1.5$</td>
</tr>
</tbody>
</table>
at this distance but rapidly disappeared. The deposit depicted the typical characteristics of wet avalanche debris. At the pylon, the avalanche was characterized by plug flow with a small shear rate, and it slid on an old deposit about 1.0 m thick and reached a maximum flow depth of about 5 m. The avalanche was characterized by a Froude number in the range 0.6–1.5; thus, it had characteristics of both the gravitational and transition regimes.

4. Snow avalanche pressure in the gravitational and transitional regimes

Recently, Sovilla et al. (2010) provided further evidence that the impact pressure of wet avalanches, characterized by a gravitational regime, increases proportionally to the flowing depth according to:

\[p = \zeta \rho g H_{\text{eff}} \]

(1)

where \(H_{\text{eff}} \) is the location of the pressure measurement in respect to the avalanche surface, \(\rho \) is the flow bulk density, \(g \) is the gravitational acceleration and \(\zeta \) is an empirical parameter. Adopting \(\rho = 400 \pm 80 \text{kg m}^{-3} \), as derived from permittivity measurements (Louge et al., 1997), Eq. (1) was fitted to representative vertical pressure profiles using \(\zeta \) values in the range 7.2–8.1. Furthermore, Eq. (1) is found to match results from a number of laboratory experiments on the force experienced by solid objects in low-speed granular flows (see for instance Albert et al. (1999) and Wieghardt (1975)).

Following the study of Sovilla et al. (2010), in order to understand how sensor and obstacle dimensions influence pressure measurements, this fitting was extended to other measurements. Fig. 5 shows, as an example, the fitting of Eq. (1) for avalanche #8448 in the time domain. Specifically, Eq. (1) was fitted to the pressure signals of piezo (red line), plate (blue line) and cantilever (green line) data by properly adapting the parameter \(\zeta \) and considering the effective flow depth, \(H_{\text{eff}} \). In particular, \(\zeta \) was solved with a linear least-squares regression of the pressure and flow height data. The
confidence interval for ζ is the standard deviation between the fit and the data.

An exception to the linear fitting is represented by avalanche #20103003, which was characterized by a Froude number between 1 and 2 and maximum velocities above 10ms$^{-1}$, and thus, characterized by a transitional flow regime. In this case, the gravitational component alone could not satisfactorily reproduce the load and an additional inertial contribution needed to be considered. In a first approximation, the total load for avalanche #20103003 was calculated as:

$$p = \frac{1}{2} C_d \rho v^2 + \zeta g H_{eff},$$

where v is the velocity of the flow upstream the obstacle and C_d is a drag coefficient, which normally depends on the form and size of the object, but is also a function of the flow regimes and thus depends on dimensionless numbers such as the Reynolds, Re, and Froude, Fr, numbers.

The drag coefficient is normally chosen following the criteria defined by standard pressure calculations in the inertial flow regime (Rudolf-Miklau et al., 2015; Jóhannesson et al., 2009; Salm et al., 1990).

It is noteworthy that these values are normally valid for calculations where only inertial contributions are considered. This implies that, in cases where the gravitational term is dominant, these coefficients need to be considered as an approximation. Following the rules defined in Salm et al. (1990), Jóhannesson et al. (2009), and Rudolf-Miklau et al. (2015), we selected a $C_d = 3$, which corresponds to a round cylinder hit by a wet flow avalanche.

Fig 6 shows the best fit coefficients ζ for the examined avalanches, with blue dots representing measurements performed at the large plate, red dots representing measurements performed with the piezo sensors and green dots representing measurements performed with the cantilever sensors. The plot also includes the ζ coefficients found by Sovilla et al. (2010) by analyzing impact pressures from piezo sensors of three wet avalanches. Sovilla et al. (2010) estimated $\zeta = 7.2 \pm 2.1, 8.1 \pm 1.6$ and 7.6 ± 1.7, for avalanches #8448, #6236 and #6241, respectively, using a linear fitting applied to a representative vertical pressure profile.

Fig. 6 shows that, on average, the parameter ζ strongly varies between sensors, indicating a dependency of ζ on the dimensions either of the measurement device or of the structure on which the sensor is installed. Further variability in ζ is observed among measurements performed with the same sensor, indicating the influence of the intrinsic material properties, such as liquid water content or granulometry (Steinkogler et al., 2015).

