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Abstract

Speech technology applications for major languages are becoming widely available, but for
many other languages there is no commercial interest in developing speech technology. As the
lack of technology and applications will threaten the existence of these languages, it is important
to study how to create speech recognizers with minimal effort and low resources.

As a test case, we have developed a Large Vocabulary Continuous Speech Recognizer for North-
ern Sámi, an Finno-Ugric language that has little resources for speech technology available. Us-
ing only limited audio data, 2.5 hours, and the Northern Sámi Wikipedia for the language model
we achieved 7.6% Letter Error Rate (LER). With a language model based on a higher quality lan-
guage corpus we achieved 4.2% LER. To put this in perspective we also trained systems in other,
better-resourced, Finno-Ugric languages (Finnish and Estonian) with the same amount of data and
compared those to state-of-the-art systems in those languages.

1 Introduction

The field of speech recognition is maturing, as companies start to actively use and sell products
that utilize Large Vocabulary Continuous Speech Recognition (LVSCR). Especially the creators of
operating systems for mobile devices incorporate methods into their products to operate devices
using voice.
These commercial applications however, are only focusing on small fraction of the languages in the
world. Other languages do not have the required data and expertise readily available, and are there-
fore left out from these systems as it would not be commercially viable to create these applications.
Especially minority languages and languages from developing countries receive only minor academic
and commercial interest for the development of LVCSR systems. [1]
One for these under-resourced languages is Northern Sámi, the largest of the nine Sámi languages
with approximately 25,000 speakers. It belongs to the Uralic language family. [2]

This work is licensed under a Creative Commons Attribution–NoDerivatives 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by-nd/4.0/
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Like other languages in the Finno-Ugric branch of the Uralic language family, e.g. Finnish and Es-
tonian, it is a highly morphological language that uses independent suffixes extensively. This poses
challenges for speech technology applications as the number of inflections, derivations and com-
poundings cause the size of the vocabulary to be enormous, especially compared to the languages in
the Indo-European family [3]. A large vocabulary especially causes problems in the estimation of lan-
guage models, which can not produce any words beyond those seen in the the training data.
Northern Sámi is an under-resourced language, as there are little corpora of spoken and written
language available, and financial resources to collect these data are limited. Even though there is
active linguistic research on Northern Sámi, there are limitations to the expert resources available
for speech recognition, such as pronunciation dictionaries.
To combat the challenges of building an LVCSR system for an under-resourced language we have
employed several techniques. First we used ‘found data’ for building the acoustic and language mod-
els. For the acoustic model we bootstrapped from a better resourced related language (Finnish). For
the language model we increased the coverage of the model by employing sub-word units (morphs)
instead of words. Similar techniques have been used in [1, 4] but here we wanted to evaluate their
applicability to uralic languages, in particular. This work is an extension of [5].
Because there are no state-of-the-art LVCSR references for Northern Sámi, we simulated the poten-
tial of larger resources by studying also two better resourced Uralic languages. First we produced
systems for Finnish and Estonian using the corresponding data as we had for Northern Sámi. Then
we compared these systems to similar systems that we produced using larger data and, finally, to
the state-of-the art systems for these languages. These results helped us to estimate the gains for
collecting more Northern Sámi data.

1.1 WikiTalk and DigiSami

Another motivation to build a recognizer for Northern Sámi is to utilize it as part of a spoken dialogue
system in the WikiTalk application [6]. This is one part of the DigiSami project which is a research
project at University of Helsinki aiming to support content generation of less resourced languages
with the help of language technology. Currently, the main dangers to Sámi language are the disap-
pearance of the traditional lifestyle and work of Sámi culture, and emigration of Sámi people away
from their old living areas. However, there are also studies and discussion on using new technologies
to revitalize languages [7]. In [8], revitalization for the Northern Sámi language is described using
spoken language data collection in interactive setting for the WikiTalk application. In WikiTalk, the
idea is to have users (children or adults) find out more about subjects that interest them by discussing
with the humanoid robot Nao. They can ask for more information on the subject and then Nao will
read them the related Wikipedia article [9]. Described in this paper is the first step to building this
end-to-end system.

