Santos Vilaca da Silva, Pedro

Application of Friction Stir Welding and Allied Techniques to Aluminium

Published: 01/01/2014

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Department of Engineering
Design and Production

Application of Friction Stir Welding and Allied Techniques to Aluminium

Professor Pedro Vilaça *

* Contacts
Address: P.O. Box 14200, FI-00076 Aalto, Finland
Visiting address: Puumiehenkuja 3, Espoo
pedro.vilaca@aalto.fi ; Skype: fsweldone

Associate Professor
Materials Joining and NDT

29th October 2014
Turku, Finland

AGENDA

- Introduction to School of Engineering of Aalto University
- Fundaments of Friction Stir Welding (FSW)
- Industrial Application Samples of FSW
- Variants of FSW
- Innovations Based on Friction Stir Concept
- Applications and Developments of FSW at Aalto University
Aalto University - Where **Science** and **Art** meet **Technology** and **Business**

Created from the merger of 3 leading Finnish universities 1 January 2010:

- the Helsinki School of Economics (HSE), founded 1911
- the University of Art and Design Helsinki (TaiK), founded 1871
- the Helsinki University of Technology (TKK), founded 1849

Aalto University is a community of:

- 75,000 alumni
- 20,000 students
- 4,700 faculty & staff
- with 340 professors

Aalto University
6 Schools (with a Dean) and Respective Focus Areas

School of Engineering
- Arctic technology
- Mechanics and material technology
- Multidisciplinary energy technologies
- Sustainable built environment
- Systems design and production

School of Science
- Computing and modeling
- Materials physics
- Energy sciences
- ITC, software and media
- Neuroscience and technology
- Creating and transforming technology based entrepreneurship

School of Chemical Technology
- Sustainable use and processing of natural resources
- New materials
- Energy technologies

School of Electrical Engineering
- Energy
- Health and wellbeing
- Environment
- Information and communication technology
- Micro- and nanotechnology

School of Arts, Design and Architecture
- User driven design and art
- Art & design, science and business
- Heritage based forerunning
- Sense based skills and knowledge

School of Business
- Strategic management & marketing in the global context
- Microeconomics
- Behavioral finance & corporate governance
- Decision-making
Materials Joining and NDT

Department of Engineering Design and Production

Welding Technology

History

- **Forging**
 - Bare electrode 1888
 - Electric Arc 1881
 - Oxifuel 1903

- **SMAW** 1904
- **SAW**
- **GMAW** 1940
- **GTAW**
- **Welding**
- **Thermal Treat.**
- **Brasing**
- **EBW** 1958

- **Electro-slag** 1959
- **Electro-gas**

- **Sinergic** 1980
- **FCAW** 1970
- **CMT** 1990
- **Vacuum**
- **Laser** 1970

Classification

Welding Process Classification

- **Fusion Welding**
 - Includes partial fusion of Base Material, with /without application of pressure, with/without filler metal added to weld pool

- **Brazing and Soldering**
 - No fusion of base material components which are joined by inserting melted filler metal in the overlap joint configuration

- **Solid State Welding**
 - Joining is obtained by solid state joining mechanisms

Note: There are (many) others possible classifications
Welding Technology
Solid State Welding History

Iron and coal; 1855-60 (The Industrial Revolution by William Bell Scott)

Solid State Welding Classification

Friction; Ultrasonic; Explosion; Diffusion
High-frequency; Flash; Stud (liquid joining interface)

Mechanical Energy
Cold Pressure
Thermomechanical Activation
Thermal Activation

T_{re} crystallization
T_{fusion}
T [°C]

No-Weld
Materials Joining and NDT
Department of Engineering Design and Production

Solid State Welding
Sample of Conventional Solutions

High-Frequency Welding
Stud Welding
Ultrasonic Welding

“Third-Body” Region Based Technologies

Friction Stir Based Technologies
Friction Stir Welding
Friction Stir Welding Variants

Friction Based Technologies
Friction Surfacing

Hybrid Joining Involving Friction (e.g. with acoustic, electric arc, electrical resistance, laser beam)
Friction Extrusion
Friction Brazing (third-body friction joining)
Friction Cutting
Friction Flow Drilling

Orbital Friction Welding
Radial Friction Welding
Rotary Friction Welding
Inertia and Continuous Drive
Friction Stitch Welding
Friction Riveting
Friction Hydro Pillar Processing
Friction Stud Welding

Friction Based Technology
Sample of Processes

Friction Welding

Internacional Patent
2/1956 (A.I.Chudikov)

Friction Extrusion Friction Hydro Pillar Friction Riveting

© TWI, England © HGZ, Germany
Friction Based Technology
Sample of Processes

Friction Surfacing

FS Production of Functionally Graded Materials (FGM)

Friction Stir Welding Process
Fundamentals and Parameters

FSW was patented by TWI, 1991, W. Thomas et al., UK
Friction Stir Welding Process
Inventor: Wayne Morris Thomas @ TWI (UK)

The responsible for the most significant development of welding technology in recent history

Last Patent (US 5,813592) assigned to TWI Expires: 29 September 2015

Friction Stir Welding Process
Fundaments - Typical Macrostructure
Friction Stir Welding Process
Fundamentals – Heat Input

\[P_{\text{mech}} [W] = \left[M_{[\text{max}]} \times 2 \pi \Omega_{[\text{rpm}]} + F_{[\text{w}]} \times v_{[\text{mm/min}]} \right] \times \frac{1000}{60} \]

\[\eta_{\text{heat}} = \left(1 - \frac{P_{\text{heat}}}{P_{\text{mech}}} \right) \times 100\% \]

\[H_l [J/mm] = \frac{P_{\text{heat}} [W]}{v_{[\text{mm/min}]} \times 60} \]