Finally, Fig. 7 shows the coefficient $\zeta(t)$, calculated as the ratio between the impact pressure from the piezo (red line) and plate (blue line) sensors for avalanche #8448, $p(t)$, scaled by the gravitational pressure contribution $\zeta g H_{eff}(t)$. $\zeta(t)$ is compared with the constant, best fit coefficient ζ (orange lines) and the effective flow depth, $H_{eff}(t)$ (black lines). We observed that a constant ζ reproduced measurements fairly well for most of the signal but the quality of the matching decreased for the smaller flow depths, suggesting the coefficient ζ may also have an intrinsic flow depth dependence.

5. Pressure on a thin structure from a mobilized volume of particle

The nature of the pressure exerted by a slow thrust of snow on a thin obstacle is not fully understood. Nevertheless, it is generally assumed that the cause of such a pressure is connected with the formation of a mobilized volume of grains that are disturbed by the presence of the obstacle (Faug, 2015; Sovilla et al., 2010) or by the formation of a dead zone upstream of the obstacles or sensor (Baroudi et al., 2011).
Recent numerical simulations on a thin object dragged into a granular medium have demonstrated the existence of a network of force chains extending from the intruder into the granular material flowing around it (Tordesillas et al., 2014). This network, or mobilized volume, is rather circular and much denser ahead of the intruder (Tordesillas et al., 2014). By analogy, we expected a denser force chains network of snow granules to form upstream the obstacles in VdS.

Assuming the pressure on the obstacle is defined by the mobilized volume, this force is likely to depend on the obstacle dimensions as suggested by Fig. 6, but also on the depth of the incoming flow, as suggested by Fig. 7. We discuss hereinafter how a recent model carefully calibrated using a great number of force data for granular flows around thin objects (Faug, 2015) may be able to account for those effects.

Faug (2015) presented a new semi-empirical model that describes the total force exerted by the particle flow on the obstacle as a function of the width of the structure, D, and the depth of the incoming flow, H:

\[F = \frac{\pi}{8} \rho g H (\omega D + \psi H)^2 (\sin \theta - \mu_e \cos \theta) , \]

where \(\theta \) is the slope angle, \(\mu_e \) is the effective friction of the granular material, and \(\omega \) and \(\psi \) are parameters that describe the increase in the mobilized volume with the obstacle width and the flow height, respectively. It is assumed that the mobilized volume, \(V \), has a cylindrical form, extending across the entire immersed height of the obstacle, and satisfies \(V = H S \), where \(S \) is the typical surface of the mobilized volume surrounding the obstacle. It is worth noting that the effective friction \(\mu_e \) is, by construction, smaller than \(\theta \) in Eq. (3). Note also that, Eq. (3) is only valid for \(D > d \), and \(H > n D \) where \(d \) is the particle diameter and \(n = 5-10 \). Below this limit, a continuum approach is not reasonable for granular materials.

Faug (2015) found that the diameter \(D^* \) of the circular surface \(S \) could be described by a linear dependency with obstacle width and incoming flow depth in the form: \(D^* = \omega D + \psi H \). The pre-factor \((\sin \theta - \mu_e \cos \theta) \) in Eq. (3) indicates that the force contribution from the mobilized volume is nothing more than its apparent weight, i.e. the weight of the mobilized volume decreased by the effective friction force.

The parameters \(\omega \) and \(\psi \) were found to vary in relatively narrow ranges for data from granular flows (Faug, 2015): \(\omega = 2-6 \) (mean value around 3) and \(\psi = 0.5-2.4 \) (mean value around 1.5). It is worth stressing that the parameters \(\omega \) and \(\psi \) are, by construction, associated with the hypothetical geometry of the mobilized volume, i.e. a cylinder of height \(H \). Faug (2015) assumed that this relationship is reasonable for granular flows, in light of the discrete numerical simulations on a small intruder dragged onto a granular medium by Tordesillas et al. (2014). This model has been applied to the measurements performed with the piezo and plate, which can be easily extended to represent the load exerted on thin objects, i.e. the pylon and the wall. In particular, for the piezo measurements, we assumed the volume mobilized upstream of the pylon was controlled by the pylon geometry and thus dependent on the pylon width, \(D = 0.60 \) m, rather than on the sensor diameter, \(D = 0.10 \) m. For this reason, in the following calculations the piezo measurements were associated with \(D = 0.60 \) m, corresponding to the pylon width. The cantilever sensors were not considered in this analysis, as they extended into the flow as individual arms (Fig. 1b).