2 ASR for under-resourced languages

The majority of the state-of-the art methods in Large Vocabulary Speech Recognition require large
amounts of data and expertise.
Firstly, a great number of high quality spoken utterances have to be collected and correctly tran-
scribed. For a Speaker-Independent (SI) system, i.e. a system that can recognize anyone who speaks
the target language, utterances from many different persons are needed. For a Speaker-Dependent
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(SD) system, i.e. a system that can only recognize the voice of the person who provided the training
data, only a few hours of transcribed speech are required.
The second required dataset is a large corpus of written text, preferably in the same style and domain
as what should be recognized by the system. Te corpus is used to train the language model and it
should contain all common words in their expected contexts.
Lastly, a speech recognizer needs a pronunciation dictionary; i.e. a list of all possible words with all
their possible phonetic transcriptions. The phonemes also need to be grouped according to different
phonetic properties, so that their probability distributions can be shared in the training of the acoustic
model.
For under-resourced languages, as the name suggests, none of the above data is readily available, but
alternative solutions have to be developed. An easy alternative to a large corpus of transcribed audio
data is to collect audio books. Although the quality of the speech varies, projects such as Librivox
have freely available audio books inmany languages which can be used for this purpose. Using a tem-
porary acoustic model and simple text processing techniques these audio books can be automatically
segmented into sentence-long utterances that are suitable for training a minimal speaker-dependent
model.
Language data is also freely available on-line, and e.g. Web-scraping can give a rudimentary dataset
for training a language model [10]. Also sites like Wikipedia have often big collections of easily
available text. However, the quality and usability of such data varies, and many of the sources that
can be ‘found’ on-line suffer from the problem that their style and topic are non-standard and do
not necessarily match written nor spoken language conventions. Moreover, on-line texts often con-
tain foreign language segments, symbols or abbreviations which decrease their usability for building
language models.
One of the main resource consuming tasks is the preparation of a pronunciation dictionary, which
normally requires extensive manual work and linguistic knowledge. One solution to build the pro-
nunciation dictionary quickly is to model the graphemes (letters) of the words directly, instead of
using the actual phone they represent [11]. In languages such as English this does not, of course,
give very good results since graphemes can have very different realizations. Consider for example
the words ‘tough’ and ‘dough’ that resemble each other in writing, but are pronounced in a com-
pletely different way. In the Uralic languages studied here however, a grapheme-to-sound system
works reasonably well since, in general, every grapheme is realized as a single distinct sound.
Lastly, the phonetic grouping or ‘phoneme question set’ is a small dataset that requires linquistic
expertise. Although there are algorithms available that can replace this set altogether [12], it is often
undesirable as it makes the system less effective. It is also possible to modify the phoneme set of
a closely related language, and such small modifications to approximate the target language do not
necessarily require so much expert effort.
Even though the above simplified solutions can replace all the expensive data needs, they will in-
evitably limit the performance of the speech recognizer. Adding more and domain related train-
ing data as well as developer expertise will naturally improve the system performance significantly.
However, the low-resource systems can already serve some basic language technology needs. The
largest limiting factor for these systems is that a real SI system requires training data from more than
a hundred speakers.
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3 Acoustic modeling

The Acoustic Modeling part of the speech recognizer was done with a standard Hidden Markov
model with Gaussianmixture models as emission distribution (HMM-GMM). Mel Frequency Cepstral
Coefficients were used as input features. [13]
The audio data is prepared by splitting the audio files (originally chapter length or similar) into sen-
tence utterances. This is done by doing Baum-Welch forced alignment with a temporary speech
recognition model. The temporary speech recognition model was created by taking a well trained
Finnish model and mapping the Finnish phonemes to the one of the target language. In later itera-
tions the best speech recognition model of the language was used to do the forced alignment again,
resulting in a perfect split of training utterances.
The HMM-GMM model is trained using multiple iterations of Baum-Welch maximum likelihood es-
timation. To manage the model complexity Gaussians were shared between different HMM-states
using decision tree clustering. The modeling unit of the acoustic model is a tri-state tri-phone, which
means that all the phonemes with a different preceding and succeeding phoneme are modeled as
separate units, as are the beginning, middle and end of each tri-phone.
In Section 7 the number of Gaussians for different models are reported.

