Projekteja vuodessa
Abstrakti
We study the computational complexity of the non-dominated sorting problem (NDS): Given a set P of n points in Rm, for each point p ∈ P, compute ℓ, the length of longest domination chain p1 > p2 > ··· > pℓ = p, where x dominates y (denoted as x > y) if x is not larger than y in every coordinate. A special case of NDS, which we label as NDS1, is to find all the non-dominated points in P. NDS has emerged as a critical component for multi-objective optimization problems (MOPs). For m ≤ 3, Θ(n log n)-time is known. For a fixed small m > 3, the best bound is O(n logm-2 n log log n). For larger m, the best result is an O(mn2)-time algorithm. We show that the O(mn2) running time is nearly optimal by proving an almost matching conditional lower bound: for any ∈ > 0, and ω(log n) ≤ m ≤ (log n)o(1), there is no O(mn2-ϵ)-time algorithm for NDS or NDS1 unless a popular conjecture in fine-grained complexity theory is false. To complete our results, we present an algorithm for NDS with an expected running time O(mn + n2/m + n log2 n) on uniform random inputs.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion |
Kustantaja | ACM |
Sivut | 185-186 |
Sivumäärä | 2 |
ISBN (elektroninen) | 9781450371278 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 8 heinäk. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Genetic and Evolutionary Computation Conference - Cancun, Meksiko Kesto: 8 heinäk. 2020 → 12 heinäk. 2020 |
Conference
Conference | Genetic and Evolutionary Computation Conference |
---|---|
Lyhennettä | GECCO |
Maa/Alue | Meksiko |
Kaupunki | Cancun |
Ajanjakso | 08/07/2020 → 12/07/2020 |
Sormenjälki
Sukella tutkimusaiheisiin 'Worst-case conditional hardness and fast algorithms with random inputs for non-dominated sorting'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
ALGOCom: Novel Algorithmic Techniques through the Lens of Combinatorics
Chalermsook, P., Jindal, G., Franck, M., Khodamoradi, K., Yingchareonthawornchai, S., Gadekar, A., Orgo, L., Jiamjitrak, W. & Spoerhase, J.
01/02/2018 → 31/01/2024
Projekti: EU: ERC grants