Friction Stir Welding Process
Fundamentals – Tool Geometry

Shoulders

Probes
Friction Stir Welding Process
Fundaments – 3D Material Flow

Friction Stir Welding Process
Fundaments – Standards

ISO EN DIN 25239 (03/2012) Friction Stir Welding - Aluminium

Part 1: Vocabulary
Part 2: Design of weld joints
Part 3: Qualification of welding operators
Part 4: Specification and qualification of welding procedures
Part 5: Quality and inspection requirements

AWS D17.3 / D17.3M:2010
Specification for Friction Stir Welding of Aluminum Alloys for Aerospace Applications
Friction Stir Welding Process
Fundaments – Advantages versus Disadvantages

- Welds materials whose structure and properties would be degraded by fusion welding
- Minimal distortion + Low residual stress levels compared to fusion welding processes
- Environmentally friendly + Safe: No fumes + No radiation + High energy efficiency
- Easy repeatability + good control: suitable for automation and robotization
- Good mechanical properties: No cracks + No porosity
- No consumables for aluminium alloys
- Joint can be produced from one side and in all positions
- Minimal edge preparation required
- Not influenced by magnetic forces

- Backing anvil required (except bobbin stir tools)
- Keyhole at the end of each weld (except when a tool with a retractable probe is used)
- Workpiece requires rigid clamping (except when the Twin-stir™ variant is used)
- Application not as flexible as certain fusion welding processes

Industrial Application Samples of FSW
Shipbuilding Industry

- First vessel (catamaran) in history made from FSW panels was built by Fjellstrand AS in 1996
- The panels were made by Marine Aluminium. This kick started the industrialization of FSW process
- Panels with total FSW length of 110km from 1996 to 1999
Industrial Application Samples of FSW
Aeronautic Industry

- Eclipse Aviation @ USA
- FSW facility dedicated for the production of the fuel tanks of Delta IV

Industrial Application Samples of FSW
Aerospace Industry

- Boeing Co @ USA
- FSW facility dedicated for the production of the fuel tanks of Delta IV
Industrial Application Samples of FSW

Aerospace Industry

New FSW for Space Launch System:

Vertical Assembly Center (VAC)

(NASA's Michoud Assembly Facility New Orleans)

61 m Tall x 8.4 m Diameter

Cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle’s RS-25 engine

Industrial Application Samples of FSW

Automotive Industry

Tailored Blanks joined by FSW and subsequently formed

Ford GT: FSW of tunnel to Al frame to form housing of transmission system and fuel tank

FSW of Tailor Welded Blanks using dissimilar thickness Al sheets - TWI research study

FSW of cast Al hub to wrought Al rim section

Produced by Fundo Wheels for Volvo XC90

Friction Stir Welds
Industrial Application Samples of FSW

Railway Industry

A-Train concept from Hitachi, Ltd @ Japan for rolling stock based on FSW

- For body structure: double-skinned structure (aluminum hollow extrusion)
- Interior: high rigidity, modulated interior (composite material)
- Features:
 - Self-supported module
 - Mounting rail fastening by bolts
 - Reduced number of parts
 - No additional work required
 - Easier refit/dismantle

Apple 21.5 and 27-inch iMACs 2012 @ USA

Apple slim down iMac 40% with 'friction-stir welding' & ditching the disc drive

By: Daniel Eran Dilger

Apple’s new iMac updates the company’s flagship Macintosh into a faster, faster and — in particular — thinner version of itself.
Industrial Application Samples of FSW

FSW (kitkahitsaus) in Finland

- Equipment delivered to KMT Oy (PROMECO-Kankaanpää) in 12.2003
- Modular LEGIO 5UT (6m x 0.5m x 0.3m)
- Applied e.g. electromechanical components

Jori Oy (South Ostrobothnia) designed and built their own automatic FSW machine in 2004

- Table 14m long for FSW of Al alloy tanks mostly for powder

Industrial Application Samples of FSW

Architecture Application

- Nobel Peace Centre @ Oslo, Norway

Canopy by David Adjaye that serves as gateway between Oslo City Hall where the Peace Prize Ceremony takes place and the Nobel Peace Center
Friction Stir Welding Based Innovations

Com-stir™ Welding Stationary Shoulder FSW Skew-stir™ Welding
Twin-stir™ Welding Friction Stir Welding Ras-stir™ Welding
Re-stir™ Welding Bobbin Tool Stir Welding Dual-rotation FSW

Friction Stir Based Innovations

Friction Stir Processing Friction Stir Channeling
Friction Stir Microforming Friction (Stir) Spot Welding
Near-Net Shaped Manufacture by FSW Friction Stir Self Embossing and In-Process Forge/Forming
FSW @ Aalto University
Different Joints and Materials

Overlap

Dissimilar thickness

Thick Al alloy

Dissimilar Mg-Al

Thin Al alloy

Polyamide

Dissimilar Al-Cu

Al alloy embedding steel

SPIF of tailored blanks welded by FSW

Thank You / Kiitos / Tack

29th October 2014
Turku, Finland