4 Language modeling

A language model is an important part of any speech recognition system. Even though theoretically
a good acoustic model with a lexicon could be enough to recognize words, a model that takes the
word context is essential. For languages which have many homophones, i.e. words with the same
pronunciation but different meaning, it is also essential to have a language model, so as to pick the
right word meaning given a pronunciation in the context.
A language model predicts words based on their sentence context. For synthetic languages like
Finnish and all the Uralic languages, themain issuewithword-based languagemodeling is that a huge
lexicon is needed in order to decrease the out-of-vocabulary (OOV) rate to a manageable percentage.
Since the OOV-rate is the minimum WER possible, an OOV-rate much less than 10% is necessary.
For an English speech recognizer, a vocabulary size of 20 000 word may provide an OOV-rate of 2.4-
2.7%, while with a vocabulary of 40 000 words, an OOV-rate less than one percent is achieved [14].
In contrast, a Finnish recognizer needs a 410 000 word vocabulary to have an OOV-rate of 4.0-7.3%
[15].
An interesting alternative for a word-based language model is to use a sub-word language model.
A sub-word model builds words out of a smaller set of word fragments. The word fragments are
particularly effective in agglutinative languages or languages with a lot of compound words. When
the words are built from smaller units, also the OOVwords can be modelled by using the probabilities
of sub-word unit combinations learned from the training corpus. If the word fragments are chosen
appropriately, the OOV-rate can become close to zero, even for smaller language data corpora.

4.1 Morfessor

Morfessor is amachine learning tool that uses a statisticalmodel to split words into smaller fragments,
which can be used for language modeling [16]. This resembles closely the splitting of words into their
smallest informational units, morphemes.
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Morfessor has three components; the model, the cost function, and the training and decoding al-
gorithms. The model contains the lexicon, i.e. the properties of the morphs, the written form of
the morph itself and its frequency, as well as the grammar, which contains information of how the
morphs can be combined into words. The Morfessor cost function is derived from a MAP estimation
with the goal of finding the optimal parameters θ given the observed training dataDW :

θMAP = argmax
θ

P (θ|DW ) = argmax
θ

P (θ)P (DW |θ). (1)

The cost function to be minimized is the negative logarithm of the product P (θ)P (DW |θ)

L(θ,DW ) = − logP (θ)− logP (DW |θ). (2)

The purpose of this is to generate a small set of morphs that represents the words in the training
corpus compactly. If only letters were used as morphs the set of would be small but representing the
corpuswith individual letters would be cumbersome. In contrast usingwhole words asmorphswould
result in a large set of morphs so the optimal solution is somewhere in between. However, individual
letters are added to the morph set so even previously unseen words can always be segmented.
A greedy search algorithm is used to find the optimal segmentation of morphs for the training
data. When the best model is found, it is used to segment the language model training corpus
with the Viterbi algorithm. This result can be used to generate n-gram models with morphs as LM
units.

4.2 n-gram modeling

n-grammodels predict the output of the next word or sub-word given then−1 previouswords or sub-
words. They are normally created by counting all occurrences of the word and sub-word sequences.
To prevent the model from being too big and too much tailored to the training data (overfitting),
pruning is applied. Also, some of the probability mass is reserved for unseen contexts, for example
with the Kneser-Ney smoothing technique[17].
When n-grammodels are build for words, the order the model, i.e the value of n, is typically between
three and five. If the order is high, the models get too big, and they do not contain enough necessary
information. With the sub-word models, however, the contexts can be much deeper, as there are less
types in the vocabulary and the context counts are more sparse. Also intuitively, to cover the same
context, the order of a sub-word model must be higher than the order or the word model. Standard
tools for n-grammodelling have problems with correctly smoothing and growing high-order n-gram
language models. VariKN [18] is a specific algorithm and tool to solve this problem and it was used
in this paper for building high-order sub-word n-gram models.