To compare our data with the model of Faug (2015), Eq. (3) needs to be matched with Eq. (1). This can only be done if the modeled amplification factor \(\xi_m \) obeys the following relationship:

\[\xi_m(t) = \frac{\pi}{4} \left(2\omega \psi + \psi^2 \frac{H(t)}{D} + \omega^2 \frac{D}{H(t)} \right) (\sin \theta - \mu_e \cos \theta) . \]

Again, this equation is only valid for \(D > d \), and \(H > n D \), where \(d \) is the particle diameter and \(n = 5-10 \). Before providing detailed results of calculations, it is interesting to analyze the qualitative trends predicted by Eq. (4) for values of \(H/D \) much higher than 1, as in our case. First, a similar granular flow (\(H \) kept constant) impacting two thin obstacles of distinct widths is likely to exert a greater pressure (largest \(\xi_m \)) on the obstacle whose width \(D \) is the smallest. This outcome from Eq. (4), if applied to full-scale wet snow avalanches, is consistent with Fig. 6, which shows larger pressures for the pylon (\(D = 0.6 \) m) than for the plate (\(D = 1 \) m). Second, Eq. (4) suggests that a decrease in \(H/D \) leads to a decrease in \(\xi_m \). Fig. 7 shows this trend at the tail of the wet avalanche (after \(t > 670 \) s); \(\xi_m \) does not remain constant but is significantly reduced while the avalanche depth decreases.

As an example, we apply this model to avalanche #8448. We consider \(\theta = 21^\circ \), corresponding the local slope at the locations of the obstacles, and a constant density of 400 kg m\(^{-3}\). For snow, the effective friction \(\mu_e \) may vary a lot depending on the type of snow and the frictional boundary conditions at the sliding surface. Since this experimental information was not available, it is reasonable to assume that the slope on which the avalanche stopped (15°) can provide a rough estimation of the effective friction \(\mu_e = \tan 15° = 0.27 \). Note that \(\mu_e = 0.27 \) is compatible with the typical values of effective friction found for full-scale wet snow avalanches by Naaim et al. (2013).
Likewise, we consider $\psi = 1.5$, which corresponds to the mean value found by Faug (2015) for small-scale granular flows. This parameter is kept constant, irrespective of the obstacle and sensor considered, because it represents how the mobilized volume increases with avalanche thickness. Under all these reasonable assumptions, the only free parameter is ω, which is back calculated according to piezo and plate measurements. The results are then compared to ζ values obtained as a best fit to the data, and to $\zeta(t)$.

Fig. 8, left panel, shows $\xi(t) = p(t)/(\rho g h(t))$ for the piezo measurements. $\xi(t)$ values derived from Eq. (4) (black line) can successfully reproduce $\zeta(t)$ values (red line) by using $\omega = \omega_{\text{piezo}} = 3.55$. This is a value also used for granular flows (Faug, 2015). Predictions from Eq. (4) are not perfect but are much better than a constant ζ (orange lines in Fig. 8). In particular, the decrease of $\zeta(t)$ observed at the avalanche tail is relatively well captured by Eq. (4).

Fig. 8, right panel, shows $\zeta_m(t)$, $\zeta(t)$ and ζ for the plate measurements. Still considering $\theta = 21{\degree}, \rho = 400 \text{ kg m}^{-3}$ and $\mu_e = 0.27$, we could reproduce the plate data with a value $\omega = \omega_{\text{plate}} = 3.05$. The difference between the back-calculated values of ω_{piezo} and ω_{plate} is around 15%.

To push forward the prediction of the granular model proposed by Faug (2015), one can extract the typical diameter of the mobilized volume (assumed to be cylindrical in shape), which is given by $D^* = \omega D + \omega H$. Fig. 9 displays how D^*, back-calculated with the values of ω and ψ mentioned above, would vary over time for both the pylon and the plate. The radius $D^*/2$ of the mobilized domain ranges from 2 to 4.5 m. These values confirm that the model results are physically acceptable.

6. Discussion

Almost all data analyzed in this context shows that, warm avalanches characterized by low values of Fr (typically smaller than 1), and thus under a gravitational regime condition, exert an impact pressure proportional to the flow depth, as already proposed by previous studies (Sovilla et al., 2010). The impact pressure of the only avalanche characterized by $1 < Fr < 2$, and thus in a transitional flow regime, could be reproduced successfully by adding, in addition to the depth dependent component, a velocity square component analogous to that used in granular flow studies (Faug, 2015).