5 Experiment setup

The experiments were carried out using our open source speech recognition toolkit called AaltoASR¹
[13][19]. It uses context-dependent tri-phones with diagonal Gaussian mixture models (GMM) as
emission distributions and the speech features itself areMel-FrequencyCepstral Coefficients (MFCCs).

¹Open source, available from https://github.com/aalto-speech/AaltoASR
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Both words and sub-word units were used for language modeling. The sub-word unit models were
created with Morfessor 2.0², an implementation of the Morfessor Baseline algorithm[20].
Variable lengthn-grams used for languagemodelingwere generated by both SRILM³ [21] andVariKN⁴
[18, 22]. The decoder of AaltoASR is a time-synchronous one-pass token passing decoder where the
beam search is complemented by a language model look-ahead [23].

6 Northern Sámi ASR evaluation

The audio data used for the Northern Sámi recognizer came from the UIT-SME-TTS corpus⁵. There
are data for two speakers, one male and one female. Themale audio data was 4.7 hours and the female
data 3.3 hours. Separate data is needed for development and evaluation, and we used 75% for training.
This makes 3.5 and 2.5 hours of training data for the male and female voice, respectively.
The initial recognition model was created by using a Finnish model. With this model, the audio
data was split into sentences and trained with the procedure described in Section 3. This resulted
in two speaker dependent systems, one for the male and one for the female speaker (resp. SM1
and SF1). These models are Speaker-Dependent models as there is data only from the two speakers
available.
For language model, we evaluated both word and morph n-gram models. In addition to the training
sentences, we also used the Northern Sámi Wikipedia dump (Train+Wiki).
The results for basic recognition are shown in Table 1. Besides the standard Word Error Rate (WER),
also the Letter Error Rate (LER) is reported. LER is common for speech recognition experiments on
languages which are morphological complex such as Northern Sámi, Finnish and Estonian.

Speaker SF1 Speaker SM1
Unit Toolkit 5-gram 7-gram 9-gram 5-gram 7-gram 9-gram
words SRILM 52.9 / 12.7 52.9 / 12.7 52.9 / 12.7 48.6 / 11.1 48.7 / 11.1 48.7 / 11.1
morphs SRILM 40.0 / 9.0 39.9 / 9.3 39.1 / 9.1 37.6 / 8.5 36.8 / 8.4 37.3 / 8.5
morphs VariKN 38.4 / 8.6 38.5 / 8.7 37.6 / 8.7 35.4 / 8.1 33.7 / 7.6 34.1 / 7.9

Table 1: ASR recognition results for the Northern Sámi SD recognizers. Word Error Rate / Letter
Error Rate reported.

We first observe that the SM1 recognizer is slightly better than the SF1 recognizer. However, this
is most likely caused by the fact that there was more data available for the training of the acoustic
model.
As expected, the morph based language models have much lower error rates than the word-based
models. Looking at Table 2, we notice that the OOV-rate for word based models is rather high which
causes the big difference in performance to sub-word models.
For word-based models there is no effect on using higher order n-grams. This can be seen in Figure 1
which showsWER for different n-grammodels with the SM1 system. In this comparsion we used the
Big Northern Sámi language model which is trained from approximately 12 million word tokens of
data from ‘Den samiske textbanken’. There is no change in performance after the 3rd order n-grams

²Open source, available from http://www.cis.hut.fi/projects/morpho/
³Open source, available from http://www.speech.sri.com/projects/srilm/
⁴Open source, available from https://github.com/vsiivola/variKN
⁵Provided by the University of Tromsø
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Word Morph
Female 22% 0%
Male 20% 0%

Table 2: Out-of-vocubulary percentages for the Female and Male testsets.
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Figure 1: Word error rates for the SM1 system with the Big language model.

for the the word-based model, whereas for the VariKN morph-based models there are clear effects
when using higher order models.
The best Word Error Rate on the Big language model for the SM1 system is 18.2%, the best Letter
Error Rate 4.2%.

7 Comparison of low-resource systems formultiple languages

To compare the results of the Northern Sámi recognizer with recognizers in different languages we
first train Speaker Dependent models for both Finnish and Estonian audio books. The available audio
datasets are described in Table 3 and the available text corpora in Table 4.
Even though all datasets are audio books, there are a number of differences. EF1, EM1 and FM1
were encoded with the mp3-codec, while for the FF1, SM1 and SF1 audio books original high quality
uncompressed audio files were available. The speaking style was generally the same, with a prosody
typical to story telling. An exception to this was the FF1 book, an audio book created for blind
persons, which has been read in a very monotone voice with little prosodic variation. This makes the
book also understandable when played at higher speeds.

⁶Provided by YLE. Can be listened on http://areena.yle.fi/1-1301621

7



Language Gender Title Amount
EF1 Estonian Female Nils Holgerssoni imeline teekond läbi Rootsi 16 hours
EM1 Estonian Male Würst Gabriel ehk Pirita kloostri wiimsed päewad 6 hours
FF1 Finnish Female Syntymättömien sukupolvien Eurooppa 12 hours
FM1 Finnish Male Seitsemän veljestä⁶ 13 hours
SF1 Northern Sámi Female UIT-SME-TTSF 3.3 hours
SM1 Northern Sámi Male UIT-SME-TTSM 4.6 hours

Table 3: Audio data for the trained speaker dependent systems.

Language Source #sentences #word tokens #word types
Estonian Wikipedia 895k 10M 778k
Estonian newspaper+web+broadcast [24] 19M 229M 3.8M
Finnish Wikipedia 2.2M 22M 1.5M
Finnish Kielipankki 13M 143M 4.1M
Northern Sámi Wikipedia 10k 88k 20k
Northern Sámi Den samiske tekstbanken 990k 12M 475k

Table 4: Language modeling data for the trained speaker dependent systems.

The experiments in Section 6 confirmed the hypothesis that morph-based n-gram models trained
with the VariKN toolkit give the best performance, hence only this combination will be used.
To compare the systems for different languages fairly, we artificially reduce the amount of audio and
text data to match that of our smallest system. We only use 2.5 hours of audio data and a random
10.000 sentences of theWikipedia data set for each language. The systems are trained with a 10-gram
VariKN sub-word language model. The statistics in Table 5 show that the datasets have equal number
of sentences, but not equal number of word types or tokens. This is most likely due to the Northern
Sámi Wikipedia having more stub articles that contain short sentences with similar words.
The Train+Wiki language models are trained from the combination of the recognizer’s training
sentences and the small Wikipedia dataset as described in Table 5. The Big language models are
trained from the higher quality text sources, which are described in Table 4.
The results of the comparable systems with the Train+Wiki dataset are shown in Table 6. The word
error rates are close to each other, confirming that the systems are comparable. One exception is
the FF1 system, which performs much better. This better result is most likely a combination of the
speaking style, which had little variation, and a better match between the text of the language model
and the test data.
We also tested the models with the same amount of acoustic data and their respective Big language
models. The improvements are significant with the best improvement being 64% relative improve-
ment in WER for the FF1 system. This indicates the importance of the availability of high quality
language model data for the performance of a Uralic speech recognition system. The amount of data

Language #sentences #word tokens #word types
Estonian 10k 108k 41k
Finnish 10k 103k 43k
Northern Sámi 10k 88k 20k

Table 5: Reduced subsets of wikipedia data for use in the Train+Wiki language model.
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Train+Wiki Big
Language Voice WER LER WER LER
Estonian EF1 39.6 15.8 25.0 11.4
Estonian EM1 39.2 13.3 25.5 9.6
Finnish FF1 25.2 4.1 8.9 2.1
Finnish FM1 35.8 7.7 24.9 5.6
Northern Sámi SF1 37.5 8.5 23.7 5.5
Northern Sámi SM1 39.5 9.4 20.9 4.9

Table 6: Word Error Rates for using 2.5 hours of training data and either the Train+Wiki or Big
language models. All language models were 10-gram VariKN sub-word models.