However, the most striking result of our study is shown in Fig. 6, where the quasi static component of the impact pressure exerted by an avalanche on a 1 m2 plate was, on average, 1.8 times smaller that the pressure measured with the piezoelectric load cells and 2.9 times smaller than the pressure measured with the cantilever sensors, thus indicating that the avalanche-obstacle interaction is strongly controlled by the geometry of the obstacle and sensor.

Further, Fig. 6 shows that the coefficient ζ also varied between avalanches, for the same obstacle. For example, ζ coefficients measured at the plate ranged between 3.6 and 4.9. We suspect, these fluctuations were mostly associated with differences in granulometry between avalanches. As shown by Steinkogler et al. (2015), granulation regimes depend on snow temperature and liquid water content. Moist snow tends to create smaller, elasto-plastic granules (\sim2–10 cm in tumbler laboratory experiments) that show a quasi-brittle behavior upon impact, while wet snow generated, larger granules (\sim10–25 cm in the same experiments) that show a plastic behavior during impact. Thus, different dimensions and material properties have an influence on the stress distribution occurring between granules in the mobilized volume upstream of the sensor.

It is noteworthy that, the different granulation processes will change the internal friction angle of the material, ϕ, and thus have a direct influence on the definition of the model parameters, ψ and ω, that should be constant for one avalanche but clearly depend on properties of the flowing snow. For instance, the latter parameters are expected to change with grain size and shape. The grain size and...
shape are controlled by friction and cohesion between snow crystals (much smaller grain scale) as well as by liquid water content. Finally, the effective basal friction, μ_b, which depends also on snow properties, may be influenced by granulometry as well.

In our back calculation, the parameters were set according to the granular experiments of Faug (2015) and topographic observations. Choosing $\psi = 1.5$ and $\mu_e = 0.27$, leads to an average $\omega = 3.3$ for avalanche #8448, which is close to the mean value of $\omega = 3$ found by Faug (2015) for idealized grains, suggesting that for this kind of avalanches the granular behavior of flowing snow prevails.

Taking into account the granular nature of the flow (Steinkogler et al., 2015), and in analogy to granular experiments, we postulate that the differences in pressure may arise from the different mobilized volume of material forming upstream of the obstacles (Faug, 2015). Fig. 9 shows that the reconstructed diameter D of these regions varies between 4 and 8 m for the plate and between 3.5 and 7 m for the pylon, depending on the incoming flow depth. There is not a direct measurement inside the avalanche to further demonstrate the existence of that mobilized volume or its exact geometry, but the values found for $D^2 / 2$ appear to be physically reasonable when they are compared to the avalanche depth (2–4 m).

Further, our analysis shows that the semi-empirical model proposed by Faug (2015) was able to reproduce the data from both the piezo and the plate by considering nearly the same set of model parameters. In particular, in our back calculation, only the parameter ω was left free. The ω difference between pylon and plate, for the same avalanche, was estimated to be about 15%. We believe that the reasons for such a discrepancy may be attributed to manifold sources. First, flow variabilities between the pylon and plate may have caused the flow depth measurements at the pylon to be less representative for the plate. Second, since the shape of the pylon and plate are different, the geometry of the mobilized volume may also differ. Finally, there may be local effects, such as the formation of a small plastic dead zone in front of the sensors and the grain size being the snow crystal, which may cause an additional increase in pressure as seen by Baroudi et al. (2011).

Indeed, an alternative framework explaining the differences in pressure exerted by wet avalanches on small load cells has been recently proposed by Baroudi et al. (2011). In their work, the mechanics of continuous media and earth passive pressure formalism is used to introduce the formation of a local wedge of snow around the impact pressure was back calculated by assuming a shear failure of these regions.

Acknowledgments

The authors would like to thank the avalanche dynamics team and logistics staff of the WSL/SLF, the Austrian Service for Torrent and Avalanche Control - WLV, the BFW avalanche dynamics logistics team for their support in the experiments and the French ANR-Opale project. Part of this work was funded by “Canton du Valais” and by the Swiss National Foundation under grants no. 200211-113069/1 and 200021-143435. Thierry Faug is grateful for the financial support provided by the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme under REA Grant Agreement No. 622899 (FP7-PEOPLE-2013-IOF, GRAINPACT). We gratefully thank C. Ancey and an anonymous reviewer whose suggestions helped improve and clarify this manuscript.

References