2.5 hours All data
Language Voice #hours #Gaussians WER LER WER LER
Estonian EF1 8 31.5k 25.0 11.4 18.8 8.3
Estonian EM1 4.5 12.6k 25.5 9.6 23.2 8.4
Finnish FF1 9 26k 8.9 2.1 8.1 1.9
Finnish FM1 10 28k 24.9 5.6 19.8 3.7
Northern Sámi SF1 2.5 7.7k 23.7 5.5 23.7 5.5
Northern Sámi SM1 3.5 9.6k 20.9 4.9 18.1 4.2

Table 7: Speech recognizer results for the full audio books with the Big language model.

however is less important, as the Big language model for Northern Sámi gives a similar improve-
ment as the Big language models for the other systems, even though the amount of data in the Big
language model for Northern Sámi is lower than the amount of data in the Train+Wiki systems for
Estonian and Finnish.
To see the effect of using more acoustic data, we also trained all systems on their full acoustic datasets
and evaluated them with the Big language model. While the 2.5 hour data systems were all modeled
with appr. 7,500 Gaussians, the bigger models have proportionally more Gaussians.
The results are shown in Table 7. There are a couple of surprising results. For the FF1 system, there
is a small improvement on the already very good result. On the other hand, the SM1 system already
improves with 13% relative WER with only an hour of added data. In general, there is a clear pattern
that more acoustic data improves the model, except if the data has so little variation that an optimum
is already reached earlier.

7.1 State-of-the-art recognizers

The experiments in the previous sections show that results on Finnish and Estonian systems are
comparable with Northern Sámi systems if the same amount of data is provided. This allows us to
look to the state-of-the-art recognition systems for Finnish and Estonian systems and project how
well a Northern Sámi system would perform if the same amount of data would be collected.
Table 8 shows the reported error rates for different systems. The most important difference with the
systems discussed in the previous sections is that these are Speaker Independent recognizers, which
are tested with different speakers than those present in the training data. Also the quality and type
of speech are different.
Of these state-of-the-art results, the results on the Finnish Speecon set and the Finnish telephone
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Language Description WER LER Source
Estonian Broadcast conversations 17.9% [25]
Estonian Oral presentations 26.3% [25]
Finnish Speecon testset 2.9% [26]
Estonian Telephone speech 33.1% 11.9% [13]
Finnish Telephone speech 21.6% 6.8% [13]

Table 8: State of the art results for Finnish and Estonian Speaker Independent ASR.

speech are most impressive. Even though there is much more speaker variability, the result on the
Speecon testset is close to the result of the FF1 SD recognizer. This is done using speaker adaptive
training and discriminative training techniques.
The telephone speech results are focused on lower quality speech data. Again the results seem better
for the SD systems in the previous section, but the variability in speakers, the speech quality and the
language content of the utterances are much more complex.
Given that the Speaker Dependent systems all performed with similar accuracy, we expect that tasks
of similar difficulty would perform as well for Northern Sámi as they would for Finnish or Estonian,
given that the data would be available.

8 Conclusions

Using a number of techniques, most notably sub-word language models and grapheme-to-sound
acoustic modeling, we have overcome challenges caused by a small amount of data available for
developing speech recognizer systems for under-resourced languages. We have demonstrated the
feasibility of this approach by training Speaker Dependent speech recognizer systems for the North-
ern Sámi language, an under-resourced Finno-Ugric language, and achieved a letter error rate of only
4.2%.
In order to put the result in perspective and validate the techniques, we also trained systems for
Finnish and Estonian using artificially limited datasets. These experiments show that the Northern
Sámi recognizer gives comparable results to the Finnish and Estonian recognizers and can effectively
use similar techniques such as sub-word language models.
In future work we plan to use cross-lingual techniques to build Speaker Independent systems for
Northern Sámi, even though acoustic datasets with enough different speakers might not be available,
or only available without transcriptions.
All scripts used in this paper are published as open-source under the Modified BSD license⁷.
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